Test for the Presence of Gold in Solutione
Protosulphate of iron gives a brown precipitate, which acquires a metallic luster when rubbed. Proto-chloride of tin gives a purple or blackish precipitate, insoluble in muri atic acid. Sulphuretted hydrogen and hydrosulphuret of ammonia give a black precipitate, insoluble in simple acids. Ammonia gives a reddish-yellow precipitate (fulminating gold) with tolerably concentrated solutions, either at once, or on boiling the liquid. Liquor of potassa gives, with neutral solutions of gold, a similar precipitate to that formed by ammonia, insoluble in excess.

AN ANCIENT HAND WARMER.

Our illustration represents a curious old article of comfort. which is almost forgotten now-a-days, but which once formed one of the many objects carried by ladies at their chatelaines. It is a hand-warmer, and consists of a small

spirit lamp hung in gimbals in several circles of metal, so that it stands always horizontal. It is enclosed in two hem ispheres of copper, which are hinged together. The contrivance was clasped between the palms of the hands, and thus kept the latter warm.

IMPROVED SELF-FEEDING DRILL

The annexed engraving represents a new self-feeding drill for boring iron, steel, etc. The feed is adapted for all classes of work and all sizes of drills, and therefore needs no adjustment. A is the drill shaft, having at its upper end the flywheel, B. This shaft is rotated by the bevel gearing shown, which is revolved by hand by means of the crank. On the bevel pininn is a feather which enters a keyway on the shaft, A, so that although said shaft is turned by the pinion it can be moved vertically within the latter. To the upper part of the shaft are attached collars, and between them is a sleeve which is secured for vertical movement upon the shaft by means of the collars, and prevented from revolving with it by the set vented for rous it to the bea the set screws which attach it to the beam, C. It will be observed that the shaft, A, is free to
move vertically within certain limits, and move vertically within certain limits, and
thatits vertical position is regulated by the thatits vertical position is regulated by the
beam, C , which is attached to the shaft by beam, C , which is attached to the shaft by
the sleeve above referred to. The short end of the beam is connected by a link to the frame. The long arm is notched so that the weight may be adjusted upon it to cause more or less downward pressure on the shaft This beam is operated by means of a lever, D, the short arm of which is cogged and ensfages with the cogs of the bell crank shown, which latter is connected to the beam by means of clevises. By raising the lever, the long arm of the beam is depressed, and consequently also the drill shaft. In order to limit the motion of the beam and through it of the shaft, an adjustable stop, E , is provided which may be secured in any desired position. The table is likewise adjustable, and is placed as desired by means of the dog, F, which engages with a rack upon the standard.
The machine is strongly constructed and is in all particulars a very excellent and useful tool, especially adapted to the needs of the general machinist. For further particulars iddress the manufacturers, Messrs. Combs \& Bawden, Freehold, N. J.

The Atmosphere of Mars.

Mr. R. S. Newall, F.R.S., at the observatory, Gateshead, England, states that on August 23, during the total eclipse of the moon, he observed that Mars is surrounded by a whitish envelope, the diameter being abou twenty times that of the planet. He sawit again on September 7 and 19 distinctly. It has a well-defined edge, and is densest nearest to Mars. Small stars were seen through it.

wire in existence was a trifle under 2,000 miles. On the 31st of March last it had been increased to a trifle ove 8,000 miles, being more than four times as much in 1877 as in 1870. A considerable proportion of the increase in the mileage of buried telegraphs during the year has been in London alone. The aerialsystem was fraught with dange to life and property in the neighborhood of the wires. Un der the new arrangement the telegraphic system generall will be less liable to interruption when the frosts and snow of winter set in.

A NEW FLOATING OIL BURNER.

The annexed engraving represents a new floating oil burner for night or other lights in which a long wick may be used. It consists of a cup-shaped float, having a convex top. A tube passes through the float, extending both above and below it. The lower end of the said tube is loaded to

maintain it in a vertical position. A slot is cut in the side of the wick tube, near its upper end, to receive the edge of a serrated wheel, by which the wick is raised or lowered: A curved handle is attached to the top of the flat, for convenience in handling the burner. A ball is placed in the floa which may be shifted so as to counterbalance the heavie side and cause the float to set evenly in the oil in which it is pladed. The float is airtight and formed of thin sheet metal, nd hence does not become oil-soaked.
This invention was patented through the Scientiflc American Patent Agency, September 18, 1877, by Mr. Oscar Tamagno, of New York city

Mountain and Balloon Ascents.
In our number for August 9, we briefly noticed the ascen made by Mons. Wiener, of the mountain Il limani, one of the highest-if not the highestof the Bolivian Andes, which forms a noble object from the city of La Paz, and was for merly reputed (by Mr. Pentland) to have an altitude of no less than 24,200 feet. Mr. Wiener, however, makes its height only 20,112 feet, while Mr. Minchin, as we have already observed, places its altitude at 21,224 feet. If the latter estimate be correct, Mons. Wiener has, we believe, not only made the highest ascent which has been made in the Andes, but has attained a greater altitude than has has been reaehed on the earth out of Asia, and in Asia has only been beaten by Mr. Johnson, who some years ago got to a height of 22,300 feet in Cashmere. As the recorded ascents to the height of 21,000 feet are extremely few, we shall be glad to hear further particulars respecting Mons. Wiener's exploit, and more especially whether he experienced much exhaustion through the rarefaction of the air. Practised mountaineers who have climbed to a height of 17,000 to 18,000 feet have been of opinion that even at such altitudes there is a very important and perceptible diminution of the bodily powers, and think it probable that the height of 25,000 or 26,000 feet will be found to be about the limit which will ever be reachedon foot. As a set-off to this opinion we may mention the facts that hunters in the Himalayas frequently pursue their game at heights exceeding 20,000 feet without experiencing any notable inconvenience from the low barometric pressure; and that natives living on the base of Demavend, near Teheran, often asceud to its summit to gather sulphur from its crater without any great difficulty. The height of this mountain, there is reason to believe, also exceeds 20,000 feet, al though it has never been accurately determined. If, therefore, severe work can be done with impunity at such elevations, it seems not unreasonable to suppose that much greate heights might be attained by men who had previously accustomed themselves to life at high altitudes. Aeronauts, anyhow, have

