A Curious Experiment.
We have now at Central University a singularly beauti ful experiment in operation, showing the motion of the earth. It has been contrived and successfully completed by Professor T. W. Tobin, who has charge of the department of chemistry and physics in the University. The apparatus may be briefly described as follows: Upon an iron stand, about six feet in height, an exceedingly delicate pendulum is suspended; attached to the upper portion is some mechanism and a fine index needle. The apparatus was brought to a state of perfect repose, and then the pendulum, by means of a fine silk, vibrated north and south. In the course of six minutes the index showed that the normal relation between the pendulum and the earth had altered, and a longer interval indicated an increased variation. In 1851 Foucault, a French scientist, reasoned that while all bodies are governed by gravity, independent motion is not: that in virtue of inertia, a body moved will continue in motion forever; so a perdulum once started in vibration will continue to oscillate in the same direction until gravity and the friction of the air bring it to a state of rest
The earth's revolution being a circle, there must be a variable relation between the two motions, namely, the circle and the straight line of the pendulum's direction. The apparatus now described shows this relation. An experiment was made by Foucault in Paris with a pendulum over 200 feet long: a similar experiment at Bunker Hill and then at Yale College prove the principle: but the apparatus employed was costly and cumbersome. The instrument at Central University is simple and delicate, and is calculated to create interest in scientific circles.-Kentucky Register, Richmond, Ky.

Hot Water for Tire Shrinking of Wheels

The expansion of tires by hot water, though not claimed to be new, is believed by the author to be much superior to the ordinary method of using fire. As applied on the MoscowNijni Railway, an iron tank, one fourth filled with water, is fixed near a stationary boiler, a steam pipe from which is ed through it, capable of heating the water to $212^{\circ} \mathrm{Fah}$. Into this the tire is plunged by means of a portable crane, and after an immersion from ten to fifteen minutes, is taken out and immediately placed on the wheel. Three men only are employed, who will fix from twelve to fourteen tires in a day of eleven hours. The allowance for shrinking (the difference between the diameter of the skeleton and that of the tire) is 0.75 millimeter to a meter. This is ascertained by gauges of great accuracy, and, if deviated from, the tire will be either loose after cooling or too small to get on the wheel. When fire is used, the tire can never be heated equally or cooled equally in all parts, and in consequence is sure to be more or less oval in form, which is not the case in hot water. The above railway made a comparison between the two, the results of which are given. It appears that, during a six years' trial of fire-shrunken tires, 37 per cent ran loose and 5 per cent were broken; while during a three years' trial of water-shrunken tires less than 1 per cent ran loose, and only a single tire was broken. The liability to breakage in the former (produced by the irregularity in form) is much insisted on by the author as being, of course, more dangerous and costly than the loosening of the tire.

THE SATELLITES OF MARS.

We take from La Nature the annexed engraving of the planet Mars and its second satellite, as the same appeared through the great telescope at the observatory of Paris, at 10:15 P.M., on August 27 last. The first satellite moves around the planet in 15 hours, at an average distance of 9,000 miles; the second completes its course in thirty hours, and is distant about 15,000 miles. Both bodies are very small, and their observation requires powerful instruments. Judging, however, by its brilliancy, the diameter of the second satellite is estimated at only some 30 miles.
Future observation of their motion will lead to the exact de termination of the elements of their orbit, and will show whether the revolution is relatively direct, as in the case of the moons of Jupiter and Saturn, or relatively inverse, as in the case of the satellites of Uranus and Neptune. It will also lead to more exact data relative to the mass of Mars.
In a former article on the dis covery of these bodies, we noted the fact that while most astronomers did not regard it even as probable that Mars might have satellites, others had admitted the possibility, and had predicated their admission on certain physical characteristics of the planet itself. Les Mondes has recently published an extract from a work by Béron, a French astronomer, entitled " Ce lestial Physics," and printed in 186\%. wherein the author says: "Mars is distinguished from the seven other planets by its satellite, which no one has ever seen, although it exists, because Mars has thrown out jets of burning matter, to which are due, first, its rotary movement, and, second, the existence of two recesses which appear to be movable spots. It appears, incontestably, that these spots are due
to light reflected in different degrees by the slopes of thes recesses, which are constantly being differently exposed to the sun and to the earth."

ORCHIDS.

The orchids constitute a beautiful family plant, so called from orchis, their ancient name. Popularly any one of the family, of whatever genus, is called an orchis. Their num ber is legion, and includes a veritable host of smaller flower ing kinds, whose blossoms yield in nothing but size to their larger compeers; and their beauty and conformation, when looked for, is often more extraordinary and interesting.

The large illustration on the preceding page gives a com

parative idea of some of the orchids, collected from differ ent countries. For instance, the Restripui, Fig. 10; the Burlingtonia, Fig. 6; the brown and golden twisted oncidians lentiginosum. Fig. 5; and the brilliant odontogossons, Fig. 11; are inhabitants of North America. The strangely tinted, blue, white, and brown banda tricolor, Fig. 7; the tinted, blue, white, and brown banda tricolor, Fig. ; the
white pholenopsis, Fig. 8; the orange and brown dendrobium chrysanthum, Fig. 12; belong to Asia. South America gives the beautiful cattleya maxima, Fig. 9, with its varying colored lips; the curiously formed purple coryanthes, Fig 13; and the large stanhopea ornatissima, Fig. 14; with its

sweet scented yellow and brown dotted blossoms. The Chinese cymbidium aloefolium, Fig. 15, with its yellowish brown blossoms forms, the link between the orchids of the tropics and the temperate zone
In the lower group is given the modest flowers which are the parents of their larger and more grotesquely developed descendants. In this group are represented the lady's slipper (cypripedium calceolus) Fig. 3, and the shoe-shaped orphrys apifera, with a bee-like lip; the sweet scented meadow hyacinth, platonthera bifolia, Fig. 1; and the common orchis norio, Fig. 4, from which the class receives its name.
The distinguishing feature of the orchids is the column and it is embodied in them all, be they large or small. Figs. 1 and 2 give an enlarged representation of this column, Fig.
bear a great resemblance to various insects, for instance the
butterfly orchid (oncidium papillo) which in form, size, and color resembles somewhat a gaudy butterfly.
The cultivation of orchids is a passion with many horti alturists, who

A New Military Arm.-The Torpedo Hanters,
A correspondent of a German journal, writing from Erzeroum, gives the following account of the new corps of divers which has been organized by the Turkish govern ment for the purpose of removing the torpedoes laid down by the Russians in the Danube and on the shores of the Black Sea:
The divers are Mohammedans from Lazistan, and a cer tain number of them are attached to each of the Turkish squadrons cruising in the Black Sea. When the ships arrive near a spot where the existence of torpedoes is suspected two of the divers row to the place in a very light boat, draw ing so little water that there is scarcely any danger of its striking against the torpedoes. On arriving at their destina tion one of the rowers dives into the sea; if he finds a wire or rope by which the torpedo is attached he cuts it with a sharp instrument and returns quickly into the boat. The liberated torpedo floats to the surface of the water, the men pass a short lasso around it, take it in tow, and then row back to the ship as quickly as possible. For each torpedo thus captured the divers are paid $\$ 45$, and also a sum of money equal to one half of its value. Although the men have been often employed on this dangerous service, noì a single accident has occurred to any of them.

Effects of Timber Waste.

Colonel Playfair, British Consul General for Algiers, has sent to his government a report which offers some striking instances of the injury done to a country by the reckless destruction of forests. He states that the principal cause of the decadence of the entire region of Tunis and Algiers and the exhaustion of the soil is directly owing to tree felling. Meteorological observations have been carried on in Algiers since 1838. During the first twelve years of the intervening period the rainfall averaged 32 inches annually, during the second twelve years it had decreased to 30.8 inches, and during the last fourteen years it has been but 25.5 inches. The decrease became apparent after the first serious clearings of wood in 1845 , and during 1876 so exhausted had become the soil that a famine seemed imminent in Western Algeria.

Magnetization of Sheffield Steel Bars

M. Gaugain, who for some time has been conducting investigations with the influence of heat on magnetization has recently announced some very curious results obtained with Sheffield steel bars. He found that, when certain bars were magnetized at a high temperature and cooled, their magnetism entirely disappeared, and then changed sign; so that if a bar had been magnetized when hot in a certain direction, it was found to be magnetized in the opposite direc tion after returning to the ordinary temperature. When heated afresh, the inverse magnetism, which is always very feeble, vanished, and the primitive magnetism reappeared. The same change of sign is reproduced when the bar is again cooled.

Experiments with the Dynagraph

The Springfield (Mass.) Republican of recent date says: A very interesting series of experiments have been in progress on the Boston and Albany road the past few days by means of the dynagraph car of the Eastern Railway Association, in charge of P. H. Dudley, which has been run between Springfield and Worcester on both freight and passenger trains, to test the relative amount of power required at dif ferent points along the road, especial reference being had to the Springfield and Charlton grades. The experiment on the Modoc train, leaving Springfield at 6.30 A.M., which, on the day in question, consisted
of two sleepers, four passenger and baggage cars, and the dynagraph car, showed power re quired as follows: For the first 2,920 feet out of the depot the tension on the draw-bar was $6,526 \mathrm{lbs}$. : for the next mile 6,469 lbs., the rate of speed being 32 miles per hour; for the next, 6,200 lbs., the speed being 36 miles and for the last 1,100 feet, to the top of the grade, 6,250 lbs. The last mile required the engine to produce $19,625,800$ foct pounds of power per minute.
In going up the grade from East Brookfield to Charlton, beginning at the station, the tension on the draw-bar for the first

1 being a front view, and Fig. 2 a side view, of the same of the indigenous orchid (latifolia) while Figs. 3 and 4 give the same views of the exotic flower
Orchids are among the most valued of cultivated flowers, some for their beauty, others for their fragrance, while others are admired for their grotesque forms. The forms are sometimes wonderfully simulative. The flowers of one species resembling the mouth of a cuttle fish, others resemble a large spider, while in other species the flowers

MARS AND ITS SATELLITES

 for the first full mile the velocity being 37.5 miles, $4,280 \mathrm{lbs}$; for the second mile, with 37 miles velocity, $5,232 \mathrm{lbs}$; ; third, with 36 miles velocity, $5,450 \mathrm{lbs}$. fourth, which contains a sharp curve, with 37 miles velocity, $5,612 \mathrm{lbs}$. fifth, with 41 miles velocity, 5,230 lbs. ; and sixth, which ran a little past the summit at Charlton, $4,356 \mathrm{lbs}$.The engine had an 18 inch by 24 inch cylinder, and the track was in excellent condition. The maximum of the

