grientific Ameriram.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors. published weekly at
NO. B'Y PARK ROW, NEW YORK.

- D. MUNN.
A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage included....
One copy, six months, postage included $\$ 320$
160
Clubs.-One extra copy of The ScIENTIFIC American will be supplie same proportionate rate. Postage prepaid.

The Scientific Amorican Supplomont is a distinct paper from the SCIENTIFIC American. THE SUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover,uniform in size with ScIENTIFIC AMERTCAN. Terms of subscription for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country
Combined Rates. -The ScIENTIFTC AMERICAN and will be sent for one year, postage free, on receipt of seven dollars, Both papers to one address or different addreesses, as desired. The safest way to remit is by draft, postal order, or registered letter.
Address MUNN $\&$ CO., 37 Park Row, N. Y. Subscriptions received and single co
the news agents.
Publishers' Notice to Mail subscribers.
Mail subscribers will observe on the rinted address of each paper the time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year.
For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions will be entered from the time the order is received;
thut the back numbers of either the hut the back numbers of either the SCIENTIFIC AMERICAN or the SCIEN
TIFIC AMERICAN SUPPLEMENT will be sent from January when TIFIC AMERICAN SUPPLEMENT will be sent from January when desired.
In his case, the subscription will date from the commencement of the In his case, the subscription will date for preservation or binding.

VOL. XXXVII, No. 17. [New Series.] Thirty-second Fear NEW YORK, SATURDAY, OCTOBER 27, 1877.

TABLE OF CONTENTS OF
 the scientific american supplement NO. 95,

For the Wook onding octobor 27, 187%. I. NGINEERING AND MECHANISS.-The Eentuckek River Bidige, Cin

vi. miscellaneous.-Rudolfl. c. Virchow, 1 engraving.

Terms - -

curious animal relationships.

As paleontogical discoveries multiply, they reveal to us in a constantly increasing degree the mobility of the beings of which our earth has seen the successive development. All living creatures of past ages have been ephemeral, and those whose histories are the shortest seem curiously enough to have been the ones which possessed the greatest strength Such monsters as the dinotherium, the dinoceras, the bron totherium, etc., existed over but a comparatively brief per iod; and it might almost be conceived that, because these giants expended vast quantities of vital energy, the quicker was the same used up.
Among these fossil beings, the mammifers which have characterized the third great phase of the history of nature, called the tertiary epoch, offer conditions particularly At thable for the study of questions relative to evolution. At this epoch they formed a striking contrast with the rest of animate creation. The plants then belonged to presen genera; their generic transformations were accomplished,
and modification was restricted to species and races. The s reat traits of the invertebrata were nearly all defined; their species varied, their genera and families likewise, but in degree. The fishes had reached their highest development, the reptiles had passed theirs and were diminishing. But the mammifers were then in full evolution; and in the enor mous multitude of species-a new form almost for every in stant of geological time-some were suddenly appearing others as suddenly disappearing. In the midst of this con fusion there may be traced, however, certain curious chain of development, and to some of these, M. Gaudry devote an admirable paper in the Revuedes Deux Mondes.
Among the placental mammifers which played a promi nent part in tertiary times are those to which, on account of their thick skin, the name pachyderm has been given. At
the present time they are scattered, and between the various the present time they are scattered, and between the various species there seems little or no relationship. The hog, the
rhinoceros, and the tapir, for example differ widely. But when we go back to the fossils, we find that preceding the hog of to-day there has been a whole succession of fossil hogs, then animals of a genus closely related, called hyothe hogs, then animals of a genus closely relaed, caus so closely rium; this in two are often confounded. The paleochcrus in that the two are often confounded. The paleochœrus
turn again differs little from the chœoropotamus and dicho bune. Now the present rhinoceros was preceded by ter tiary rhinoceri. Between these and the hornless animal , known as the acerotherium, it is easy to trace relationship. The latter may be connected with the paleotherium; and of this last the remains are found with those of the chœeropota mus in Montmartre gypsum, and thus the connection be tween the rhinoceros and the hog is established. Similarl a chain of relationship can be found between these animals and the tapir.
But the signs of transition are not merely apparent be tween pachydermand pachyderm, but bet weenthe pachyderm order and that of the ruminants. It would haraly be supposed that the light and graceful antelope bears any rela tionship to the unwieldy rhinoceros; yet paleontologists are supplying the connecting links. The majority of ruminants differ from the pachyderms, in that the former have horn later the horns were but rudimentary, and branching antlers arrived still more recently. Present ruminants are also unlike pachyderms in their lack of incisive teeth on the upper jaw, but ancient ruminants had such teeth. The molars of present ruminants are especially adapted to mastication of
herbs, those of pachyderms are suited for crushing hard bodies. Yet the hog's molars resemble those of the anthra cotherium, and from this creature, through the hyopotamus, the lophiomeryx, and the dorcatherium, can be traced every step of transition to the molars of the herbivorous antelope. Again, take the feet; note the difference between the great splay foot of the hippopotamus and the delicate hoof of the gazelle. The hippopotamus' foot is like the hog's; it is no there is a chain of resemblance from peccary to s. The chus, to tragule, to steinbock, and finally to the sheep. The hoof of the horse can also be connected with the foot of the rhinoceros.
Another curious chain is that between bear and dog Bears now differ from the canines in that they are planti grade, and in the size of their tubular teeth, the last indicating their omnivorous diet. But in the tertiary epoch there existed amphicyons-plantigrade dogs with tubular teeth these were replaced by the hyenarctos, more bear than dog Then there is a hyena connection, for the cynodon links the dog and the civet. Of three species of ictitherium, found in Greece, one was half hyena half civet, one more civet than
hyena, and one more hyena than civet. The relation of the hema, and one more hyena than civet. The relation of the sils. Remains of small pachydermshave been found having monkey dentition, and M. Gervais has discovered an anima which he calls cebochorus anceps, or, to use Patent Office parlance, combined pig and monkey.

the science of play.

There is not much obvious connection between the home ly couplet "All work and no play makes Jack a dull boy," and Schiller's hypothesis of a "Spieltrieb," or sport im pulse which he recognizes as existing in human nature, and to which he traces the origin of all fiction, and especially that of a poetic and dramatic character. Yet both ideas ex press truths which need but to be blended together, to bring
practical and physiological light. The first may be taken as referring to the physical gambols of the young animal; tion to that which in one sense may be mental relas in, in another, not so; affirmatively if the exercise of the negatively if no such a total change of
Play is an instinctive faculty, inherent in all animals. It is as much an instinct as the desire to seek food when hun ry; and to regard it as a mere aimless and trifling species of exertion is a total mistake. The gambols of a child emerging from babyinood, or of a kitten, are due to precisely similar reasons. At this period of life the purpose of play in man and brute is the same; in after years the difference vastly widens through the introduction of the intellectual clement in the actions of the child, and of course its total absence in those of the brute. The games and playthings of youth are not those of childhood; but the play of an old dog-though more rarely occurring-is nevertheless the same as that of a young puppy. The object of play in young life is exercise. It is the peculiar exercise which Nature prompts the organism to undertake; and it may be aid that it is the only possible form of exercise which is a once attended by pleasure, and is able to mould the frame of the growing animal in the direction of its perfect devel opment. Its antithesis is task work, which, though it may not involve one tithe the exertion, nevertheless passes quickly into fatigue, and thus results in straining some muscles unduly while others are left comparatively unde veloped. In play alone, the instinctive sense of physical need gets full scope; its spontaneity and aimlessness ar herefore only apparent, and its nature and amount are de termined by the sense of pleasure in the exercise itself while on the other hand, a strictly natural limit is imposed on all undue exertion by obedience to the sense of fatigue. The result is an equable and harmonious development of muscular energy and nutrition in every muscle and fiber and it is one attainable in no other way-certainly not by ny prescribed
Dr. John Strachan, of Edinburgh, has recently published a valuable little treatise, physiologically inquiring into the bearing of play upon education avd training; and after ad ducing conclusions substantially similar to those above enumerated, he proceeds further and states that the law of spontaneous development through play does not end with physical improvement, but that, after a time, the higher an more differentiated faculties come to be required for the per fection of the animal, and that the same law presides ove their evolution. Play, he explains, that is apparently aim less, or, at least, not consciously directed exercise, is the means of securing the equable development of the brain and its faculties-memory, imagination, hope, wonder, and even special kinds of intellectual and moral activity, accord ing to the endowments, and perhaps also the accidents, of social position in the individual. "Exercise is accompanie by pleasure up to the limit of fatigue; beyond this limit, by pain or uneasiness. Special endowments or faculties brought nto prominence by accident and after exercised are more, others are less, developed. But in every case there is a limit, and the only sure way of ascertaining the limit is by giving scope to the instinct; in other words, by allowing 'play' or pparently unregulated and spontaneous impulse its duo place in the work of education
Of course the practical deductions to be made from Dr Strachan's conclusions are, first, that tasks should never be arranged so as to carry the organism over the limit of fatigue, that play as such should be real play, nothing bu the "absolutely free and spontaneous direction of the spor impulse," and not circumscribed by any limits as to kind or nature. Our author's treatment ends with the bearing of play upon the education and training of the young, else he might have pursued his inquiry further and reached the hardly avoidable conclusion that, as the human being grow older, play becomes more and more a mental process, until t last it becomes scarcely distinguishable from work itself. The labors of almost any professional man will demonstrate this; the results of his sport impulse viewed individually ar due to what would to another man involve hard labor Eventually play becomes merely difference in work, and in volves the disuse of one set of tired brain molecules, as it were, and the calling into action of a fresh series, and the more different the labor the greater and more enjoyable, and doubtless the more beneficial the change. The author of that supremely funny children's story "Alice in Wonderland," and the wildly absurd "Hunting of the Snark," is a grave theological professor in a great English university-and both writings are productions which professional wits and humor ists would shrink from attempting to rival. So, also, hard physical work presenting a still wider dissimilarity to mental labor becomes comparatively play. The ex-Prime Minister of England finds his greatest enjoyment in hewing down the trees on his estate. And we know of many an instance where an amateur's mechanical workshop adjoins the office of a physician or lawyer, or where the artist's easel furnishes the necessary play to a brain closely engared in scientific study.

Specific Hoat of wator.
According to new experiments by Munchhausen, of Mos cow, the specific heat of water taken at unity at 32° is a 212° Fah. $1 \cdot 0302$, as against 1.013 found by Régnault, and 1122 determined by Jamin. The investigations were mad with the greatest refinement of accuracy.

