Valves are arranged to govern the entrance and exit of the steam as may be desired. The chambers are adjusted to separate, leaving an aperture between each of an inch or more, according to the thickness of lumber to be seasoned The boards are then inserted between the faces of each cham ber and the pressure applied by forcing the chambers to gether, either by hydraulic or steam power. The heat of the chambers causes the sap in the wood to become vapor ized, which passes off through vents or channels in the op posing face of each chamber, or through perforations in the faces of the lining plates leading to grooves or chanr $\epsilon$ ls in the inner sides.

The rapid action of the machine was well shown by a ics conducted in our presence upon a cedar board $11 \frac{1}{4}$ inches wide $\Varangle$ thick, and weighing four pounds, and wholly unseasoned, being just from the cutting machine. It was placed in the press for five minutes, at the end of which time it was found to have shrunk $\frac{1}{4}$ of an inch in width, and to have lost $1 \frac{1}{2}$ pounds in weight. The same principle is applied to curved plates, and thus lumber is seasoned and shaped at one opera tion. This will particularly apply to coffin, piano, and chair

## Fig. 3


manufacturers. It is hardly necessary to point out that these machines are of the character which work revolutions in the manufactures to which they relate; and this, not merely from their capability of yielding better material, but from the fact of the economy which they insure. It certainly can be no longer economical to saw thin boards when it is possible to produce the same without loss by sawdust, and without requiring the subsequent planing to fit them for use, resulting in a gain of 40 per cent to 50 per cent on material. The saving of time effected by the seasoning press is too obvious to need any reference here
Both machines were patented through the Scientific American Patent Agency in this country and in Europe
For further information, address Geo. W. Read \& Co , 186 to 200 Lewis street, foot of Fifth to Sixth street, East River, New York city, at whose large veneering and hard wood lumber establishment both machines are in daily and successful operation, and with whom arrangements may be made for the purchase of territorial rights or licenses to use either or both patents.

## THE WOODRUFF FNIENTIFIC EXPEDITION.

We have to acknowledg the receipt of a new prospectus of the Woodruff Scientific Expedition, an enterprise which, as we recently explained, has for its object the conveying of a class of students around the world on a two years' voyage of combined instruction, amusement, and science. We observe that the fee (payable in advance fifteen days before the ship sails) has been reduced from $\$ 5,000$ to $\$ 2,500$ per head, and that the steamer Ontario, a larger and more commodious ship, has been substituted for the vessel originally proposed. There are various other inducements offered, which, if the entire enterprise were not, as we learn, based on a series of contingencies, would render the project a very attractive one.
But .it appears that not only does the necessary capital for its execution depend on the obtaining of 400 subscribers at $\$ 2,500$ or $\$ 2,000$ each-naval cadets being taken at the latter figure-but the various scientific gentlemen who are to accompany the vessel have agreed to go under the conditions that such material support is first secured. Similarly we understand the testimonials quoted in the prospectus to be given by these eminent writers, with the understanding that if the scheme as explained to them can be carried out, then the project is worthy of public attention.
In the present hard times, probably no capitalist would in vest so large a sum as a million dollars in a project of this kind, and hence the promoters have adopted the best and most feasibly way of raising the necessary funds. But on their success depends the realization of the scheme, and it, perhaps, is open to question whether 400 people can be collected willing or able to pay down the goodly sum required in advance. We shall probably revert to this subject again.
H. F. Andrews, M.D., of Washington, Ga., says that cologae water is an efficacious remedy for poisoning by poison iry. A good article of cologne must be used, and frequently applied. The vesicles should be broken when the remedy is applied.

# Srientific Ampritam. 

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. BY PARK ROW, NEW YORK.

## o. D. MUNN.

A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN.
One copy, one year, postage included...
One copy, six months, postage included
$\mathbf{1} \mathbf{6 0}$
supplied
Clitis s.-One extra copy of TEE SCIENTIFIC AMERICAN will be supplie same proportionate rate. Postage prepaid.

## The Scientific American Supplement

is issued waper from the ScIENTIFIC AMERICAN. THESUPPLEMENT is issued weekly; every number contains 16 octavo pages, with handsome
cover, uniform in size with Screvtric AMERICAN. Terms of subscription for SUPPLEMENT, 85.00 a year, postage paid, to subscribers. Single copie 10 cents. Sold by all news deaplers throughout the country
Combined Rates. -The ScIENTIFIC AMERICAN and will be sent for one year, postage free, on receipt of seven dollars. Both The safest was to re it is by draft, postol arder, or Address MUNN \& CO., 37 Park Row, N. Y
Subscriptions received and single copies of either paper sold by all the news agents.

Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the time for which they have prepaid. Before the time indicated expires, to
insurea continuity of numbers, subscribers should remit for another year. For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions
New subscriptions will be entered from the time the order is received;
but the back numbers of either the ScIENTIFIC AMERICAN or the SCIENTIFIC AMERICAN SUPPLEMENT will be sent from January when desired
In this case the subscription will date from the commencement of the In this case, the subscription will date from the commencement of
volume, and the latter will be complete for preservation or binding.

VOL. XXXVII., No. 10. [New Series.] Thirty-second Fear.
NEW YORK, SATURDAY, SEPTEMBER 8, 1877.


TABLE OF CONTENTS OF

## THE SCIENTIFIC AMERICAN SUPPLEMENT, <br> \section*{NO. 88,}

For the Week ending September 8, $187 \%$.

## ENGINEERING and mechanics,-New Traction Engine By

 Fowler \& Co., 3 engravings.The St. Gothard Tunnel Works, 5 engravings, with an interesting de scription.-Shooting under Water.-Measuring Machines.-Compound
Engines of the Steamships Limerick, Milford and Waterford, with 2 Engines of the
pages of engravings.
How to Use the Carpenter's Square. By Joun O'Connel, Millwright 20 figures. An excellent practical treatise on the uses of the various tables and fgures stamped on the Common Square. By these diretions any person may quickly solve many complex arithmetical and
geometrical problems.
How to
How to Do it and How Not to Do it, 16 illustrations, drawn from Me
chanical Life, with practical hints on the Right and the Wrong positions chanical Life, with practical hints on the Right and the Wrong positions
of workmen in executing various mechanical labors, such as Filing of workmen in executing various mechanical labors, such as Filing,
Chipping, Boring, Sawing, Grinding, Scraping, etc.- Bird's eye Maple. ifechnology. - Photo Notes: By Professor e. Stebbing. Anti Photography in and out of the Studio.-Measuring force of Explosive by Photography.
II. AGRICULTURE AND HORTICULTURE.-When to cut Grain.-The
Summer-mulching of Strawberries.-The Peach.-Origin of the Trees and Shrubs in the south of France.-An Insect Rose Thorn.
IV. NATURAL HISTORY, PHYSIOLOGY, ETC.-The Peabody Museum, Yale College, New Haven, Ct. An instructive description of the Zoo
logical collection, with 7 illustrations. Fishes and Birds; gigantic cut tle fish; the Irish elk; fossils; rare minerals; antiquities.-Fish cul-ture.-Lobster burying its Prey.-Horse Dentistry.-A joyful sound for
the Deaf.-Replantation of a Tooth .-Determination of Albumen in Urine.-Huxley on Physiological Knowledge. An address before th Domestic Economy Congress.- Wonderful Kentucky Caves.-The Carpet Bug. A description of this household pest and hints on best method of extermination
V. MISCelllaneous.-On the Propriety of Limiting Families.
VI. CHESS RECORD.-Amateur Centennial Chess Prize.-A ward to W
A. Ballentine. Portrait of Mr. Ballentine ; with specimens of his Problems.-Third American Chess Congress. .-Solutions to Problems. -To Correspondents.
Remit by postal order. Address
MUNN \& CO., PUBLISHERS,
37 Park Row, New York.
\&IW Single copies of any desired number of the SUPPLEMENT sent to on
address on reoeitit of 10 cents.

## DISCOVERY OF SATELLITES OF MARS.

Professor Asaph Hall, of the Washington Observatory, as recently announced the interesting discovery of two elites attendant upon the planet Mars. At about 11 'clock on the night of August 16, Professor Hall, by the aid of the great 26 inch refractor telescope, noticed a very small tar following Mars by a few seconds. Two hours later he looked again, and to his surprise found that the distance be tween planet and star had not increased, although the forme was moving at the rate of 15 seconds per hour. Hardly crediting his discovery, Mr. Hall delayed further observation until he could bring the matter before his colleague, Profes sor Newcomb, and that astronomer, being confident that th discovery of a satellite had been made, calculated roughly its time of revolution, which he found to be 1 day and 8 hours. This enabled the prediction of the probable place of the satellite on the following night-a prediction which was ve ified. On the morning of August 17 another satellite ap peared, and its identity was fully recognized.
The distance of the firstsatellite from the planet is between fifteen and sixteen thousand miles, which is less than that of any other known satellite from its primary, and only about $\frac{1}{16}$ the distance of the moon from the earth. It is exceedingly small, having a diameter of not over 100 miles. The inner satellite is believed to be still closer to the planet, and to have a period of less than 8 hours. The first moon is distant 80 , the second 30 seconds from their primary. Further and more accurate details will, however, soon be forthcoming, as probably the keen eyes of astronomers the world over will now be turned upon Mars. Next to our moon, more full and ac curate knowledge is possessed regarding Mars than of any other heavenly body. Venus is nearer to the earth, but when most closely approximated she is invisible, being concealed by the solar light. Mars, however, may be examined unde favorable circumstances, and during the present year the conditions are especially advantageous, owing to the planet being in opposition to the sun, near perihelion. The apparent disk is now larger in the proportion of 3 to 1 than when the planet is in aphelion, while the illumination is more bril liant in the proportion of 3 to 2 . At the same time the plane is nearer perihelion than previously for more than 30 years so that in the heavens its brightness is but little inferior to that of Jupiter.
While the surface of Mars has been mapped with remark able accuracy, and although probably no other planet has been subjected to more keen and continuous scrutiny, yet up to the present time all searches for satellites attendant upon upon it have been fruitless. Most astronomers have not hesitated to assert that none such existed, though it has been said that if Mars has moons they are too small to be recog nized by any telescope extant; but in any event the probable presence of Martial moons was not to be predicated on any phenomenon exhibited by the planet itself, and if their exis tence was suspected it was because it would be more in ac cordance with the nebular hypothesis that they should be present than absent. In a work on astronomy published some 40 years ago, we find mention of a phenomenon on Mars which might possibly lead to the idea that the planet was subjected to reflected light from some near body, and that was, that a curious and persistent illumination of the planet had been noticed, which, under the circumstances, was un accountable, save under the hypothesis that the planet was slightly phosphorescent.
The discovery is a triumph both for Professor Hall and for Mr. Alvan Clarke, the maker of the great telescope. It, be sides, shows what may be expected of the still more colossa instrument which at no very distant day we hope to see es tablished in the Lick Observatory.

## machine honesty and its circumvention

The exceedingly ingenious mechanical devices often found among the tools of burglars and safe-breakers are in themselves sufficient to demonstrate the fact that all the inventive ingenuity is by no means confined to honest people; and it is scarcely necessary to say, to any one conversant with that peculiarinstinct of the inventor which causes him to regard almost any mechanical obstacle as a challenge to his abilities, that in the bell-punch and similar apparatus of " machine honesty" the desire to overcome the difficulty is added to the nefarious incentive. Hence attempts to "beat" the machine, as the crime is vulgarly termed, are not uncommon, nor yet unsuccessful, although the perpetrators are usually in the end found out. The use of this apparatus began in this city about two years ago, when it was discovered that stage drivers and car conductors were in the constant habit of supplementing their scanty earnings with drafts on the fares collected. Accordingly that ingenious contrivance known as the bell-punch was largely introduced, receipts of the companies at once increased, and it was hoped that the evil was prevented. The bell-punch perforates a slip and the piece punched out is retained in a receptacle in the machine. At the same time a bell is sounded and a hidden indicator moved on a dial. Hence the fares collected are shown first by the number of holes in the slip, second, by the number of pieces punched out, and third, by the indicator; while placard in the vehicle warns the passenger to listen for the ring when his fare is collected. Hardly had the punches ring when his fare is collected. Hardly had the punches
come in use when frauds were detected. A smart mechanic come in use when frauds were detected. A smart mechanic
drove a thriving business by making neat little bells which were inserted in the conductor's coat sleeve. The latter would on collecting a fare, pretend to punch a hole in the slipcovering, however, a hole already made-and at the same time by pressing his arm against his body would sound his
concealed bell and so satisfy the passenger. This, by the employment of detectives, was soon stopped; but the ingenious conductors still managed to " keep ahead of the punch" by simply neglecting to use it when the cars, as is often the case, were so packed as to render close observation of their movements impossible. Several city car lines eventually abandoned the device for apparatus much more simple, to which we shall refer further on. Recently, however, another detection of bell-punch frauds has been made, and a regular conspiracy has been revealed between sundry ingenious scamps who showed the conductors how to pick the locks of their punches and set back the indicators, for the consideraof $\$ 1$ per day, the conductor, of course, making up
amount and as much more as he safely could by theft.
There are on our city car lines. None of them bell-punch now in use on our city car lines. None of them, however, punch slips. One is a metal box suspended in full view on
the conductor's breast. On receiving a fare he is required the conductor's a catch which sounds a bell and changes a number indicating the quantity of fares received, which appears on the front of the box. Anothermachine displays no number, but simply rings a bell and moves an indicator locked up inside. Some of these machines were constructed at first to register only a certain number of fares, say 1,000 , and then to return to the naught point. The conductors soon discovered this, and after collecting the money they would ring the bell up to its limit, help themselves to the amount of money they wished, and then register anew fares to
pond with the amount they left for their employers.
It will be observed that the tendency of all these machines is to make the passenger a policeman over the conductor to keep him in the path of rectitude, and it is curious to notice that the more of these devices there are invented the more is this duty imposed upon the passenger. The largest street railroad line in this city, that on Third Avenue, has abandoned the bell-punch for a simple dial in the car, with which is connected a square rod which traverses the length of the vehicle near the roof. In order to turn this rod, and so sound the bell and move the index, which the conductor is required to do on the receipt of each fare, a wrench must be used, and, of course, the arm lifted high above the head. This compels the conductor to take a noticeable position, and as the rod is accessible only while he is on the vehicle, the conductor can not, as with the bell-punch or other portable device, pretend to register fares while temporarily off his car. The movement of the dial hand attracts attention, and thus the watchfulness of the passenger is still further enlisted.
There are two devices, however, which advance considerable further in this same direction. One is the fare-box, by the use of which the railroad company tacitly asserts that it prefers to trust to the honesty of the public in general than to that of its employees, and the other is a most ingenious apparatus, of which we shall presently speak, and which literally compels the passenger to look after the employees in order to keep himself from being swindled.
The fare-box is, however, fast becoming a bone of contention. It is simply a box into which the passenger is invited to place the-correct fare. The driver-there is no conductor in such cases-is not allowed to receive or put in money, and the extent of his pecuniary duty consists in handing back change for small bills, said change being previously sealed up in envelopes, and as the driver aforesaid has always to return the amount he starts out with, he cannot conveniently steal any. When the passenger putsin his money the driver can see and count it, and that done he moves a slide which dumps it into a locked box below, whence it is removed by an official at the terminus. The box, we have stated, is a source of aggravation to the sovereign public, first, because one set of unthinking individuals are constantly throwing in too much and clamoring for change after the money is engulfed in the locked receptacle, when removal is impossible, and second, because perverse people decline to be ordered to do anything by the railroad company and demand that if their fares are wanted somebody must come and get them. The latter have multiplied of late, and are vigorously asserting themselves. The driver cannot take the fare, and if the passenger refuses to comply with the rules, that passenger must be put off the car. The passenger resists and a disturbance results, the upshot of which may be to block the line, and, as was the case here recently, keep some 200 other passengers in rear cars waiting a considerable time.
By far the most ingenious of all these devices is that devised for use on city cabs. There is a metal circular case on the face of which are two concentric circles. The inner one is marked as a clock, the other is divided decimally to indicate dollars and cents. The hands on the inner circle are controlled by clockwork, that on the outer circle must be moved by the driver. From one side of the clock extend wire rods on which is a sign with the words "to hire." Between the rods is a watch. The whole is pivoted on the cab
just in rear of the driver's seat, and in such a manner that just in rear of the driver's seat, and in such a manner that
when the " to hire" sign is turned uppermost it stands above the roof and is plainly visible. In face of the passenger in the cab is an opening through which the watch is seen when the sign is turned down.
If, when the cab is hired, the driver does not turn down the sign, the passenger will demand it, because otherwise the watch cannot be seen, and by tbis watch the time for which the cab is used and paid for is determined. But the action of turning down the sign starts the clock, and this then goes on registering hours and minutes. When the passenger leaves the vehicle he pays his fare, and this the driver registers on the dial bell-punch fashion. The driver must then
turn his sign up. If he does not, the clock will continue that the nitrogenous products in the latter are just equal to running, and he will have to pay for the time himself at th regular tariff'of 50 cents per hour. So from the two dials at the end of the day the inspector sees just how long the cab clock is still anotherdial, on which is an index which of the clock is still anotherdial, on which is an index which moves
over one division every time the sign is turned down. This shows the total number of trips, and is locked so that the driver has no access to it. It prevents the driver charging for trips only a fraction of an hour in duration as for a full hour. It will be seen, therefore, that by noting the tripsand number of hours emplnyed, the inspector can at once calcuIt ine amount which the driver owes
It is difficult to see how such a device as this can be de frauded. The objection to it is its inapplicability of such conveyances as stages and street cars; and for these vehicles some device which shall absolutely ensure the honesty of their conductors or drivers is still a necessity. We commend the subject to inventors as a promising one for their efforts. Only let them remember that, however ingenious they may be, ingenuity as sharp as theirs will probably be brought to bear to circumvent their apparatus. Perhaps the safest rule to go by is to try to contrive a device which shall, like access or alteration even to the inventor himself

## F00D.

In discussing, last week, the subject of how shall working men live, we quoted a table prepared by a working man's wife, showing a list of necessaries on which her husband, herself, and five children (under 9 years of age) subsist This category, which is claimed to represent the cheapest and most economical living attainable by the compiler, we here republish, as we propose to use it as a text for some further remarks.

|  | ekil. |  |
| :---: | :---: | :---: |
| Rent. | \$2 00 | 1 quart milk, 6 c . |
| 2 pails coal | 16 | 28 -centloaves. |
| Burial socie | 22 | 11/2 pounds m |
| Oatmeal. | 14 |  |
| 2 pounds b |  | Pepp |
| 3\% pounds | ${ }_{9}^{40}$ | Mustard |
| 2 cakcs soap | 14 | Starch |
| 1 pound soda | 3 | Bluing |

Newspa
Shavin
It will ................... $\$ 50$ Total.......... ended virtually a that this, among other things, is in the minimum amount of food on which a family of prethe minimum amount of food on which a family of preto health. The ultimate destiny of food is, to quote Dr. Wilson of Edinburgh, "the development of heat and othe modes of motion, which together constitute the physiologi cal phenomena of animal life." Food not only, however supplies potential energy-which becomes converted into ac tual or dynamic energy-but it supplies the material for the development of the body. Hence inorganic and organic matters are both necessary, the latter, however, being alone oxidizable or capable of generating force. The organic constituents are divided into nitrogenous, fatty, and saccharine compounds-the inorganic into water and saline matters. Of these the nitrogenous portion constructs and repairs the tissues, it is the muscle and brain producer; the carbonaceou portion goes to maintain animal heat, aids the conversion of food into tissue, generates fat, etc.; the saccharine portion has heat-producing powers inferior to the fatty constituents, and finally the water and saline matters dissolve and convey food to different parts of the system, consolidate tissues, remove effete products, etc. In general, however, the phenomena of nutrition depend mainly on the chemical interchanges of nitrogen and carbon with oxygen, and therefore different articles of diet are estimated in nutritive value according to the amount of nitrogen and carbon they contain.
Dr. Letheby, in his valuable work on "Food," gives table showing the amount of carbon and of nitrogen in a large number of articles of diet. From this table we have taken the values of the varieties of food in the above list, and we find that the sum total of the entire regimen amounts to 18,117 grains of carbon and 751 grains of nitrogen daily about one tenth less than those of men, and of children un der ten years about one half (maximum) those of women. Applying these rations to the aggregate, we find that the husband's daily diet is 4365 grains of carbon and 180 grains of nitrogen; and the wife's 3928 grains of carbon and 162 grains of nitrogen, and the remainder constitutes the food of the children.
Now this diet is not enough to support life in the husband and to enable him to work. In other words, we mean to say that a man that attempts to do even moderately hard work on food containing the proportions we have mentioned, is steadily falling behind in the struggle for existence. And it is mathematically obvious that he cannot improve matters save at the expense of other lives. From the mean of all the researches which have been made by eminent physiolo gists-and they cover thousands of instances-Dr. Letheby
gives the following as the amounts required daily by an adult man for idleness, for ordinary labor, and for active labor:

|  | Carbon grs. | Nitrogen grs. |
| :---: | :---: | :---: |
| Idleness. | 3816 | 180 |
| Ordinary labor. | 5688 | 307 |
| Active labor. | 6823 | 139 |

he requirements of an idle man, and far below those of on at work, while the carbonaceous products-which do not form muscle-are somewhat in excess in one case, and too low in the other. But a better idea of the comparative na ture of dietscan be obtained from some of the following in ture of diets can be obtained from some of the following in-
stances of the dietaries of low fed and well fed operatives stances of the dietaries of low fed and well fed operatives
in England, which we take from the tables of Drs. E. Smith and Playfair.
The mean of twelve classes of low fed operatives, which include the farm laborers and weavers over the different sec tions of the king om, shows an average daily dietary of car bon 4881, and nitrogen 214. These are about the worst fed people in England. The staple of diet is breadstuffs, and then potatoes-not a class on the list gets more than 18.3 ozs , of meat in a week-yet the average of all is above that of American workman. Let us examine, however, som instances of well fed operatives. The English railway navvy (whose class corresponds to that of the workman un der consideration) has 8295 grains of carbon, and 482 of ni trogen; the blacksmith, 6864 carbon, 437 nitrogen; soldier in peace, 5246 carbon, 297 nitrogen; prize fighters (training) 4366 carbon, and 690 nitrogen. The mean of eleven classes of well fed operatives is carbon 5837, nitrogen 400.
The trouble with the diets of our working men is not in their cost, but, as in the present case, in their bad selection Here are $5 \frac{1}{2} \mathrm{lbs}$. of food (butter and sugar) which together aggregate 23234 grains of carbon and no nitrogen, at a cost f one dollar per week. The butter could be altogethe abolished, and the sugar reduced one half; the eighty cent so saved could be laid out in Indian meal, or dried peas, beans, rice, barley meal or fish, all of which contain large proportions of nitrogen. A pound of red herrings, costing say 10 cents, contains 217 grains of nitrogen; a pound of skim cheese at the same price contains 485 grains; split peas worth about 8 cents a quart, contain carbon 2699, nitrogen ${ }_{42}^{2} 248$; beef liver, always cheaper than beef, contains carbon 934, nitrogen 204, while beef itself contains carbon 1854, ni trogen 184

It may be said that working men cannot be expected to consider chemically everything they eat. Perhaps not, bu it is the duty of sanitary authorities, and others charged their welfare, to do it for them. Half a pound of cheese, a pound of Indian meal, and a quart of milk, together aggre gating 5187 carbon, and 449 nitrogen, cost 14 cents. On this a man could do steady work for one day, and could keep on on the same diet continuously. The same sum would pur chase one loaf of bread and a quarter of a pound of butter on which, as a continuous diet, a man could not subsist For the guidance of working men who wish to base thei living on proper and cheap food, we give herewith Dr Letheby's table:


The American Institute Exhibition.
It will not be the fault of this paper if the coming exhibition of this Institute should prove to be a chaotic mass of half arranged merchandise on the opening day (September 12), for we have so often given notice of the fact that an exhibition is to be held, and have as repeatedly given notice of the time; nor will it be the fault of the officers of the In stitute, for the building is always ready in time; but will, we presume, be the fault of the exhibitor, who, as a genera rule, procrastinates, and is often many days behind. W should think tbat, if an exhibition is worth attending at all, that the exhibitor would desire that his exhibit should be ar ranged upon the opening day, and not a week or ten days later. For information address General Superintendent, room 22, Cooper Union Building, New York.

## A Remarkable Railway Bridge

The new iron railway bridge over the river Douro, near Porto, Portugal, crosses it with an arch of a single span which measures 160 meters ( 520 feet) and has a rise of 42 meters ( 138 feet 6 inches). It is crescent-shaped in form; that is, the extrados and the intrados, which are connected by struts in the form of St. Andrew's cross, are farthest apart at the crown.

Manufacture of Eburine.-Eburine is a composition formed from the dust of ivory or bone cemented together with gum tragacanth or albumen, and colored at pleasure In some cases pressure and heat render the addition of any glutinous matter unnecessary.

A Nubian Temple.-The temple of Ypsambul, in Nubia, is cut out of a solid rock, and is of vast dimensions. In it are four colossal figures sixty-five feet high, twenty-five fee across the shoulders, with faces seven feet high, and ears about a yard long.

