Busimess and eersomal. The Charge for Insertion under this head is One Dollar a linef or each insertion. If the Notice exceeds four lines, One Dolur and a Haff periine will be charged.

How to make Violins-Write J.Ranger,Syracuse,N.Y State and County Rights for Sale.-Wilkinson's
iquid Measure. Seeillustrationon page 374 last volume Liquid Measure. See illustrationon page 374 last volume tates and Canadic ambrican. Patented in the United 301, Meadville, $\mathbf{P a}$.
Walrus Leather and fine Wool Polishing Wheels; al
sizes. Greene, Tweed $\&$ Co., 18 Park place, N. Y. Bookbinder's Stock Cutting Machine. Send for Cir A rare opportunity for a good practical man.-On ac A rare opportunity for a good practical man. -On ac-
comodatingterms a onehalf or whole interestin Machine and Repair Shop. J. A. Campbell, Farmington, Iowa.
Manufacturers of friction clutches, please send cuts
and pricest to Wiles, Adams \& Co., 13 and 15 Union street, Troy, N.
A Good Chance. $-\$ 2,500$ will buy right of Talley's Liquid Vent a
sas City, Mo.
Three plain Cylinder Boilers, 34 in. by 35 ft .; Domes, 24×24 inches; in good condition; ve
$\& \in$ Roake, 261 Front street, New York.
New and Improved Butt Machinery. Patterns and Fixtures for sale for making Cast Iron Butts. Will be
sold at a great bargain. Address, Box 123 , Phillipsburg. sold at
$34^{\prime \prime} \mathrm{x} 17 \mathrm{ft}$. Lathe, $\$ 400 ; 166^{\prime \prime}$ do., $\$ 175 ; 15^{\prime \prime}$ do., $\$ 150$,
ft. Planer, $\$ 275.18{ }^{\prime \prime}$ Drill, $\$ 150$. At Shearman's, 132 N .

For Engine Lathes and Iron Planers, send for IllusChicopee, Mass.
Small Fine GrayIron Castings a specialty. Soft and truet
\mathbf{N}.
\mathbf{Y}.
Linen Safety Hose, all sizes, at lowest rates. Greene, Wanted-Second-hand 12in. Lathe. Address, 101 LaraWe
Wanted-A complete machine to make Wire HairPins.
Reply to T. J. Gorf, West Oakland P O.
Reply to T. J. Gorf, West Oakland P. O., Cal
For Sale Cheap.-Two Patents. Combined Tea Kettle and Steamer, and combined Foot S
West's New Yankee Tire Setter. Sets them cold on the wheel
For Sale.-One Spinning Lathe. Good as new. AdReliable Oak Leather and Rubber Belting A spe Reliable Oak Leather and Rubber Belting. A spe-
cialty of Belting forhigh speed and hard work. Charles
W, Shaw's Noise-Quieting Na., Iscape Pipes Locomotives, Steamboats, etc. Quiets all the noise of high pressure escaping steam without any detriment
whatever. T. Shaw, 915 Ridge Ave., Philadelphia, Pa. For 13, 15, 16, and 18 in . Swing Screw-Cutting Engine For Sale.-Second-hand 4 Sided-Moulder, with about 300 knives; good as new; price $\$ 500$. T. R. Bailey, Agt.,
Lockport, , Y.
John T. Noye \& Son, Buffalo, N. Y., are Manufactur-
ers of Burr Mill Ctones and Flour Mill Machinery of all ers of Burr Mill Stoness and Flour Mill Machinery of all sinctr. und dealers in Dufour \& C
Send forlargeillustrated catalogue.
Electric Gas Lighting Apparatus, apppled to public and private buildings. The latest improvements. A. L.
Removal.-Fitch \& Meserole, Manufacturers of Electrical Apparatus, and Bradley's Patent Naked Wire He-
lices, have removed to 40 Cortlandt St.. N. Y. Experimental work.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J. For Best Presses, Dies, and Fruit Can Tools, Bliss \& Lead Pipe, Sheet Lead. Bar Lead, and Gas Pipe. Send or prices. Bailey, Farrell \& Eo., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing metal3. Solid Th, V.
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel - other kinds imitations and inferior Emery Wheel - other kinds imitations and inferior.
Caution. Our name is stamped in full on all our best
Standard Betting, Packing, and Hose. Buy that only. Caution.-Our name is stamped in full on all our best.
Standard Belting, Packing, and Hose. Buy that only.
The best is the cheapest. New York Belting and PackThe best is the cheapest. New York Bet
ing Company, 37 and 38 Park Row, N. \mathbf{Y}.
Steel Castings from one lb . to five thousand lbs. Invaluable for strength and durability. Circu
Pittsburgh Steel Casting Co., Pittsburgh, Pa.
For Solid Wrought iron Beams, etc., see advertise-
eent. Address Union Iron Mills, Pittsburgh, Pa., for jitho. rarth, etc.
Split-Pullegs and Split-Collars of same price, strength and appearance as Whole-Pulleys and Whole-Collars. Yocum \& Son, Dr
Philadelphia, $\mathbf{P a}$.
Skinner Portable Engine Improved, 2 1-2 to 10 H. P. kinner \& Wood, Erie, Pa
All nervous, exhausting, and painful diseases speedily yield to the curative influences of Pulvermacher's Elec-
tric Belts and Bands They are safe and effective. Book, with full particulars, mailed free. Address Pu
Galvanic Co , 292 Vine St, Cincinnati, Ohio.
To Clean Boiler Tubes-Use National Steel Tube , Cond. Territory, on a Useful Household Article, giv
free. Address Ezra F. Landis, Lancaster, Pa.
More than twelve thousand crank shafts made by
Chester Steel Castings Co. now running; 8 years' constant use prove them strongerand more durable than wrought
Emery Grinders, Emery Wheels, Best and Cheapest, Hardened surfaces planed or turned to order. Awarded Medal and Diploma by Centennial Commissio.
Diamond Tools. J. Dickinson, 64 Nassau St., N. Y. Reliable information given on all subjects relating to Mechanics, Hydraulics, Pneumatics, Steam
Boilers. by A. F. Nagle, M.E., Providence. R.I.

J. H. T. and J. E. F. can calculate the sizes of change pulleys by the rule given on \mathbf{p}. 138, vol. 34.-C. P. H. can fasten emery to steel by first painting
the steel with white lead in linseed oil, letting it dry, the steel with white lead in linseed oil, letting it dry,
and then coating with a thiclssolution of best glue.-S. and then coating with a thicksolution of best glue.-S.
\mathbf{W}. will find directions for transferring engravings to W. will find dire
wood on p. 138,
of the screw thr of the screw threads on iron gas pipe on p. 378, vol. 32 As to galvanizing iron, see p. 315, vol. 36.-R. M.
question as to well water for drinking and cooking question as to well water for drinking and cooking pur-
poses was answered on $\mathbf{p} .268$, vol. 36.-G. H. will find some information as to raising fish artiffcially on p. 17,
vol. 29. He should add ress Mr. Seth G reen, Rochester, vol. 29. He should add ress Mr. Seth G reen, Rochester,
N. Y., as to spawn, etc.-C. L. R. will find directions for N. Y., as to spawn, etc.-C. L. R. will find directions for
making rubber stamps on p. 156,vol. 31.-J. T. L. should know the laws of his State better than we do.-A. F.
will find advice as to chicken cholera on p. 395, vol. 30 . -G. S. will find directions for makingglue on p. 8, vol. 32.-A. K. will find an answer to his query as to draw-32.-A.
ing a circle touching three other circles on p. 377 , vol.
34.--v. P. N. J. will find directions for making a storm glass on p. 75, vol. 30 -I. can cement rubber to brass by
painting the brass with oil paint, letting it dry, and the painting the brass with oil paint, letting it dry, and then
gluing on the rubber.-W. M. M. will find a good recipe gluing on the rubber.-W. M. M. will find a good recipe
for harness blacking on p. 299, vol. 33.-H. H. R. can galvanize iron ferrules by the process described on p.
315, vol. $33 .-\mathrm{M}$. S. F. and many others will find direc-
tions for constrncting refrigerators on p. 251 , vol. 31.Will J Y B, who inquires to pretical loco. 31. engineering, send his name and address?-F. T. C should read our articles on granite ironware on pp. 325,
340 , vol. 36.-O. H. B. will find directions for skeletonizing leaves on p. 155, vol. 31.-E. will find advice as corns on the feet on p. 202, vol. 34.-F. M. will find an
article on staining wood on p. 323, vol. 36.-A. R. T. will find directions for constructing a filter on p. 251 ,
vol. 31-D. B. . will find partion vol. 31-D. B. K. will find partirulars of the Wisconsin
reward, offered for a road engine, on p. 64, vol. 34.-H. a railroad car on a curve on p. 362, vol. 35.-J. R. G., a railroad car on a curve on p. 362, vol. 35.-J. R. G.,
J. F., H. L., C. H. F., S. W., A. K., J. P. L., N. F.,
J. R. B., S. S., J. B. o., N. W. K., J. C. B., C. G.,
J. G., O. M., and others, who ask us to recommend books on industrial and scientific subjects, should ad-
dress the booksellers who advertise in our columns, dress the booksellers who advertise in our colu
all of whom are trustworthy firms, for catalogues.
(1) J, B. says: For the benefit of J. K. W. (No. 21, June 9, 1877), I would say that water cannot be
sucked through a pipe faster than the head (in this case the atmospheric pressure) will drive it; to attemptmore will part the water rope, if we may so call it; and when its load, the whole working force of the steam will be expended upon the engine alone; hence the high velo city attained when the break has been effected. J. K.
W. may find, either by calculation or experiment, the velocity with which the water will travel through his suction pipe by the head which he now has; if that rat of travel does not supply him with sufficient water, the
remedy lies in increasing the diameter of his suction remedy lies in increasing the diameter of his suction
pipe, and not in increased velocity. Cocks or valves will avail him nothing.
(2) J. B. says: The problem involved in No. 21, June 16, 1877, is fully covered by known physi-
cal laws. A stream of water acquires its velocity, be it cal laws. A stream of water acquires its velocity, be it
more or less, in obedience to gravity, according to the friction on its bed. But the surface of a stream water always has a pitch proportioned to the pitch of
its bed. It would therefore be impossible for a log (or anything) to lie on its surface without being impelled by gravity from the higher to the lower part of its surface,
just as a ball would travel from the higher to the lower end of a railroad car let loose and traveling down a steep grade. The headway such log will make over
stream must depend upon its fall and the amount water it displaces in its travel. As there is the least amount of water displaced by the travel of the \log when lying lengthways of the stream, and most when its quickest and the latter its slowest rate of travel,
(3) H. W. P. says, in answer to A.'s query friction on side and bottom of streams is so great the the center runs one third faster; and the deeper and heavier the raft, if it does not touch bottom, the faster
it runs. In ordinary streamsthere are bayons to be fllled by back water, which takes time; a raft also cuts across all bends in rivers, gaining time; and as soon as it
strikes the center current again, ittakes headway immediately. We useed to run out lumber, etc., down a creek body. Ang the water in large dams, letting it off in a cut would overtake the first water in going 9 or 10
miles, that is, it would run ahead of the water so that it would stop in the middle of the stream and wait fo
(4) R. C. W. asks: Will you please inform me how long cold can be kept up to freezing point by any chemical process without renewing the chemicals, and what chemicals are best for the purpose? A. Your
question is somewhat indefinite. It should be borne in question is somewhat indefnite. It should be borne in
mind that cold, as we understand it, is occasioned simmind that cold, as we understand it, is occasioned sim-
ply by loss of heat. A body may be kept at a low temconstantly surrounded with a body colder, or at least not warmer, than itself, or provided that it be protected from the possibility of acquiring heat from any sonrce
-either by radiation, conduction, or convection. The former is a comparatively easy matter to accomplish,
but the latter is rendered diffcult, if not but the latter is rendered difficult, if not impossible, by
reason of the difficulty of realizing a perfect non-con reason of the difficulty of realizins a perfect non-con
ductor of heat, and other essentials. In the change matter from the solid to the liquid or gaseous condition a deflite quantity of heat disappears; and the more In changing to a liquid, the solid ice mas reduce the temperature of immediately surrounding bodies to
nearly its own temperature (32° Fah.). If it be mixed
in a fine prowder with salt, the liquefaction is morerapi and the temperature may sink to 40° below the freezing point of water nitrate $^{\circ}$ below zero). Powdered ammonium Fah. to dissolve it, sinks the temperature to zero. Four ounces each of potassium nitrate (saltpeter) and am-
monium chloride (sal ammoniac), when mixed with ozs. water, willd do the same. Finely powdered sodium
sulphate (Glauber salt) drenched with strong hydrochlo sulphate (Glauber salt) drenched with strong hydrochlo-
ric acid will reduce the temperature 50° Fah., while ric acid will reduce the temperature 50° Fah, while a
misture of two parts dry snow or fine ice with three misture of two parts dry snow or fine ice with three
parts of powdered calcium chloride will freeze the mercury in the thermometer (mercury solidifies at 40° Fah.) of liquefled gases, such as sulphurous acid, ammonis nitrous oside, and carbonic acid. By means of the lat ter a temperature of -200° Fah. may be reached. A soon as the change is completed, the cooling action
ceases, and of course the body will soon recover its nor mal temperature by acquisition of heat from the sur ounding bodies, unlessinsulated by means capable of Intercepting the heat-conditions which, at best, can b harcoal, asbestos, etc are among the best no feconduc ors of heat, while polished metals and the like are the poorest radiators. Carre's method of refrigerating wa terby the promotion of its own evaporation (see p. 82 vol. 33) is perhaps the cheapest and most practical method-not excepting natural ice-for maintaining low temperatures for lengthened periods. Oin the quan
tity of material employed and the rate at which the lique faction is permitted to proceed will depend on th This answer applies to several other queries
(5) P. F. McC. asks: 1. How can sealing wax be made so that it will set immediately on applica soon afterbeing applied to the matter to be sealed? Wax which contains a larger proportion of shellac and less of Venice tnrpentine hardens more quickly. Try incorporating with it a little more powdered shellac by
fusion. 2. Can I use anything else that will adhere tenaciously as sealing-was? A. Perhaps a stick of shel
(6) S. R. says: 1. I have had used on cuts ratches, sores, etc., on dumb beasts, zinc variously prepared from chloride, oxide, iodide, phosphate, etc. but I fail to get it prepared so as to be lasting. A solu-
tion is soon gone, an ointment lasts but a little longer tion is soon gone, an ointment lasts but a little longer.
A. Do you mean metallic zinc, its oxide, or the salts? A. Do you mean metallic zinc, its oxide, inorganic preparations are all lasting. Perhaps we do not get your idea. If you mean that when them into an emulsion with puregelatin and a little gly cerin would obviate the difficulty. 2. In whatway can I put a foil or coating, or some other preparation of zinc, on leather so as to have it remain permanent, and so
thatthe leather will remain soft and pliables A. You thatthe leather will remain soft and pliable? A. You can use a thin solution of caoutchouc in coal tar naph
tha as a cement.
(7) S. W. asks: How can I make a flexible spirit varnish with such tenacity and pliability as not to
be influenced by atmospheric changes? It is intended for finishing leather. A. What is known as spirit copal varnish will best serve your purpose. You will find it de another spirit varnish that will answer.
(8) F. B. N., and others who ask for a good walnut stain: Boil 1 quart water and add first 136 ozs, Vandyke brown. When the foaming has nearly add 14 ioz . bichromate of potassa dissolved in a little
boiling water; stir well and filter through a cloth. The boiling water; stir well and filter through a cloth. The
color may be deepened with a drop or two of Bruns color may be deepened with a drop or two of Bruns-
wick black, or made of a warmer tone by increasing he amount of water and adding more bichromate of po without much lapping; and when dry it takes a good
(9) E. E. W. asks: How can I make torpe does such as the boys use on July 4 ? A. A little fulmi powdered chlorate of potassa and sulphur. To prepar he fulminate, 1 oz . mercury is dissolved, with the aid of a gentle heat, in $83 / \mathrm{gozs}$. by measure of nitric acid of
specific gravity 14, and the solution is poured into 10 specific gravity $1 \cdot 4$, and the solution is poured into 10
measured ozs. alcohol, specific gravity 0.83 ; action soon measured ozs. alcohol, specific gravity 0.83 ; action soon
ensues, with the evolution of copious white fumes, and the fulminate is deposited in white crystalline grains, very gentle heat. The greatest care shouid be observed in preparing this material, as it explodes with extreme

or friction.

(10) A. P. asks: Why is a fillet left in the corner of an axle bearing? A friend claims that the fil that it is left to strengthen axle. A. The fillet is left to
(11) S. H. W. asks: 1. How can I make saleidoscope? Should the reflecting strips of glass be of uniform width throughout their length, or should
they be wider at one end than at the other? A. With ordinary illumination the reflectors may be parallel; but it is better to set them at an angle. The longer the tube should be about $8 \circ$, allowing 少 4 inch diameter for the eye aperture, 2. Is it necessary that the glass should be silvered? A. No; use a black backing, so as to leave should the bits of colored glass be arranged to get the prettiest effert? A. Use a few small, brightly colored, angular, and prismatic pieces of glass, a few smallglase
tubes containing several drops of colored liquids, and
, if the figure is desired to contain curve lines, a few pieces of curved tubing (with or without liquid), and
some colored beads. Place these loosely between two pieces of clear glass in a suitable cap, somewhen two than the opening between the reflectors, and adjust the cap on the large end of the tube so that the light will pass through it. Too much shifting material in the cap fectly. The space between the slagses in the cap de pends somewhat on the size of the glass tubing used,
but should not much exceed half an inch.
(12) W. E. B. asks: 1. How can an inexmetto wood? A. Fill the pores with common oil rosin varnish, and when dry, rub down with fine sandpaper or umicestone. Then apply a fiowing ccat of spirit copal canes, with the bark on? A. The orange sticks should be smooth and dry. Use a filling of alcoholic shellac, and finish as above.
(13) J. W. S. asks: Can you give me direcions for making cupro-ammonium? A. Cupro-ammoubtained by precipitating oxide is perhaps most readily sulphate of copper by the addition of ammonia water, filtering off the liquid and dissolving the precipitate in a slight excess of strongammonia water. If an excess of the ammonia be used in precipitating the copperozide it the cupro-ammonium solution To be used as a reagent, the cupro-am.
evaporation.
Is there any substance tha
pose, silk or wool? A. No.
(14) A. A. W. says: Desiring to make a waterproof cloth more reliable for rough usage than boiling hot, but failed to make a good waterproof. Can you give me a recipe for making such goods? A. Dis-
solve in the oil about five per cent of beeswax, and pass solve in the oil about five per cent of beeswax, and pass through this the cloth previouslysaturated with a strong solution of acetate of lead and dried perfectly. Instead
of dipping the cloth, the oil is often applied with a of dipping the cloth, the oil is of en applied with a
brush. Alum solution is sometimes used instead of the lead salt.
(15) J. B. H. asks: What is the best method of treating quicksilver, used for amalgamating purposes,
in a quartz crushing mill? The base metals in connecin a quartz crushing mills The base metals in connec-
tion with the gold are metallic arsenic, manganese, sulphur, iron pyrites, and white and yellow mundic. A. If we understand you, the best way would be to drive off the sulphur, arsenic, etc., by roasting the crushed ore before introducing it to the amalgamating tubs. The mercury is recovered by distillation from the amalgam in an iron retort, and condensing the mercury vapor in cold water. If the mercury is contaminated with sul-
phar and arsenic compounds, it may be freed from phur and arsenic compounds, it may be freed from
these by mixing it with a quantity of lime and heating inese by mixing it with a quantity of lime and heating
in a close iron retort to about 400° Fah., which drives off the arsenic, and then transferring to a clean retort and (662° Fah.).
(16) T. says: Some tarletan which I carefully put away last year I find to be full of holes, as
though eaten by moths. What insect do you think would eat tarletan? A. Tarletan, which is often dyed with colors requiring an animalization of the fibers (that is, a treatment with gelatin, etc.) in mordanting, is muchsubject to the depredations of the moth. 2. Of what is
tarletan made? It does not appear to be cotton. A. Tarletan is a cotton fabric.
(17) F. W. M. asks: 1. Is a zincograph printed from a perfectly flat surface, as a lithograph is, or is etching necessary in preparing the plate? A. The
plate is slightly etched with dilute nitric acid after the drawing is made. 2. If printed from a fiat surface, how is the design put upon the plate, and how is it made to The image on chromate of gelatin paper is wased The image on chromate of gelatin paper is washed,
inked by passing the ink roller over it, and the lines in fatty ink transferred to the plate by carefully pressing the paper on it. The ink lines adhere to the metal as they do to the stone. 3. Do you know of any substance
which will render soluble the bichromate of potash and which will render soluble the bichromate of potash and
gelatin waterproofng on paper, without injuring the gelatin waterproofing on paper, without injuring the
fiber of the paper? A. This is accomplished, although fiber of the paper? A. This is
(18) W. A. V. N. asks: Is there any formulaby whichI can determine the pressure of steam per square inch in a vessel used to generate steam, but
which we regulate by a thermometer, there being no which we regulate by a thermometer, there being no
steam gauge attached? A. If your thermometer is so steam gauge attached? A. If your thermometer is so
arranged that it gives you the temperature of the steam, you can determine the pressure by reference to a table, or you can calculate it from the formula given on p.81, or you ca
vol. 29 .
(19)
(19) W. B. B. asks: Which will run more easily up hill, a small wheel or a large wheel, on a (20) B. J. T. says: Some of the ball players say they can throw a ball on a curve to deceive the striker. Some say they can throw the ball in almost a
direct line; and as it nears the striker it will diverge, taking a short curve. Is it possible to throw a ball in thismanner? A. We have often watched skillfulpitchreqs, but never have seen the action sposen of, and would
requithing more than mere assertion to make us require som.
believe it.
(21) E. J. W. asks: What is the cracking which is frequently heard in steam radiators? A. It is airin the pipes.
(22) J. M. says: A party here claims that a boat will draw or sink deeper where the water is shallow
than in deep water. Also that it will draw less in the night than in the daytime. I deny the above assertions. A. We think you can do so safely.
(23) G. G. asks: Is the trisection of an angle impossible? If so, why? A. Brande states "that the inplane geometry, that is, by means of the straight line and circle, inasmuch as the analytical equation on which it depends rises to the third degree."
(24) W. H. C. says: I wish to build an hy2 inchengine, with a cylinder 10 inches in diameter by many foot pounds would it raise, provided the engine attained a velocity of 100 revolutions per minutes A.
Horse power \mp (pressure per square inch on piston \times area of piston in square inches \times speed of piston in feet per minute) $\div 33,000$. From this you will see that the power
(25) H. F. says: I have in one solution sulphate of quinia, sulphate of iron, and phosphoric acid.

