T• return to the physical properties of the material. In
its peculiarities of solution it acted more like copal; like that gum it is difficultly soluble, and further experiment may show still further likeness. One remarkable characteristic of c \bullet pal is its p wer of becoming more s \bullet luble in alcoh after first melting it with as little heat as possible, when, upon resolidification, it is found much more easily soluble. We have not yet tried whether the kauri would act in a similar manner, but shall dese shortly. S far we have tried its solubility in alcohol, chloroform, benzole, and turpen tine.
In alcohol it is quite inseluble after a week's digestion, a little coloring matter only being taken up. In chloroform it is soluble to a great extent-il small proportion, after repeated shakings during the course of a week's digestion, appearing t- refuse to dissolve. In benzole it is partially soluble, though not nearly to the extent of the chloroform solution. In turpentine its solubility appears to lie between benzole and chloroform
In all the three last cases a portion only of the gum dissolves, leading te the supposition that it may be composed of a series of different and distinct resins having preferential selubility in the various menstrua. Upon trying the varnishes thus produced upon negatives they all gave a beautiful glossy film, not easily scratched through se as te reach the glass, but very casily rubbed upon the surface, as though something of the nature of beeswax might be contained in the substance dissolved. The varnish with turpentine had en in tenacity
Up te this point they are all, thercfore, decidedly inferior - shellac as a photographic protective varnish; but further experiments are well worth trying, seeing this new substance can be bought at under one shilling a pound, while geod shellac costs about three times the price. It is possible that treatment with an alkali may take from the kauri gum that principle which causes the surface gloss of the varnish to be s- destructible. We may conclude our notice of this very interesting product by stating that all three of the varnishos give most excelle ${ }^{\wedge} \mathrm{t}$ surfaces for retọuching upen with black lead; indeed, we have met with ne varnish superior to them for the purposc. - Britisth Journal of Photography.

Cumbuntar, M.
Steam Economy Again.
Steam Economy Aga
To the Editor of the Scientific American:
Your correspendent, S. W. R॰binsen, in your issue of June 16, seems not to understand my language, in your issue of May 26, in regard to the loss due the clearance of an engine. In the process of calculation there referred to, and the consumption indicated by its terminal pressure, and credited with the work performed as sh•wn by its mean effective pressure, the loss occasioned by clearance through increased terminal pressure for a given lead, or diminished mean effective pressure for a given consumption, is fully recognized, as the factors used in the calculation are the ones affected by clearance. It was the loss which is eccasioned by "the expansion of the stcam in the clearance space," when the exhaust or terminal pressure is greater than the return or counter pressure, which was referred te as restored when the compression pressure reached that of the exhaust. I was not attemptingte give the conditions necessary "for securing the highest percentage of usceful effect from the steam used," but merely discussing a meth $\bullet d$ of calculating actual diagram, whether favorably or unfavorably conditioncd. Hence there is ne conflict between my statements and those of Rankine, either as given in his work or as ably illustrated by your correspondent; we are simply not talking about the same thing, as I am sure he will see if he gives my article a careful re-perusal.
Salem, Ohio. J. W. Thompson.

Casting of a Large cun.
The heaviest gun ever cast in this country, with perhaps twe exceptions, was successfully produced at the Seuth Beston Iren Company's works, near the Breadway bridge, South Boston, May 30, in the presence of about 150 persons, several of whom were ladies. Colonel Crispin, Colonol Bayler, Captain Phipps, Captain Bryant, Licutenant Smith, and Lieutenant Whipple, of the Ordnance Cørps: C॰lonel Randall, Major Sanger, Captain White, Captain Andrews Lieutenant Nichols, and Lieutenant Patterson of the First Artillery, were present. The material used was the ordinary charcoal iren. The gun, which will be a 12 -inch rifled Rod man, carrying a 700 pound conical ball, when finished is expected to measure 263 inches, or about 22 feet in length. The diameter at the widest part will be 55 inches, and the casing will be 20 inches for a depth of 232 inches. At tho muzzle the outside diameter will be about 29 inches. The weight when finished will be $89,530 \mathrm{lbs}$., and when cast was about $162,000 \mathrm{lbs}$. There was 90 tons of metal in the three furnaces. The gun is expected to be completed in November. It is estimated that the mass will cool in about 150 hours.

Three large furnaces were used for the melting. The flask, which was some 29 feet long, was sunk all but about six feet inte the ground, muzzle up. From the furnaces were runners, a sert of iren trough or spout, lined with clay, about 8 inches wide at the t \bullet, 4 inches at the bettom, and 6 inches deep, and each abut 18 or 20 feet long. These led
t- a sort of central tank or pøol within 6 or 8 feet of the
point where the flask or mould was placed. In this was an \bullet pening which led int tw \bullet runners like these coming from the furnaces, and the runners carried the material frem the pool to the mould. The pool was for the purpese of equal izing the consistency of the iron before it entered inte the composition of the gun. At about $4: 50$ the visitors were re quested t• preserve quiet; the word was given, and the deep red stream of molten iren was seon seen rolling through the runners, with the accompaniment of great quantities of beautiful gelden stars scintillating ever the fiery mass. From the pool the liquid, after being thoroughly amalgamated, passed through the shorter runners and dropped to the bot tom of the mould, the material rising gradually until the level of the troughs was reached. This eccupied about 15 minutes, and then it became necessary to pour in from the top, which was several feet above the troughs. This was done by filling ladles (great tubs of iron lined with clay), each holding several tons of melted iron, and swinging them by three enormous derricks around t• a runner raised highe than the others, and which led to the top of the mould. The portion filled up with ladles was in addition to the length of the gun, which must be cut off s•me six feet. This is ncces cast in order te have the end perfectly solid. The gun wa cast upon the Rodman principle of having the core, which means of a pipe to convey cold water tocess of casting b. core, and an ther to carry off the water from the top when it becomes heated. This causes the cooling inside and outside to be much more uniform, and adds greatly to the strength of the gan. The casting was finally finished about $5: 30 \bullet$ 'cleck, with ut accident of any kind. The gun when finished will be forwarded to Sandy H \bullet k for experiments by the United States authorities.-Boston Journal.

Strength of Metals.

Some experiments have recently been made, in the me chanical technical laboratory of the R॰yal Polytechnical Sch•ol at Munich, up•n the strength of different alloys made by L. A. Riedinger at Augsburg. The results may be tabu lated as follows:

Alloy	Strength in squ. par square inch.	Contraction of section, per cent.	Stretching of $11 / 8$ inch, percent.	$\begin{gathered} \text { Appearance } \\ \text { fractiore. } \end{gathered}$
horus bre	27,122	$2 \cdot 4$	225	Fracture

-f the arms, when packed with the muzzle tip and shoulde piece resting in the greoves. N• other precaution is needed or used in packing the guns for shipment to Turkey, The machinery for the manufacture of these bexes was perfected in invention for the purpose. The company have still twe years in which to complete the number of these boxes that hey contracted te make; by which time, als \bullet, the $\mathrm{T} \bullet \bullet l \mathrm{C} \bullet m$ pany will have completed their immense contract with the Turkish Government.-Springfield Union.

A Remarkable Map

About the first of January, 1876, Professor Hitchceck, of he Geological Survey, and his assistants began the construc ion of a raised map of New Hampshi"e, the design of which was to combine all the present knowledge of the geography of the State which had been obtained in the geological sur ey made by Professør Hitchcock, Prefessor Huntington, and ॰thers. This map has just been completed, and placed in the State House
The map is fourteen feet ten inches long, representing ene hundred and seventy-eight miles in length (being constructed on a scale of one mile to the inch) and nincty-three miles in width, from the mouth of the Piscataqua river to the north west corner of Hinsdale, showing the entire surface of the State, nine thousand three hundred and thirty-six square miles. It alse shows all the rivers and brooks, pends and akes, hills and mountains, and the town and county lines, ailreads, etc. The names of all cities and towns, rivers, and principal brooks, lakes and ponds, mountains and high elevations, are given conspicuously, se that any one can find at a glince what they desire to look up. The height of the hills and mountains is given on a scale of one inch to on ousand feet, and actual measurements are given when kn•wn.
The map is constructed of pine and bass wood, and the precess of the work was this: A map was first drawn on paper of the samc size as the raised map, with all the outnes of towns, streams, pends, etc., and contour lines for ach five hundred feet were drawn. Tracings of the con our lines were made on inch layers of pine and bass beards maintaining as accurately as possible the relative cize and shape. These are fastened up•n each \bullet ther, and the valleys are beveled out with cl:mels-

Torpedo Balloons

A correspendent suggests that torpede balleons might prove a formidable means of efence, and prepeses a plan ef sending up a balloen, with a torped \bullet attached, t• windwar of an enemy, and then dropping the torped• by bursting the balloon. It seems to us that this is a good idea, and one which might find useful application in the bembardment of cities, camps, and fortificd places. It is of course not prac ticable against an enemy capable of moving about uickly It is not a difficult matter to construct a balloon capa ble of lifting sufficient nitreglycerin for the purpese This might be inclosed in a shell and suspended as a car under the air ship. A simple mechanical device could easily be provided for dropping the lead; and this device might be contrelled by a light wire through which an elec tric current could be sent. The besiegers have only to wait for a fair wind, and then start their balleon from a point far beyond the range of the most pewerful puns. It would be easy by the aid of instruments to tell just when the balleon easy byined over the had arrived over the desired point, and the pressure of the
key would transmit the current and drp the mass of exple key would transmit the current and drop the mass of exple
sive. The effect of a quantity of nitreglycerin blowing up in sive. The effect of a quantity of nitroglycerin blowing up in
a city or fort would be terrific. The balloon could be per a city or fort would be terrific. The balloon could be permitted to rise te a height beyond the reach of artillery, se that the besieged would be totally destitute of any means of directly preventing the drepping of the unwelcome visitor in their midst.
Some well meaning philanthrepists in England are just n॰w protesting against the use of the torped• in modern warfare, as being toe cruel a resort, and \bullet ne which should be classed with peisened wells and explesive bullets, which are proscribed am@ng civilized belligerents. Prebably the tor pede balleon will to them seem exceptionally barbareus The fact is, h \bullet wever, that such philanthrepy is a mistaken sentiment. War itself is a frightful calamity; and it is for the benefit of all that it should be as quickly ended as possi ble. This result can only be reached by making weapen so effective either that people will not face them, and thus fighting may be stopped in that way, or else that they will preduce such wholesale destruction as to secure victory for - ne side or the other in the quickest possible period. The most destructive weapons are therefore the most merciful; and in this light the torpede should be regarded.

Russian Gold and Silver Production.

The fell@wing statistics of the yield of the Russian geld fields for the year 1876 show that this source of wealth is considerable in thatcoldnorthernclime. The amount of goid mined in 1876 was 1,617 pouds, equal te 71,503 lbs. trey, having a value of $22,086,652$ roubles $=\$ 17,669,329.60$. The silver amounted te only 156 pouds, or 5,616 lbs. avoirdupois, w•rth 142,360 reubles $=\$ 113,888$.

Nichol's Railroad Joint and Nut Lock. -In eur re cent illustrated article on this subject, the statement that the cent illustrated article on this subject, the statement that the
joint would be safe without any bolts "on the same section -int would be safe without any bolts " on the same section of rail" should read " on some sections of rail." Alse for "requires n spikes in the flange of the rail," read "slots or

