Sumtifir Gumbint.

astiablished 1845.

MUNN \& CO., Editors and Proprietors
published weesly at
NO. 3 ' 9 PARK ROW, NEW YORK

o. D. MUNN.
 A. E. BEACH.

TERVIS FOR THE SCIENTIFIC AMERICAN

One cony, one year, pestage included....
One copy, six months, postage included

Clibs.-One extra copy of The Scientific amenican will be supplie

 gratis for every club of five subscribers atsame proportionate rate. Postage prepaid.

The Scientific American Supplemen is a distinct paper from the SCIENTIFIC AMERICAN. THE SUPPLEMEN is issued weekly; every number contains 16 octave pages, with handsome
cover,uniform in size with ScIENTIFICAMERICAN. Terms of subscription for SIPPLLMLYT. 85.00 a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The SCIENTIFIC AMERICAN and SUPPlement
will be sent for oneyear, pestage free, on receipt of seven dollars. Both papers to \bullet ne address or different addresses, as desired.
The safest way to remit is by draft, pestal order, or registered letter. Address MUNN \& CO., 37 Park Row, N.
the nows agents.
Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year
For the convenience of the mail clerks, they will please also state when their subscriptionse expire
New subscriptions will be entered from the time the order is received
but the back numbers of either the ScIENTIFIC AMERICAV or the Scis.
 In this case. the subscription will date from the commencement
volume, and the latter will be complete for preservation or binding.

VOL. XXXVI., No. 26. [New Series.] Thirty-seconl Year.
NEW Y•RE, SATURDAY, JUNE 30, 1877.

Contents.	
Answers to correspondent	
Banliasting trest the, ship s.............. 400	Paper pulp engine**................ 4038
Betr, testiver, for starch sugar... 402	Para-Arabin .a................. 408
Bleaching wool - .i.aj 408	Patent decisisions, recent........ 4099
siness and personal 410	Patents, Anerican and foreign.. 409
Chuck, self-centering	7
10cks, mysteriens*..	Projectile, a new 449
Dyeing cloth black 402	Railway trains, fast ${ }^{408}$
yeing loose cott	Re
Efectricity in dyeins	
tro-static indu	
	Steam economy ugrin............ 404
Exposition, the and	
proofing hair rope	Steel armor
wers, artificial	
nge, improve ${ }^{\text {* }}$	Tartaricacid solution, preserving 407
Glycyrrnizin in Russia.	TVern, the a n umotherly
Gun, casting a large	orpedo ballo
Hones in a chestrat tree........ 408	Torpedoes, making*............. 402
nmoth, an artif	
Map, a remarkable.estion*...... ${ }_{\text {M }}^{404}$	Vision, the limits and powers of. 400
Metals, strength of............. 404	Wine in France, yield of 407

TABLE OF CONTENTS OF
the scientific american supplement, NO. 78,
For the Week ending June 30, 1877

1. ENGINEERING AND MECHANICS.-Jacksen's Ships' Lines, by ED
ward Jackson: A description of improved ships' lines, combinin easy entry with fine run. 3 illustrations - New Channel Steamer.-
Steel wire Steel Wire Hawsers. -Rebertson's Improved Steam Engine, 2 engrav-
ings. - Underground Pumping Engine. Improved Machine for Squeezing Pudderer' Balls, by EDMUND SUCCow; 3 figures. - Barker's Im-
proved Hydraulic Brake, Midland Railway, England, 21 figures. - New Briekmaking Machine, 1 engraving.-Improved Carding Engine, 1 illus-tration.-Dynamometerf or Measuring Strength of Fabrics, 1 illustra-
tion.-Steam Tree-Saw, 1 illustration. -30 -Ton Gun. New Trials, 2 ga-ures.-Torpedoes
Drainage of the Zuyder Zee.-Military Obstructions of Channels.-
. TECHNOLOGY AND MANUFACrURES.-Washing and Water-beat ing Fabrics.
The Califo
.
iII. Electricity, Light, heat, etc.-New Electro Mas netic En of a lecture, by Professor TYNDALL.
V. ASTRONOMY.-A Home-Made Equatorial Telescope Sta
SIMONTON; 4 figures. With full instructions for making.

Physiologr atc, Poisonous Effects usually attribor
per.-Zinc a Normal Constituent of the Human Body.-Animal Heat. Physiological Action of Glycerin.
IT. LESSONS IN MECHANICAL DRA WING, by Professor C. W. Mac-
Cord. Second Series, No. X. Fxplaining the Principles involved Cord. Second Series, No. X. Explaining the
Drawing Screw Propellers. With illustrations.
Vii. Miscelllaneous - General Index of Scientipic american Sup-
 American Suprlement, one year, postpaid, seven dolays. CLUBB.-One extra copy of the Supprivinc: T winl be supplied gratis for every club of
dive SUPPLEMENT subscribers at $\$ 5.00$ each. Allthe

uary 1,1876 , can be had. Price 10 cents each.

now realy.-The Scientific amprican Supplement for 1896 cmplete in twe large volumes. Over 800 quarto pages ; over 2,000 engravngs. Embracing History of the Centennial Exhibition. New Illustrated. Instructions in Mechanical Drawing. Many valuable papers, etc. Price
fve dellars for the twe volumes, stitched in paper; or six dellars and Bfty cents, handsomely bound in stiff covers.
Remit by postal order. Address
MUNN \& CO. PU3LISHERS,
Park Row, New York
0F Single copies of any desired number of the Supplement sent to any
address on receipt of 10 cents.

THE LIMITS AND POWERS OF VISION

Delicacy of vision is due to two causes: sensitiveness of the retina, which allows of the perception of minute differ ences of light, or, in other words, of the clear definition of -bjects illuminated very slightly more or less than the back ground against which they appear; and the perfection the different portions of the eye itself, which admits of the perception of very small objects, or of separating thos nearly approximated without the images becoming confused through irradiation. Dr. Carpenter states that the smallest particle of a white substance distinguishable by the naked eye up॰n a black ground, or of a black substance upon a the closest attention," he continues, "and by themost faver able direction of light, te recognize particles that are only ${ }_{5}^{\frac{1}{4} \sigma} \sigma$ inch square, but without sharpness and certainty. But particles which strongly reflect light may be distinctly seen when not half the size of the least of the foregoing. Thus, gold dust of the fineness of $\frac{1}{125}$ inch may be discerned with the naked eye in common daylight. When particles that cannot be distinguished by themselves with the naked eye are placed in a row, they become visible, and hence the delicacy of vision is greater for lines than for single parti cles. Thus, opaque threads of more than $\frac{1}{4900}$ inch across or about half the diameter of the silkworm's fiber, may be discerned by the naked eye when they are held towards the light.'

Professor Mayer, in the first of his admirable papers on the "Minute Measurements of Modern Science," now appearing in the Scientific American Supplement, states that by actual experiment he has determined the limit of visibility of the minute to be excmplified by a disk $\frac{1}{500}$ inch in diameter and a line about $\frac{50}{50}$ inch in breadth. Th same authority has found from several measures that a line $\frac{1}{106}$ inch in breadth is ebtained by drawing the finest line possible on Bristel beard with a sharply pointed HHH pencil.
In general, in order to distinguish clearly a dark object on a light ground, or the reverse, it is necessary that the -bject subtend an angle of at least one minute. But this again is dependent upen accidental and often personal conditions. Gassendi, the astren॰mer, was unable te perceive with the naked eye (protected only by smoked glass) s•la spots subtending angles of 80 seconds; while other astron
mers have, by practice, acquired the power of distinguishin \mid mers have, by practice, acquired the power of distinguishing spots of 50 seconds in diameter.
On a clear meenless night,
On a clear moonless night, every one possessing average powers of sight is capable of discerning stars of the sixth magnitude. There are, therefore, at any time two thousand stars visible abeve the horizөn, or about four thousand ©ver stances and in the. But under very faval (reflection terrestrial lights, zodiacal light, twilight, etc.), when the atm osphere, cleansed by recent rain, is very moist and the stars seem exceptionally brilliant, heavenly bodies between
the sixth and seventh magnitude are alse discernible by the naked eye. The contrast due to the apparent extinction and apparition of the smallest stars, a phenomenon due to their twinkling, all॰ws of their being m•mentarily perceived, especially by the parts of the retina a little to one side of the direct point of formation of the image, as these parts
are usually more sensitive on account of their not being normally used for visual purposes. Under these conditions, persons whose sight has become acute through repeated \bullet bservations are able to see, in the entire heavens, some eleven thousand stars, this aggregate having been determined by the astronomers Heis, at Munster, and Gould, at Cordova.
It is ordinarily pessible to see six stars in the Pleiades some people can distinguish seven. Heis has counted ten, Denning at Brist॰l saw thirteen, and Moestlin, Kepler's pre ceptor, saw f \bullet urteen. Mr. Heis possesses both the qualities of delicate vision above noted in a remarkable degree. In full sunlight he has perceived Venus, Jupiter, and Mercury and at night, when the moon was absent, he saw Vesta and Uranus, with the unassisted eye. Se clear is his sight that he is at all times able to separate the twe neighboring stars -f η of the Great Bear, and als \bullet th \bullet se relatively distant $6^{\prime} 30$ kn•wn as α in Capricornus. When the sky is very clear, he has resolved w of the Scorpion, δ of the Lyre, and ε of the same constellation, of which the stars are distant but $3^{\prime} 27^{\prime}$
There are, h There are, h॰wever, well kn॰wn cases of even more w \bullet n-
derful feats \bullet visi \bullet. The difficulty of perceiving the satel lites of Jupiter is enormous because of the great brilliancy of the planet and the nearness of the satellites. The first of the latter is distant but twe and a quarter minutes, and the fourth nine minutes and three quarters. They vary in brilliancy from seventh magnitude downward, se that in any event they are radically invisible to the average naked eye The third satellite is the largest and brightest, and hence this one is most frequently seen, although Heis, with all his w॰nderful pøwers, has never accomplished its perception. Jacob, h॰wever, saw it at Madras, and Buffham and Mas in England. Boyd saw both the second and third satellites separate and distinct in 1860, and Denning perceived the third and fourth, in $18 \% 4$, by masking the bright face of the third satellites at the time of their greatestelongation. Thes are the most difficult to separate, © wing to their proximity t• Jupiter.

Probably the most difficult feat of all recorded done by human sight is the perceiving of the crescent of Venus. This has been done but three times, once by Stoddard, a mission-
ary on the high table lands of Persia, once by Theodore

Parker when a child in Chili, and once by Abbé André, in 1868, in France. The Abbé saw the crescent when it sub tended an angle of but fifty seconds

trance.

Whether his particular theories and \bullet pinions $\mathrm{d} \bullet$ or $\mathrm{d} \bullet$ ne old strictly correct when gauged by more extended futur nvestigation, Dr. George M. Beard, of this city, is doing capital work in directing the light of purely scientific in quiry upen that host of psych•logical delusions, which \bullet c cupy a vaguely defined suppesitious borderland of science It is hard nowadays for any thinking person to view with equanimity the miserable deceptions which are imposed, no up॰ the ॰bviously ignorant, but apparently upøn the mos enlightened portion of the community. College professors, - whom we look for the careful training of young minds, have lent themselves to the serious consideration of the aburd performances of a self-styled mind reader. A persen e - - bid intellect was recently enabled in this city to inflict -om full of sensible people with a lecture replete with th rofoundest nonsense, through the wholesale publication of n invitation apparently signed by some of our foremos citizens. Blue glass panes, detting the windews of score f the finest mansions, attest the fact that a popular delu on is by n meansconfined to the presumably educated "The outcome of twe thousand years of human learning ince the foundation of the science of logic by Aristotle," say Dr. Beard, "is that the Encyclopcedia Britannica, in its lates editıon, regards it as an open question whether ghosts ap pear." In short, even if the majority of people d• not ab olutely acquiesce in a medern form of superstition or deluion, they declare with Emerson that all these claims ar yysteries of which a wise man would prefer to be ignorant Credulity, then, on one hand, ignorance on the other whether self-imposed or not: these are the mental states which generate a third, wherein a reas@ning being bids fare well to his reas n, wherein a legical mind becomesill•gical and d•ubt, surmise, and deception reign unchecked.
Dr. Beard has made an especial study of the symptom -nnected with the nervous system, whereon are based the uperstitions kn七wn as mesmerism, animal magnetism, hyp notism, etc. As the result of his investigations, he pro ounds the theory that " trance is a functional disease of th ervous system, in which the cerebral activity is concen trated in some limited region of the brain, with suspension of the activity of the rest of the brain and consequent los of volition." From this hypothesis, he deduces explana tions of all the various phenomena which have been as cribed to the causes above detailed. For the sake of convenience, trance is divided int 0 for varieties: the spontane the self-induced, the emotional, and the intellectual trance. A typical form of the first is natural somnambulism or sleep-walking, in which, "the cerebral equilibrium being pontaneously disturbed through the subjective action of reams, the subject, under the d•minion of a restricted re gion of the brain, the activity of the rest of the brain being suspended, runs and walks about like an automaton. Unde elf-induced trance are comprised those cases where the sub ject can bring himself inte this state at will, either suddenly or gradually. This can be accomplished by low living, ap proaching nearly to starvation. Emotional trance, which in cludes by far the larger number of cases, may be induced by fear, reverence,wonder, or expectation, exerted to such a de gree that the activity of the brain is suspended, while thes emotions are abnormally active, and consequently the will oses control and the subject acts automatically in respons - external or internal suggestion, doing the very things he wishes te avoid doing, and being unable t d d what he de sires. It is of no consequence in what manner this tranc is produced; it is purely subjective, and depends wholly upon the emotions of the subject. The mesmeric operato or medium has really nothing ted \bullet with the physical effec produced; it is only necessary that the subject believe in him. T• intellectual trance belong the extreme cases of ab sent-mindedness. A large portion of the brain is active and, until aroused, is insensible to surroundings and re ponds automatically te external suggestions or influences. We cannot here follow Dr. Beard in detail through al the phenomena of trance to which he shows that his theory can be fitted. Some of his explanations are exceedingly in genious, and merit study; and the simple simile, which he -ffers to realize his distinction between sleep, trance death, and normal waking state, is quite happy. "When all the burners of a chandelier are fully lighted," he says, "that is the normal waking state; when all of the burners ar turned down low but not turned out entirely, that is ordi nary sleep; if I turn out entirely all the burners except one, and that one, as often happens, flames all the more brightly from increased pressure, that is trance; if all the burners are turned eut entirely and permanently, that is death.'
T'he application of the hypothesis to the singular phen•m non of double life-cases of which we have repeatedly noted-is perhaps the most interesting. In trance there i probably always consciousness at the time; but it is n七t al ways or usually remembered consciousness. On awaking, the dreams fade; but on resuming the trance state, the ex alted functional activity of the region of the brain in which the cerebral force is concentrated is able to bring back these impressions of the previous attack of trance, forgetten dur ing the intervening normal state. Thus the subject carrie on an independent trance life. On returning to the normal state, the cerebral force, being again diffused, is insufficien t enable the subject to recall trance experience, but quite
sufficient te enable him to recollect his normal feelings． Thus he leads tw \bullet independent lives．
The direct consequence of Dr．Beard＇s theory is that it tends te reduce all such delusions as clairveyance，spiritual－ ism，etc．，t• ene common basis of scientific hyp \quad thesis；but the indirect consequence seems to us to be fraught with much graver interest to seciety．The only deduction t be drawn is that there is more evidence of the irresponsibility of humanity，further prof of another state when man may be but an automaton．Last week we brought forward com－ petent medical evidence to prove that a drunken man is as irresponsible as a lunatic．Here again is expert testimony te the effect that，under a host of \bullet ther conditions，a pers \bullet may become unaware of his own acts．If fear and excitement are powerful exciting causes for trance，and the person in the trance or near the trance state receives erroneousimpres－ sions，wherein is the value of evidences by eye－witnesses of crimes committed under circumstances of great fear or ex－ citement？Testim＠ny as te sudden accidents might be sim－ ilarlyviewed with doubt；yet on the 七ther hand，if we admit irrespensibility in the entranced person，h \bullet w are we to guard ourselves against deception？for，as Dr．Beard says，＂n $七$ th ing is easier to counterfeit，after slight practice，than the early physical symptoms of trance．＂We cannot but agree with our author in the view that the day for the examina－ tion of this subject by the average individual has gone by， and that the only reliable informant is the medical expert． We d• n七t send committees of lawyers and clergyment ex－ amine peculiarities in construction of buildings；how much less logical is it te ask them to comprehend the hidden phe－ nomena of brain construction？We need something more than a report of what trustworthy men think they see；and that something is the testimony of experts whe look to causes and not to mere visible effects．

THE BANIAN TREE．

Of the remarkable phases of vegetable grewth，that of the banian tree is certainly the most astonishing．We have more than one running plant，which，like the wild straw－ berry，spreads around a central stem by dipping int earth its distant branches，and thus establishing subsidiary centers； and in the mangrove of our southern shores we may see a tree，of considerable height，dr॰pping from elevated limbs a number of whip－like roots which penetrate the ground， often through a foot or more of water；then，reversing their circulation，they become true stems，capable of maintaining themselves when separated from the parent stock．But， even with these illustrations before us，it is hard to realize the appearance and life conditions of a wide－spreading com－ munal forest，the connected outgrowth of a single tree．
The anomalous physiolegy of a mangreve or banian root stem we have never seen described．How is it that its character is se completely reversed？At first its growth is downward，by a true reot－like increase of cell structure at its free end．It remains perfectly cylindrical throughout， with \quad ut the slightest variation in diameter，until it branches in the ground．Up to this point its circulation is down－ ward from the parent stem：but $n \bullet w$ all is changed．It ceasest be a reet，and becemes a stem，gr•wing and sup－ plying its branches with sap like a tree trunk of ordinary grewth
The banian adds another strange peculiarity，namely，that t rarely sprouts from the ground，the crown of a palm being usually its starting place．The banian seed is dropped by some bird int the frond，or upper cluster of leaves of the palm，and，sprouting there takes root within the palm：this commonly when the palm is in its infancy．The palm grows upward，an unbranching column．The banian spreads out－ ward and begins to send its reot stalks dewnward from its branches；not diverted twigs，but special growths，true aerial roots．With this exception，Milton only describes without exaggeration，when he writes of this tree as

Branchingse broad along that in the ground
 The bend ingt wigs take root，and daught
 About the mother tree，a pillared shade High ver－arched，with echeing wads

Meantime the palm is pushing upward，embraced by the descending banian shoots，which become se interlaced in course of time that the trunk of the palm is wholly concealed． At this stage appearance flatly contradicts reality；the palm seems to be growing from the heart of the banian，as though a date seed had taken root in the banian top．Possibly the curious Hind \bullet custom \bullet marrying trees of different species had its origin in，or was suggested by，these natural unions． The banian（ficus Indica）is one of the great natural family the urtzcacee，to which our familiar stinging nettle alse be longs．It bears a small red fig or berry，which in times of famine has afforded food for thousands．An instance of the vast extent of country which may be covered by a single－ tree banian grove is furnished by the island of Nerbudda， which is entirely covered by \bullet ne tree．A considerable por－ tion of the island and the grove growing upon it has been washed away by river floods during recent years；but enough remains to make one of the noblest groves in the world． The natives boast that it once afforded shelter for a troep of $10,000 \mathrm{~h} \bullet$ rses．An七ther extensive banian forest－all parts of \bullet ne tree－occurs in the district of Beerbh $\bullet \bullet m$ ，in Bengal． It covers＂an immense extent of country，＂and •vershad ${ }^{\text {w }}$ more than four hundred temples．
The bride of the banian，in the ceremony above alluded te， usually the sacred peepul，or be－tree（ficus religiosa）．It is one of the latter that inspires such widespread reverence among Thibetian and other Buddhists，from the circumstance
that its leaves bear well marked characters in their sacred language．That these characters are n七t the work of the lished．A couple of French missionaries whe were per mitted to examine the tree report their inabrlity to discover the least sign of art in these mysteri＊us－and to the Buddhists miraculous－markings．＂We examined，＂they write， ＂everything with the closest attention，in order to detect some trace of trickery，but we could discern nothing of the s•rt；and the perspiration abselutely trickled d•wn $\bullet u r$ faces under the influence of the sensations which this most amaz ing spectacle created．
The mental attitude of these perspiring missionaries，when brought face to face with an alleged miracle that bore no evidence of trickery，is instructive．That the markings culd be natural seems not to have occurred to them．Dr H॰oker，from his familiarity with Nature in India，was able t－explain the miracle offhand with the single word＂in te expla
sects！＂

VOLPICELLI＇S NEW THEORY OF ELECTRO－STATIC INDUCTION

An insulated conductor charged with either kind of elec tricity acts on bodies in a natural state placed near it in manner analog \quad us that of the action of a magnct on sof iron，that is，it decomposes the neutral fluid，attracting the －ppsite and repelling the like kind of electricity．The ac tion thus exerted is said to take place by influence or induc tion．The usual apparatus for demonstrating this hypothe sis is a brass cylinder placed on an insulated suppert and pre vided at its extremities，or at various points along its length， with pith balls suspended by linen threads．If this arrange ment be placed near an insulated conductor charged with either kind of electricity，the natural fluid of the cylinder i supposed to be decompesed，and free electricity is devel•ped at each end，when both pith balls there located will diverge The electricity of opposite character to that of the conduc tor gees to the end of the cylinder nearest that conductor while electricity of the same kind as the conductor seck the further extremity．There is a point on the cylinde where ne divergence of the pith balls eccurs，and this is termed the neutral point．

This hyp七thesis was，s七me thirty years age，attacked by Mell॰ni，whe asserted that the imaginary electric fluid wa not separated int its positive and negative compenents，but that both of the latter existed all \bullet ver the cylinder，although， in point of quantity，there was＇more negative fluid on the end nearest the positive conductor and more positive fluid on the －ppesite extremity．The difference between Melloni＇s theor and that first noted will be clear from the annexed engrav ings．If the inducing source，c ，Fig．1，is pesitively electri

Fig． 1.

fied，all the negative fluid of the cylinder，A B，according t－the old hypothesis，gees t $a m b$ ，and all the positive fluid t $a n b, a b$ bcing the neutral point．Melloni＇s idea is ex empliticd in Fi ．2，where both kinds of clectricity exist in some degree \bullet ver the entire cylinder．Melloni had scarcely more than reached a definite conclusion on this subject when

Fig． 2.

he died；but his work was taken up by M．Volpicelli，wh or some twenty years has pursued the necessary investiga tions，and has recently announced conclusions confirming hose of their original enunciator．
M．Volpicelli＇s apparatus consists of a large glass tube， 70 inches long，terminated by metallic armatures，and contain

Fig． 3

ing a dry pile compesed of 24,000 disks closely packed te gether and covered with a layer of copper ©n one face and
of peroxide of manganese on the other（Fig．3）．This ba
tery works uniformly for several months，and is a constan －urce of electricity．The body on which the induced elec ricity is developed is an ordinary glass cylinder，perfectly isolated by threads of raw silk，by which it is suspended in the crotches of a support（Fig．4）．The electricity rendered free by induction is taken on the cylinder by means of a little proof plane，which merits a special description；for the suc cess of the experiments is largely dependent upon the excel lence of the instruments used and the care with which all possible causes of error are avoided．The plane is com posed of twe small disks of copper， 0.35 inch in diameter separated by a thin layer of insulating varnish．One of these disks is in communication with the soil by means of a me tallic red which is held in the hand．The other disk is fixed －a metallic red terminating in an ivery ball，which slide freely in an opening situated in the middle of the first disk and in an eyelet carried by an annexed arm．In 七rder to use the device，the twe disks are brought into contact，and the mevable disk is placed on the cylinder．The free electricity on the surface of the latter condenses on the disk，and may be transported te a distance，as，for example，up＠n the exterior armature of an electrescope，situated far enough away from the dry pile not te be influenced by it．M．Vol picelli alse uses a proof plane consisting simply of a pin head．A portion of the end of the pin is cut $\bullet f$ ，and the rest mserted in a kn \bullet of sealing wax at the end of a metal handle．A Böhnenberger electroscope，containing improve ments devised by M．Velpicelli，is alse used．The twe plates，towards which the gold leaves， D ，are attracted when he exterior armature，A ，is electrified，are supperted by twe lass columns containing dry pilcs analagous to those of the large inducing cylinder（Fig．õ）．This electroscope has

Fig． 4.
Fig． 5.

great sensibility．It might be termed a kind of electrical microscepe．
In order to make the experiments，the insulated cylinder is properly placed in view by the electric source．It becomes electrified by induction．The free electricity on the cylin－ der is collected by the proof plane；and with the charge plane the electroscope is touched．The following phenom－ ena then appear：

1．The free electricity found \bullet n the portion of the cylinder nearest the electric source is of the same character as that of the latter．This is diametrically oppesite，of course，t• the assertion of the old theory．The experiment may be re－ peated five or six times successively．
2．If the cylinder be placed in communication with the soil，se that the free electricity is allowed te escape，and the experiment with the proof plane be again tried，n \bullet sign of electricity is manifest．
3．If the cylinder be moved away from the electric source， s－that the influence of the latter is diminished，and the proof plane be applied，the electroscope to which the latter stouched indicates an electricity of oppsite character to that of the inducing bedy．
M．Volpicelli sums up the result of his investigations as follows：＂Up॰n an insulated conductor submitted to the in－ fiuence of an electrified body，electricity of opposite name pessesses n \bullet potential．It is found in greatest quantity at the end of the conductor nearest the electrified b $\bullet d y$ ，and di－ minishes t•wards the $\bullet p$ psite end．Electricity of the same name as that of the electrified body is found at all points on the insulated conductor，the end nearest the electrified source not excepted．It increases as it appreaches the other extremity，and is always free．＂We extract our engravings extremity，and is
from La Nature．

A New Projectile

Mr．W．H．Lewis，a Welsh gentleman，of Haf \bullet ，near Swansea，has invented a new engine of warfare，which will be likely te attract considerable attention．It consists of a cannon，se arranged as te discharge a sharp sword－blade crosswise in the direction of the enemy，the knife or cutter being s• poised in its career through the air as to cover the whole space in a longitudinal direction described by the blade itself．An 8－inch ball would carry a sword 14 feet in length 600 yards，literally mowing down every human ob－ stacle in its path．

