Sumtifir Gumbint.

ESTABLISHED 1845.
MUNN \& CO., Editors and Proprietors.
published weekly at
NO. 3 ' 9 PARK ROW, NEW YORK

o. D. MUNN.
 A. e. beach.

TERMS FOR THE SCIENTIFIC AMERICAN

One cony, one year, pestage included....
One copy, six months, postage incluced.
${ }_{53}^{520} 1$
clibs.-One extra copy of The Scientific American wir be supplie gratis for every club of five subscribers at

The Scientific American Supplement is a distinct paper from the SCIENTIFIC American. THE SUPPLEMEN is issued weekly; every number contains 16 octave pages, with handsome
cover,uniform in size with ScIentiric American. Terms of subscription for SUPPLIMUYT. $\$ 5.00$ a year, postage paid, to subscribers. Single copies 10 cents. Sold by all news dealers throughout the country. Combined Rates. - The SCIENTIFIC AMERICAN and SUPPlement
will be sent for oneyear, postage free, on receipt of seven dollars. Both will be sent for one year, postage free, on receipt of seven dolars. Bot
papers to one address or different addresses, as desired.
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& CO., 37 Park Row, N. Y Subscriptio

Publishers' Notice to Mail Subscribers.

Mail subscribers will observe on the printed address of each paper the

 time for which they have prepaid. Befrene the time indicated expires, toinsure a continuity of numbers, subscribers should remit for another year. insure a continuity of numbers, subscribers should remit for another year their subscriptions expire.
New subscriptions will be entered from the time the order is received;
but the back numbers of either the SCIENTIFIC AMERICAN or the SCIENtrfic American supplimmext will be sent from January when desired. In this case, the subscription will date from the commencement
volume, and the latter will be complete for preservation or binding.

VOL. XXXVI., No. 26. [New Series.] Thirty-second Year.
NEW Y•RE, saturday, JUNE 30, 1877 .

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT, NO. 78,

For the Week ending June 30, 1877
I. ENGINEERING AND MECHANICS.-Jackson's Ships' Lines, by ED-
ward Jacksors : A description of improved ships' lines, combining easy entry with fine run. 3 illustrations $-N$ New Channel Steamer.-
Steel wire Hawsers. Steel Wire Hawsers.- Robertson's Improved Steam Engine, 2 engrav-
ings.-Underground Pumping Engine.-Improved Machine for Squeezing Pudderg' Balls, by EDMUND SUCCow; 3 figures.- Barker's Im-
proved Hydraulic Brake, Midland Railway, England, 21 figures. - New Briekmaking Machine, 1 engraving.-Improved Carding Engine, 1 illus-tration.-Dynamometerfor Measuring Strength of Fabrics, 1 illustra-
tion.-Steam Tree-Saw, 1 illustration. -30 -Ton Gun. New Trials, 2 a-ures.-Torpedoes
Drainage of $t h e$

```
Destruction the Zuyder Zee.-M
```


TECHNOLOGY AND MANUFACI URES Wasing and Water-beat

 ing Fabrics.-Depositing of Cobalt upon Metal
III. ELECTRICITY, LIGHT, HEAT, ETC.-New Electro. Magnetic Engines, by Martin EGGER; 4 fgures.-
of a lecture, by Professor TYNDALL.
V. Astronomy -a Home-Made Equatorial Telescope Stand by T. D. Simonton; 4 figures. With full instructions for making.
Physiology, etc.-Poisonous Effects usually attributed to Salts of Cop
per--Zinc a Normal Constituent of the Human Body.-Animal Heat per-Z Zine a Normal Constituent
Physiological Action of Glycerin.
II. LeSSONS IN MECHANICAL DRa Wing, by Professor C. W. Mac-
Cord. Second Series, No. X. Fxplaining, the Principles involved in Cord. Second Series, No. X. Explaining the
Drawing Screw Propellers. With illustrations.
VII. MISCELLLANEOUS. - General Index of Scientific american Sup-
pLEMENT, vol. 3 , being from January
 American Suprlement, one year, postpaid, seven dinars. CLUBS. One extra copy of the Supricisicic will be supplied gratis for every club of
five SUPLLEM ENT subscribers at ${ }_{50} .00$ each.

1, 1876, can be had. Price 10 cents each,
Now realy.-The Scientific amprican Supplement for 1896
complete in twe large volumes. Over 300 quarto pages; over 2,000 engrav-
ngs. Embracing History of the Centennial Exhibition. New Illustrated. Instructions in Mechanical Drawing. Many valuable papers, etc. Price
flve dollars for the twe volumes, stitched in paper; or six dollars and fifty cents, handsomely bound in stiff covers.
Remit by postal order. Address
MUNN \& CO. PU3LISHERS,
37 Park Row, New York
Pingle copies of any desire number of the SUPPLement sent to an

the limits and powers of vision.

Delicacy of vision is due to two causes: sensitiveness of the retina, which allows of the perception of minute differences of light, or, in other words, of the clear definition of objects illuminated very slightly more or less than the back ground against which they appear; and the perfection of the different portions of the eye itself, which admits of the perception of very small objects, or of separating those nearly approximated without the images becoming confused through irradiation. Dr. Carpenter states that the smallest particle of a white substance distinguishable by the naked eye upon a black ground, or of a black substance upon a white ground, is about ${ }^{1} 0_{0}$ inch square. "It is possible
the closest attention," he continues, " and by the most favor able direction of light, to recognize particles that are only ${ }^{\frac{1}{4} \sigma}$ inch square, but without sharpness and certainty. But particles which strongly reflect light may be distinctly seen when not half the size of the least of the foregoing. Thus, gold dust of the fineness of $\frac{1}{125}$ inch may be discerned with the naked eye in common daylight. When particles that cannot be distinguished by themselves with the naked eye are placed in a row, they become visible, and hence the delicacy of vision is greater for lines than for single parti cles. Thus, opaque threads of more than $\frac{1}{4900}$ inch across or about half the diameter of the silkworm's fiber, may be discerned by the naked eye when they are held towards the light.'
Professor Mayer, in the first of his admirable papers on the "Minute Measurements of Modern Science," now appearing in the Scientific American Supplement, states that by actual experiment he has determined the limit of visibility of the minute to be exemplified by a disk $\frac{1}{500}$ inch in diameter and a line about 50.6 inch in breadth. The same authority has found from several measures that a line ' $\frac{1}{106}$ inch in breadth is otained by drawing the finest line possible on Bristol board with a sharply pointed HHH pencil.
In general, in order to distinguish clearly a dark object on a light ground, or the reverse, it is necessary that the object subtend an angle of at least one minute. But this again is dependent upon accidental and often personal conditions. Gassendi, the astronomer, was unable to perceive with the naked eye (protected only by smoked glass) sola spots subtending angles of 80 seconds; while other astrono \mid mers have, by practice, acquired the power of distinguishing spots of 50 seconds in diameter.
On a clear moonlezs night, every one possessing average powers of sight is capable of discerning stars of the sixth magnitude. There are, therefore, at any time two thousand stars visible above the horizon, or about four thousand ove stances and in the absence of all other light (reflection of terrestrial lights, zodiacal light, twilight, etc.), when the atm osphere, cleansed by recent rain, is very moist and the stars seem exceptionally the sixth and seventh magnitude are also discernible by the naked eye. The contrast due to the apparent extinction and
apparition of the smallest stars, a phenomenon due to apparition of the smallest stars, a phenomenon due to their
twinkling, allows of their being momentarily perceived, especially by the parts of the retina a little to one side of the direct point of formation of the image, as these parts are usually more sensitive on account of their not being nor mally used for visual purposes. Under these conditions persons whose sight has become acute through repeated ob thousand stars, this aggregate having been determined by thousand stars, this aggregate having been determined by
the astronomers Heis, at Munster, and Gould, at Cordova. the astronomers Heis, at Munster, and Gould, at Cordova.
It is ordinarily possible to see six stars in the Pleiades some people can distinguish seven. Heis has counted ten, Denning at Bristol saw thirteen, and Moestlin, Kepler's pre ceptor, saw fourteen. Mr. Heis possesses both the qualities of delicate vision above noted in a remarkable degree. In full sunlight he has perceived Venus, Jupiter, and Mercury; and at night, when the moon was absent, he saw Vesta and Uranus, with the unassisted eye. So clear is his sight that he is at all times able to separate the two neighboring stars of η of the Great Bear, and alsothose relativelydistant $6^{\prime} 30^{\prime \prime}$ known as α in Capricornus. When the sky is very clear, he has resolved w of the Scorpion, δ of the Lyre, and ε of the same constellation, of which the stars are distant but $3^{\prime} 27^{\prime \prime}$.
There are, however, well known cases of even more won derful feats of vision. The difficulty of perceiving the satellites of Jupiter is enormous because of the great brilliancy of the planet and the nearness of the satellites. The first of fhe latter is distant but two and a quarter minutes, and the
fourth nine minutes and three quarters. They vary in bril liancy from seventh magnitude downward, so that in any event they are radically invisible to the average naked eye. The third satellite is the largest and brightest, and hence this one is most frequently seen, although Heis, with all his wonderful powers, has never accomplished its perception. Jacob, however, saw it at Madras, and Buffham and Mason in England. Boyd saw both the second and third satellites separate and distinct in 1860, and Denning perceived the third and fourth, in 1874, by masking the bright face of the planet. Schoen, a tailor of Breslau, perceived the are the most difficult to separate, owing to their proximity to Jupiter.
Probably the most difficult feat of all recorded done by human sight is the perceiving of the crescent of Venus. This has been done but three times, once by Stoddard, a mission-
ary on the high table lands of Persia, once by Theodore

Parker when a child in Chili, and once by Abbé André, in 1868, in France. The Abbé saw the crescent when it sub tended an angle of tut fifty seconds.

TRANCE.

Whether his particular theories and opinions do or do not hold strictly correct when gauged by more extended futur investigation, Dr. George M. Beard, of this city, is doing capital work in directing the light of purely scientific in quiry upon that host of psychological delusions, which oc cupy a vaguely defined suppositious borderland of science It is hard nowadays for any thinking person to view with equanimity the miserable deceptions which are imposed, not upon the obviously ignorant, but apparently upon the mos enlightened portion of the community. College professors to whom we look for the careful training of young minds have lent themselves to the serious consideration of the aburd performances of a self-styled mind reader. A person of morbid intellect was recently enabled in this city to inflict oom full of sensible people with a lecture replete with th profoundest nonsense, through the wholesalepublication of an invitation apparently signed by some of our foremos citizens. Blue glass panes, dotting the windows of score of the finest mansions, attest the fact that a popular delusion is by no means confined to the presumably educated The outcome of two thousand years of human learnin ince the foundation of the science of logic by Aristotle," say Dr. Beard, "is that the Encyclopcedia Britannica, in its latest editıon, regards it as an open question whether ghosts ap pear." In short, even if the majority of people do not ab olutely acquiesce in a modern form of superstition or delu sion, they declare with Emerson that all these claims are ysteries of which a wise man would prefer to be ignorant Credulity, then, on one hand, ignorance on the other whether self-imposed or not: these are the mental states which generate a third, wherein a reasoning being bids fare well to his reason, wherein a logical mind becomesillogical
and doubt, surmise, and deception reign unchecked.
Dr. Beard has made an especial study of the symptom connected with the nervous system, whereon are based the superstitions known as mesmerism, animal magnetism, hyp otism, etc. As the result of his investigations, he pro ounds the theory that " trance is a functional disease of th ervous system, in which the cerebral activity is concen trated in some limited region of the brain, with suspension of the activity of the rest of the brain and consequent los of volition." From this hypothesis, he deduces explana tions of all the various phenomena which have been as cribed to the causes above detailed. For the sake of conve nience, trance is divided intofour varieties: the spontaneous the self-induced, the emotional, and the intellectual trance. A typical form of the first is natural somnambulism or sleep-walking, in which, "the cerebral equilibrium being spontaneously disturbed through the subjective action of reams, the subject, under the dominion of a restricted re ion of the brain, the activity of the rest of the brain being uspended, runs and walks about like an automaton. Under elf-induced trance are comprised those cases where the sub ect can bring himself into this state at will, either suddenly or gradually. This can be accomplished by low living, ap proaching nearly to starvation. Emotional trance, which in cludes by far the larger number of cases, may be induced by ear, reverence, wonder, or expectation, exerted to sucha de gree that the activity of the brain is suspended, while these emotions are abnormally active, and consequently the will oses control and the subject acts automatically in respons to external or internal suggestion, doing the very things he wishes to avoid doing, and being unable to do what he de sires. It is of no consequence in what manner this trance is produced; it is purely subjective, and depends wholly upon the emotions of the subject. The mesmeric operato or medium has really nothing to do with the physical effect produced; it is only necessary that the subject believe in him. To intellectual trance belong the extreme cases of ab sent-mindedness. A large portion of the brain is active, and, until aroused, is insensible to surroundings and re ponds automatically to external suggestions or influences.
We cannot here follow Dr. Beard in detail through al the phenomena of trance to which he shows that his theory can be fitted. Some of his explanations are exceedingly in genious, and merit study; and the simple simile, which he offers to realize his distinction between sleep, trance death, and normal waking state, is quite happy. "When all the burners of a chandelier are fully lighted," he says, " tha is the normal waking state; when all of the burners ar turned down low but not turned out entirely, that is ordi nary sleep; if I turn out entirely all the burners except one and that one, as of ten happens, flames all the more brightly from increased pressure, that is trance; if all the burners are turned out entirely and permanently, that is death.'
T'he application of the hypothesis to the singular phenom enon of double life-cases of which we have repeatedly noted-is perhaps the most interesting. In trance there i probably always consciousness at the time; but it is not al ways or usually remembered consciousness. On awaking the dreams fade; but on resuming the trance state, the ex alted functional activity of the region of the brain in which the cerebral force is concentrated is able to bring back these impressions of the previous attack of trance, forgotten dur ing the intervening normal state. Thus the subject carrie on an independent trance life. On returning to the normal state, the cerebral force, being again diffused, is insufficien

