the hellarammite.

by propessor c. v. rilex.

Few insects excite more curiosity than the gigantic fly (corydalus cornutus, Linn.), to which I desire to introduce the readers of the Scientific American. It is our largest neuropteron, or nerve-winged insect, belonging to the family sialide. Of not unfrequent occurrence over the Atlantic, Middle, and Western States, it is most often met with along water courses, and is vulgarly called the "hellgrammite" in the Mississippi Valley; and this cognomen, the origin of which is somewhat obscure, has been generally adopted by entomologists. There is a certain formidable look about the creature; and though it is absolutely harmless, a great many people have a superstitious dread of it.
The supposed eggs of this fly were first found by the late Benjamin D. Walsh, of Rock Island, Ill., and were figured and described in the American Entomologist (Vol. I.), and in the fifth "Entomological Report" of the writer, as " oval, about the size of a radish seed, of a pale color with some dark marks," and "deposited in the summer months in closely set patches of fifty and upward, upon reeds and other aquatic plants growing along running streams." How it was that Mr. Walsh referred these eggs so confidently, and without qualification, to this particular species, it is impossible now to say. Walsh was a most carcful observer and writer, and the accuracy of his conclusions in this instance was never questioned either by myself or others. Yet the eggs of our hellgrammite are, in reality, totally different. In passing up the Mississippi last July, between Bushberg and St. Louis, my attention was attracted to a number of white splashes on the leaves of vines and trees overhanging the water, which splashes looked at a short distance very much like the excrement of some large bird. But upon closer inspection each splash had a more or less regular, circular or oval bulging about the middle; and upon procuring some of the leaves thus laden, a glance sufficed to show that each swelling was in reality an egg mass. Within the
the species live three years in this larval condition. Most aquatic larvæ transform to the pupa state within the water, but this larva quits the water when full fed, as do the others of the same family, and crawls about for days seeking a place wherein to transform. We find, therefore, that Nature has abundantly fitted it for living in both elements, by giving it, first, two rows of nine breathing holes or spiracles, placed in the usual way along the sides of the body, which enable it to breathe out of the water ;* and, secondly, two sets of nine gills or branchio, in the shape of lateral slightly hairy filaments which enable it to breathe in the water. Fig. 3-Supposed These gills or respiatory filaments are placed just below the spiracles, one on each side of each abdominal joint, except the ninth, and one on the terminal sub joint. Besides these lateral filament here is, ventrally, a pair of rust-brown spongy masses of short fibers, one on each side of joints $4-10$, and a somewhat simi lar central patch on the terminal joint and sub-joint. These have been regarded a accessory gills, but they probably assis the creature in adhering to the surface of tones at the bottom of swift-flowing waters. The lateral filaments assist in swimming, and the tip of the body is pro vided with a pair of curved double hooks, which assist in climbing, or in moving backward. The newly hatched larva is almost colorless, and has the structura characters of the full-grown individuals, except that the legs and the branchial fila ments are relatively longer, and the body of more uniform diameter. The sponge like ventral masses of fiber are, however obsolete, and the lateral filaments ar smooth and not hairy. In hatching, the young do not gnaw through the vaulted covering, but creep from beneath the sides f the mass, which is somewhat loosened and raised by their pressure. They at once drop from the leaf, and crawl actively, these egg masses, there usually being one to a leaf, and that | made was destroyed with the Walsh cabinet in the Chicago \mid with tails hoisted in the air, over whatever surface they may on the upper side, but sometimes three or four, and in one fire; but I have a clear recollection of them, and am of fall upon. It is doubtless their habit to drop at once to the instance eight-five on the upper and three on the lower sur face. They were found alike on cottonwood, sycamore, elm, and grape vine, but in every instance on leaves over-hanging the water, thus indicating that they belonged to some aquatic animal, and that the leaf was but a temporaryplace of attachment. The mass is either broadly oval or circular in circumference, flat on the attached side, and plano-convex on the exposed side. It averages 21 millimeters ($5_{5}^{4} \mathrm{inch}$) in length, and is covered with a white or cream-colored albuminou secretion, which is generally splashed around it on the lea or other object of attachment.
Each mass contains from two to three thousand eggs, the outer layer forming a compact arch, the eggs placed side by side with the anterior ends inside, and the hind ends showing like so many faint dots through the white covering. Those of the peripheral row lie flat upon the object of attachment, and the others gradually diverge at their outer or hind ends, so that those in the center of the arch are at right angles to said object. Beneath thi vaulted layer the others are packed on a plane with the object, those in contact with it arranged in concentric rows, the rest packed in ir regularly. Each egg is $\frac{1}{20}$ inch long, about one third a wide, ellipsoidal, translucent sordid white in color, and with a very delicate shell and each is surrounded and separated from its neighbors by a thin lining of the same white albuminous substance which covers the whole. Before hatching, the color of the eggs deepens into fuliginous, and contrasts more strongly with the intervening white. Now the nature of these eggs not only puzzled myself but every prominent entomologist in the country to whom I referred them. The eggs of all the larger water beetles are known and described, and those of our hellgrammite were also supposed to be. There is a large water bug (belostoma grandis), but these eggs were evidently not heteropterous. No dipterous insect was large enough to produce them, und the hymenoptera, lepidoptera, and orthop-
are out of the question. In fact, Walsh's blunde threw me off the track, and I had to patiently await devel pment. Presently, to my great joy, the young began of corydalus in all its details, I at once recognized this species in my young curiosities. For the first time it struck me that Walsh had made a mistake. An examination of th contents of the abdomen of a gravid hellgrammite in $m y$ cabinet at once settled the question, and made it manifes that the eggs that had just hatched belonged, without any question, to this gigantic fly
As to the nature of the eggs that have hitherto been mis taken for them, and which are represented in Fig. 3, we can only surmise. The

Fig. 1.-HELLGRAMMITE:- a, full grown larva; b, pupa; c, male fly; d, head of female fly. the opinion that they belong to the large water bug (belostoma grandis), the eggs of which are still undescribed.
The full grown larva of our hellgrammite is well known to fishermen, who, in this part of the country, call it a "crawler," and esteem it as bait. It measures from three and a half to four inches in length, is of a dark brown color varie gated with light brown, the abdominal joints being tough and leathery,

nlarged ; a, newly hat waterand sink to the bottom, where they can anchor by means of the anal hooks, or find lodgment under some stone or rock. In an aquarium, in which I endeavored to rear and study them, they would float readily, with the body curved in the water and the head bent so as to rest at the surface They also swam readily by sudden jerks of the body, es pecially by striking the abdomen beneath, very much re mbling the actions of the conmon mosquito wriggler in lescending, but ascending head foremost, more like the pupa of that species. They did not seem to need to rise for air, and would congre rate most at the bottom of the aquarium, and under such tones as were placed there in.

They none of them could be made to survive more than three days in such standing water, and the necessity of resh running water to their well-being will always rende difficult the study of the in ect in its infancy.
After leaving the water about the beginning of June this larva travels, in the night ime, sometimes to compara ively great distances, hav ing been found nearly a hun dred feet from its former hab itat.
Mr. Walsh mentions a mos curious incident in connec ion with its larval wande ng, which I quote in full:
"A most respectable man, who keeps the toll bridge polished. Though this larva can live for some time out of insect is very abundant, informed me that on several occa water, even when young, yet until it attains its growth it is $\begin{aligned} & \text { sions its larve had fallen down one of his chimneys. His } \\ & \text { idea was that they must have bred there, but that, of course }\end{aligned}$ strictly aquatic, abounding most in rapid-flowing streams, 1 is out of the question. The statement was confirmed by and especially such as have a rocky bottom, upon which it his wife, and I have no doubt of its truth. In 1863, I threw crawls slowly about, feeding upon other aquatic insects. Mr. J. H. Comstock, of Cornell University, who has been making some interesting anatomical studies on this insect, generally finds it in the most rapid portions of the streams bout Ithaca where it dwells mostly under stones. He has captured numbers by turning over large stones, and allow ing the current to wash the larva into a dip net; and he is a larva of this insect into the Mississippi to examine into its customary mode of progressing in the water, which, a I found, was by crawling along the bottom, not by swim up the stump of a large white elm, which was stripped of its bark, and as smooth as any carpenter could have planed it. The stump was three feet high and upright, and when
*Mr. Comstock has found an additional pair of rudimentary spiracles on the hind part of a prominent fold between the mess and metathoracic joints.
it had reached the top it commencel descending on the opposite side; but, after a while, lost its foothold and fell into
the wateragain. The pair of two-clawed appendages at the the water again. The pair of two-clawed appendages at the
tail are used with much effect to assist it in climbing. The tail are used with much effect to assist it in climbing. The
building which it must have climbed to reach the chimney, down which it is stated to have fallen, was only a low, one story wooden one."
This larva can pinch with its formidable-looking jaws but not forcibly enough to draw blood. In preparing for the pupa state, it burrows into the earth, where it forms an oval cell; or it hides under some large stone, piece of wood, or other substance. Here, in about two weeks, it casts its tough larval integument and assumes the pupa form, lying in a curved position in its cell, with the head, wing-pads and legs defiexed on the breast. The color is yellow, with traces of the brown mottlings of the larva and of the latera filaments. The spiracles are more conspicuous, and the upper jaws stronger than in the larva, and olive green. The pupa state lasts but a few days, and the perfect insect issues during the month of July. It is nocturnal in habit, and hides, for the most part, in obscure places during the day. It is sluggish at this time, and, if approached, will drop sooner than fly, or raise its head and abdomen and open its jaws menacingly.
The sexes differ greatly in this perfect state. The male is remarkable for having his upper jaws-which in the female are normal and fitted for biting-prolonged into in curved, prehensile appendages of the form of a grain cradle finger, and smooth and cylindrical, except at the tips, which are pointed, and minutely notched. As I have shown in my 5th report, there is no perceptible sexual difference in larva or pupa, unless it is, as stated by Haldeman, in the rather larger size of the jaws of the male. This feature cannot however, be relied on. This similarity of the sexes, espe cially in the pupa, is the more remarkable that in the imago state they differ so greatly. The subsequent modification of the male jaws is assumed at the last molt; and if the jaws of a male pupa be dissected, the future finger-like jaws will be glove pushed into a thimble," as Mr. "wrinkled finger of This modification in the male is evidently to enable him to embrace the soft body of the fcmale, as it cannot well have any other use. The body of the hellgrammite is soft, and were the jaws of the male horny, and armed with teeth, in securing the female they would injure her, and thus defeat rather than aid procreation. In the large stag beetle or "buck-bug" (buruhtus elaphtus, Linn.), on the contrary, where both sexes have very hard, horny bodies, the upper jaws in the male are greatly prolonged, but very stout, and armed with sharp prongs, the better to enable him to seize the female.

In these two cases we see how wonderfully the homolo gous organs have been modified in opposite directions to ac complish the same end. We find in Nature innumerable such curious contrivances and modifications, which at once excite our wonder and admiration. To quote Mr. Walsh's own eloquent words: "In so claborate and diversified a manner does Nature adapt ber plans and patterns to the ever varying conditions of animated existence; and with such consummate care has she provided that the great fundamental law shall everywhere be carried out: 'Increase and multiply and replenish the carth.
It is worthy of remark that in both these large insects, in which the male upper jaws are so modified, this sex is far more common than the other. It is probably owing to the fact that the female seldom wanders away from her breeding place, and is, therefore, less often seen than her more rest less and adventurous mate.

The Allen Governor.

The Allen governor, an extended illustrated description of which we published some time ago, is mecting, we are gratified to learn, with the substantial success to which, through its many merits, it is justly entitled. Over 2,000 of these governors are now in operation in this country and abroad, and the demand is constantly increasing. The manufacturers exhibit a series of testimonials, from those who have the machine in use, on all sorts of engines and under a great variety of conditions; and there seems to be but one opinion as to its great sensitiveness and gencral efficacy. We see from an advertisement in another column that agent are desired for the sale of the governor.

On the Estimation of Alum in Bread.

For a long time past the old Normandy or soda process for the estimation of alum in bread, has been condemned on account of the great difficulty experienced in re-dissolving the aluminic hydrate or phosphate, after its precipitation together with tri-calcic phosphate, etc. This has led to th production of several processes, most of which are very complicated. By a slight modification in the usual method of procedure, the Normandy method can be rendered as accurate in its results as any of those which have replaced it. This consists in adding the boiling acid solution of the charred bread to a boiling solution of sodic hydrate, contain ing a large excess. I procced as follows: 1,000 grains of bread are burnt down to a small bulk, powdered with about 100 grain measures of hydric chloride, and warmed for a few minutes; about two ounces of water are then added, boiled for five minutes, filtered, etc. A solution containing about 250 grains of pure sodic hydrate is made in a very little water; and to this solution, when borling, is very cautiously added the boiling acid solution of the charred bread, the
whole botled for a few minutes, filtered, and washed. The
trate, after the addition of a few drops of a concentrated ydric chloride, and subsequently rendered just alkaline with ammonic hydrate and boiled. The precipitate is col lected, washed, and weighed as aluminic phosphate
" To test the accuracy of this method, I had four loaves of bread made in my kitchen, one with no alum, the other with varying quantities. Care was taken to leave as little possible of the dough adhering to the sides of the vesse in which it was made, so that each loaf contained, practi
ally, all the alum that was dissolved in the water with which it was made. The loaves were weighed when on day old, and 1,000 grains taken of each

Weight of loaf.	Grains of alum putin.	Weight of Al. PO^{4} from 1,000 grains.	$=\begin{gathered} \text { grains of alum } \\ \text { in loaf. } \end{gathered}$
1... 2 lbs.	0	0.07 grains.	$3 \cdot 50$
2.. 11 ${ }^{\frac{1}{2} \mathrm{lbs} \text {. }}$	10	0.32 grains.	$12 \cdot 39$
3.. $2^{\text {l }}$ lbs.	20	0.46 grains.	$23 \cdot 80$
4.. $2 \frac{1}{4} \mathrm{lbs}$.	40	0.76 grains.	44:20

It will be seen that the method leaves nothing to be dered in point of accuracy, and will favorably compare with any other in respect to simplicity.

Since devising the above process, I have been informed by Mr. Heisch that he, and he thinks others, have for many years applied the same principle (namely, the addition of the acid solution to an excess of boiling alkali) to the separation of aluminic hydrate from other gelatinous precipitates, hav ing found it impossible completely to re-dissolve the alu minic hydrate by any amount of sodic hydrate if it wer

Mount Carmel, 111 , Destroyed by a Tornado

The town of Mount Carmel, Ill., was visited on the 4th stant by a terrible tornado, which laid nearly the entir place in ruins. About 20 business houses and 100 residence were either destroyed or badly damaged by the fury of the gale, and by the fires which broke out at various points. The storm came from the southwest, and, from its track, seems to have been a cyclone traveling at an estimated velocity of 150 miles per hour. During its prevalence, the air was filled with flying roofs, lumber, clothing, etc., som of the débris being carried miles away. Thirteen persons are eported as killed, many others injured, and some seventy amilies were rendered homeless. The loss of property is aid to amount to nearly $\$ 500,000$. No warning whateve as afforded of the approach of the storm. It seems to hav truck the town and to have passed over it within two min tes, preceding a heavy rainfall.
Mount Carmel has about 3,000 residents, and her industrie were largely mechanical. The Scientific American ha ll of whom we have the heartiest sympathy

The Meeting of the American Association for the ment of Science.
The twenty-sixth mecting of the American Association fo he Advancement of Science is to be held at Nashville, Tenn. n August 29. Sessions will take place in the Capitol pecial arrangements are being made for decreased railroad fares, etc., and for the accommodation of members in th city. The permanentsubsections of chemistry, microscopy and anthropology are to be continued, and the co-operation of students of these sciences is requested. The Entomolog ical Club will meet on the day preceding the meeting of the ssociation.

inventions Patented in England by Americans

 From May 15 to May 24,1877 , inclusive. Book.-J. Clemens, Harttord, ConnBottie stopper.-N. Thompson (of Brooklyn, N. Y.), London, England Car Coupling.-E. Miller, New York city.
LaMP.-J. H. Lewars, Philadelphia, Pa Lamp.-J. H. Lewars, Philadelphia, Pa.
Lamp.-N.L. Rigby et al., Winfield, Kan.
Metal Cartrige Shells.-J. H. Bullard, Sprinffeld, Mass
Motor for Rock Drilis. etc.-E. S. Winchester et al, Boston, Mass Panamenting glass, etc.-S. M. Adams, New York cit Paper box, etc.-E. B. Beecher, Westville, Conn.
Paring Frutr, etc.- W. H. Goodehild et al., New York city Portable boat.-C. A. Fenner, Mystic River, Conn. Postage Stamp, erc.-J. Sangster etal., Buffalo, N. Y.
REFINING STEEL, ETC.-J. E. Sheran, Boston scissors.-C. M. Meserole, New York city SCREW MACHINERY,-E. Nugent, Brooklyn, N . Screw Wrench, etc.-B. L. Walker. Sing Sing, N. Y Sewer gas Trap.-B. P. Bower et al., Cleveland, Ohio

```
New York city.
```

Splint.-D. Ahl, Newville, Pa.
Torpedo Apparatus.-H. S. Ro
or Horse --J B Nola ross (of Treating Sludge Oil.-W. P. Jenney, Brooklyn, N. Y.

decisions of the courts.

Supreme Court of the United States,

 blake, appellan
aUstin h. smith.
Appeals from the.Circuit Court of the United States for the Eastern Dis
trict of New York.-Decided October term1, 1876.] The patentgranted to Eli W. Blake for a stone breaker, June 15, 1858,
eissued January 9,18666 and extended June 15,187 , is not anticipated by tion of well known mechanical means for the pruppose of crushing ice,",
nd to Hamilton for "crushing and grinding quartz or other substances," and to Hamilto nor "crushing and rinding quartz or other substances,"
hey not containing any of the essential element of Blake's invention.
The substitution of one part of the operating mechanism, of a combina tion the equivalent of that omitted, doess not avoid an infringement.
When an original machine and an improvement upon it are both pat
ented neither patentee can use what does not belong to him without th ented, neither patentee can use what does not belong to him without th
requise anthority from the owner.
qurden complainant was found entited to nominal damages only, th
burden of proof being upon him; and it appearing that the proof was mea

 denies the novelty of the invention, and also the alleged infringement.
The description in the specifation sets forth three things as the essen-
tial characteristics of the machine: Tial characteristics of the machine:
(1.) Two jews within which the stones are to be broken. Their face
 interspace at the top ill be sufficient to receive the stones, and that at the
bottom oonly such as will allow the fragments to escape when broken of
the required size. the required size.
(2.) A revoling shaft driven by steam or other motive power, imparting
to one of the jaw a continual viliratory movenchent, causing it alternately
to approach toward and recede from the other jaw, through a sort and
definitely limited space, so that when astone isput in the movable jaw will
 descend, and, if too large, are rearrested and crushed again, and so on un
tilt the framgents have passed out through the open space at the bottom.
The distance between the jaw is to ebadjustable at pleasure, so that the The distance between the jaws is to be adjustable at pleasure, so that the
stone can be broken of any desired size.
(3.) Alywhelis combined with the revolving shaft and movable jaw
for the purpose of rendering the strain upon the power more equal.
The claim it for-
A combination of a stone-breaking machine of upright converging jaw
ith a revolving shaft and mechanısm imparting a definite recipro move a revolving shaft and mechans of imparting a definite reciprocating jaws from the revolving shaft, the whole being
nd operating as set forth. The combination in a stone-breaking machine of the upright movable
aw with the revolving shaft and flywheel, the whole being and operatin jaw with the
as set forth.
In combin

In combination with the upright converging jaws and revolving shaft imparting detinite limited $\begin{aligned} & \text { vibration to the movable jaw, soorranging the } \\ & \text { jaws that they can be set at different distances from each other at the bot }\end{aligned}$

 a machine esubstantially the same. with the one described in Blake's patcoltt
and that they are fatal to his claim of the requisite novelty of his allesge vention.
The machine for Hobbs \& Brown is for-
Improvements in the application of
Improvements in the application of well known mechanical means for the parpose of crishing ice. * * * The improvements consist in apply
ing a hopper with one diagonal fixed side and two parsile sides to contain
the ice, and compressing the ice by a movable fouth side, the fixed diag the ice, and compressing the ice by a movable fourth side, the fixed diag-
onas side and movily side having within them dental projections cut or
cast on, to operate downward and prevent the ice from rising in the hopcast on, operatesed, and also to enter and split the ice.
The mang ine is operated "by the combinationwith theseparts of a leve There is in this description neither of the ingredients nor the compound of the Biake machine. Every element and the combination are both wont
nh. There is no mention of the converging adjustable jaws, of the re
olving shaft, nor of the flywheel. The diffrencesare as marked in the
mode of operation mode of operation as in the structural elements of the machine.
The Hobbs Brown machine does its work hy the downard and
HTweepino movement of the jaw and the grasping und splitting by the teeth
 the process to which it is subjected.
The Blake machine performmititf functions by the short, regular, and un
varying vibrations of the smooth-faced adjustable jaw driven without in arying vibrations of the smooth-faced adjustable jaw driven without in-
sermission by the revolving shaft.
It is obvious that the Hobbs and Brown machine could not be applied
with effect to the purpose of breaking stones without essential changes of with effect to the purpose of breaking stones without essential changes of
principe and details.
Hamilton's, maine was "for crushing and grinding quartz or othe In the specification annexed to his original patent, he says:
My invention consist in the use of a cylindrical nut or pestle in a simi
larly formed basin, the pestle haying a partial rotary and crushing motion

 a joint, 2 , to a pitman, passing to a a crank, eccentric, or other euitable
mechanical contrivance to give the arm, E , ant oscilating movement, and
the pestiel a partial rotary motion on its shatt, C . Thue claim of this patent is for-
The means herein described and shown for crnshing and grinding metal
lic ores, consisting of the cylindirical peste, a, provided with prootece in its
upper part to crack the lumps of ore and set a shaft, C, on which it has a
 also provideed
as specifed.
The second patent is declared to-
Consist in providing means for keeping the pratle down with sufficient
force to pulverize the material operated on, and also to prevent the pestle force to pulverize the material operated on, atd also to prevent the pestle
from grinding too finely i.e., to furnish material for simply yracking the
ore or other material into emall lurn of of any desired size instead of grindore or other material into small liunpls of any desired size instead of grind
ing the same to a powder, thereby daptang the machine to different char
acters of metalilic ores or other substances. We e have here no reflex or embodiment of either of the ideas that found
expression in the Blake machine. The conver ing jaws, the revolving
shaft, and the fiywheel are all wanting, as in the Hobss \& Brown machine. shaft, and the fiymheel are all wanting, as in the Hobbs \& Brown machine.
Instean, there wa cylindrical nut or pestle, having a partial rotary nind
orushing motion communicated to it by means of a lever attached thereto. crushing motion communicated to it by means of a lerre attached thereto.
The pestle rotates on a central axis within an eccentric concave. The
work is doneby this pestle. There is rithing of the vibratory motion of a The difterence is not that of mere mechanicial, equivine Buts. In is radical
and goest to the essence of the organisms. These considerations are so ob-
vious that further remarks non the subject are onncer vious that further remarks npon the subject are unnecessary.
The proofs show that but two of theHamilton machines were ever made.
Practicall the invention was abandoned.
This brings us to the question of infringement. This brings us to the question of infringement.
There are numerous points of similarit, and, indeed, of identity, in the respene are 's machine, which are not controverted. It it iforbreaking stone.
It has two upright jaws for this purpose, one fixed and the other movable. The jaws converge. The breaking is effected by the convergence. The
movable jaw alternately nproches toward and recedes from the fixed
one. This movement is prodnced by a short and powerfulvibratorymotion me. This movement is grovinceed by a short and powerfulvibratorye fixited
onem
communicated by arevorving shaft with a flywheel upon it. There is an
opening at the upper end of the jaws where the stones are received, and open below where the thar of dische jarged
The only point of yiversity insited
The only point of diversity insisted upon by the respondents is that tho
ibratory movement in the Blake machine is limited and unvarying, while
in the machine of the appellants it is not of this invariable character. in the machine of the appellants it is not of this invariable character.
In the Blake machine the movable jaw receives itt movement from the
revolving shatt through iron rods and levercin Inespondents machino
it is communicated from the revolving shaft through a conflined column of it is communicated from the revolving shaft through a conflned column o
water.
In the appellant's model the revolving shaft is not shown. In their ma
chine it works the plunger of the pump from which the water is conveyed

 What is so employed in the appellant's machine is the obvious and exaci
cquivalent of what Is so dispensed with in the Blake machine. The liability
of the packed joint to leakage is a serious obection to sach use of water
Any considerable leakace would stop the machine. It could not be used
 not escape from a safety val
The Blake machine has a
cheapness of its equivalents.

