Cummanications.

The Undulatory Theory of Light

To the Editor of the Scientific American:
Permit me to submit the following for the purpose of reconciling the undulatory or wave theory of light to that of the straight-line theory of Sir Isaac Newton.
Let the inner circle represent the earth, the outer circle the exterior surface of the earth'satmosphere, and the inner lines the lines of temperature of the atmosphere. An observer, standing on the earth at A, at the moment when that portion of the earth was nearest to the sun, would notice that light travels in a straight line. An observer at B would witness

the undulatory or the wave motion of the light passing in an oblique direction through the various degrees of temperature of the earth's atmosphere. A light at D would travel in a straight line to G; but it would be seen traveling in waves, if an observer were at E or at F. In like manner, sound would travel in waves from E to F, but in straight lines from D to G, and in waves from D to F, D to E. It seems to me that both theories are correct. One of the two may be the general rule, and the other the exception.
Montreal, P. Q. Dugald Macdonald

Steam Economy Computations.

To the Editor of the Scientific American
Your correspondent of Salem, Ohio, speaks in your issue of May 26 of "the proper allowance for clearance and compression "in steam engine cylinders. If the allowance re ferred to is for securing the highest percentage of useful effect from the steam used, the method indicated for making that allowance differs from at least one authority, which is regarded by many as the very highest on the subject of steam engineering, namely, Rankine "On the Steam Engine." On page 420 of this work, it says: "In order to represent the most advantageous adjustment of the compression, the quan tity of steam confined or cushioned is just sufficient to fill
the clearance at the initial pressure." No demonstration of this is given in the work, as applying directly to this problem; but from principles set forth in the chapter. it can readily be shown to be correct. It may also be made plain by the aid of diagrams, Figs. 1 and 2. Let O E, Fig. 1, represent the atmospheric pressure, OF the absolute pressure of admission, G C the stroke of the piston, and E G the clear ance, such that, if $G C$ is the volume of the cylinder, $E G$ is
the volume of the clearance: A will then be the initial posithe volume of the clearance: A will the of the piston, B the point of cut-off, B H C the curve of tion of the piston, B the point of cut-off, B H C the curve of
expansion, and A D the curve of compression. The indicaexpansion, and A D the curve of com
tor diagram will then be A B C D A.
Many ascume the curve, B H C, to be a common hyperbola, with 0 F and OK as asymptotes; but both the theoretical and actual curves differ considerably from it. But whatever it be. it is evident that the operations going on in describing

BC are simply repeated, in the reverse order, with a less quantity of steam, in D A. From this it appears that any horizontal line, $L N$, is cut by the curve日 in such a manner that FA:FB::LM:LN::ED:EC, etc.; or we may put it AB:FB:: MN:LN, etc.
Now if the piston could start from E F, the engine would virtually have no clearance; and the indicator card would be F B C E F. All engineers would say that this diagram has no loss due to clearance. But when the piston starts from A G,
the diagram is A B C G A, the compression being suppressed, and the clearance supposed to be AFE G. The samesteam is used as before; but the work done is less than before, in proportion to the decrease, AFE G, of card area. In other words, a diagram indicating no loss due to clearance should
have its back line stand in the same relation to the expansion curve as EF does to B C; and A G is not thus conditioned. But the above proportions show that A D would be thus con ditioned, if A D and B C could be so modified as to make A D vertical, and preserve the horizontal secants, MN. On another set of right-angled axes, we may do this by laying off A B, M N, etc., as indicated in Fig. 2: when we get card shorter, but the same in kind exactly, as F B C E, Fig 1, already shown to be free from clearance loss. Hence, when an engine must have clearance, it can only be com pensated for by cushioning in such a manner that the termi nal pressure of compression equals the initial admission pressure. The above discussion supposes that the expansion is carried to C ; but if the release occurs at H , there will be a loss, H C I, due to earlier exhaust. If the release line, H I, could be made parallel to D M, the corresponding linc in Fig. 2 would be vertical, giving the same kind of a diagram in Fig. 2 as E F B HI E, Fig. 1, and as good as is obtainable from an engine without clearance and a square release line.
In designing common D slide valves of engines, the clear ance, A F, should be known, so that the point, D, may be found; G D being greater, evidently, as A F is greater. The practical effect of giving large clearance, and hence carly cushioning, is to increase the inside lap of valve, increase the angular advance of eccentric, and increase the expansion by making the cut-off earlier. With a clearance of a tenth or twelfth of the cylinder volume, the cut-off may be brought back to half-stroke with all the other points favorably con back to hal
ditioned.
S. W. Robingon,

School of Mechanical Engineering, Mlinois Industrial University

Fast and Slow Grinding.

John M. Truax, a prominent and practical New England miller, in a recent communication on the above subject writes as follows:
"I have heard and read a great deal about slow and fast grinding, and how to dress and how not to dress a mill, etc. etc. Many good millers have related their experience, and made elaborate arguments to prove their theories, and have done much to enlighten their brethren in the milling science all of which is commendable. But to say who has hit th nail on the head would be hard to tell. If the nail has been hit, who has counted the effect of the blow? To my mind, the reasons given for fast or slow grinding have not been shown. The quantity to be ground must depend upon the texture or density of the stone, the draft, the number and depth of furrows, and the grinding without heating. No more grind ing should be done than can be done without heating. The heating is the stopping spot. The quantity that every mill ought to grind is that quantity that can be ground and not heat, whether it is 5,10 , or 20 bushels per hour. If every miller will observe this as his guide, he will do the best work that he is able to do.
" In speaking of heating, I mean to say that the grain should not be so heated by pressure or rubbing, as will start the juice or essential oils of the grain. If the grainoil is started by friction, that friction produces heat, and thatheat dries and evaporates the grain juice, and the virtue of the flour is impaired. Any amount of cooling will not repair the damage done by heating. The steam that rises from the hot running mill is the vapor from out of the essential oils of the grain, and is lost in the bread. To recommend the grinding of 10 , 15 , or 25 bushels of wheat per hour is bad advice, imprudent. Millers differ in the selection of stones, and differ about their dress and the motion of their mill. One will have one kind and way, and another another kind and way; but whatever way they select, when they go to grinding, their quantity per hour should be that which they can grind and not heat, whether it is $3,5,10$, or 20 bushels per hour. Do not impair the substance for the bulk per hour. Blood heat is as high as can be warranted without impairing the product. It may be an ambition to grind fast, but an old adage is 'hastc makes waste.' If millers are ambitious, let that ambition be applied to the making of a perfect running mill. Sclect the very best buhrs, and put in a thoroughly common-sense dress, a dress that will granulate the wholc kernel as nearly as pos sible. Keep the stones as far apart as possible, and keep the texture or grain of the stones clean. Let this be the miller's ambition. But stop adding to quantity when the mill is at
blood heat, and let the breadmakers and caters have in their blood heat, and let the breadmakers and caters have in their flour all the virtue that Mother Earth has produced.
"One of the great evils in milling is low grinding. and its evil effects are only sccond to those produced by fas grinding. Wheat is composed of two parts-an inner and an outer part. The inner part is meaty, and the outer is a
shuck, or skin, or hull; the meaty is pulverizable, while the hull or covering is a leather-like substance, and has thickness which thickness equals the meshes of No. 14 or 15 bolting cloth. Now, the question arises, how shall the miller grind this compound kernel and clean this leather-like covering, and granulate the inner meat to a proper fineness for bread purposes, and not over-rub or grind to dust a part of the hull? This is the question. And how is wheat being ground all over the world to-day? I need not answer, for all know that heavy grinding has been the order. The lands or faces of one buhr rub the other, or nearly so. So much so that
that portion of the bran which is caught between the face of that portion of the bran which is caught between the face of
the mill near the skirt is more than twice overground, and this overgrinding or rubbing the bran makes a brown dust and blackens the flour. It is like brown paint, and bolts with the flour and goes into the bread
"This is a mistake, and should be avoided. Bran may
make bread, but not the bread millers feel proud of. And to avoid this, millers must run a light mill. Heavy grinding is an evil. It not only powders a portion of the bran and blackens the flour, but grinds at the same time a portion of the kerncl to dust, also destroying its juicy substance; and at the same time the fine ground dust is rubbed into the tex ture of the stone, and the face of the stone becomes glazed and smooth, and of course dull.

Millers, so dress your mill as will enable you to grind the inner part of the kernel to flour, and avoid making brown paint dust from the bran. A miller that runs a heavy mill is like to look for a medicine to doctor his flour. Medicine for flour is a poer substitute for a good diress and clean stones. Bread-caters much prefer the full life of the cercals, not a doctored article. Grain once killed by overgrinding and heating will not be brought to life by the best medi cines. All the flour doctors in the world cannot repair the life that is first produced in natural growth. They may life that is first produced in natural growth. They may
help a deadened flour, but a whole reparation is impossible. help a deadened flour, but a whole reparation is impossible.
Throw away the dregs! Let us have a pure flour."-Mill Throw
Stone.

Producti n of Salt in England

Of the many mincrals raised in the kingdom few play a more important part, or are less noticed, than that which is found in every houschold throughout the land-salt. It is an essential that we could not dispense with, not only as a culinary ingredient, but in many other ways. Our re ources, too, are such that they have not only been fully equal to the wants of our own population, but we have been able to spare yearly from 200,000 to 250,000 tons to other countries that are not so favored as ourselve3. There are districts in many parts of the country where salt c culd be met with were such necessary, for, some time since, whilst boring near Middlesborough, in the expectation of mecting with the coal measures, rock salt was met with at a depth of 1,800 feet. At the Moira Collicry, near Ashby-de-la-Zouch, in Leicestershire, at a depth of 593 feet, salt water, beauti fully clear, trickles down from the fissures where the coal is being worked. The brine is taken to Ashby, and has bcen in good repute for rheumatic and other complaints. As to he origin of salt, there are many theorics, but it may be stated that in nearly all substances, wherever found, it is in the new red sandstone. By many it is believed that the for mations are due to the evaporation of the water from inland alt lakes or parts of the sea severed from the main body of he ocean by volcanic action, the evaporation causing the deposit of the salt held in solution by the sca. Writing more recently on the subject of the great European salt de posits, Mr. T. Ward propounds a rather different theory He considers that the salt deposits owe their origin entirely the elevation of the mountain chains with which they ar o intimately connected, during which small valleys and avines would be cut of from connection with the sea by idges of land, and would form salt lakes and lagoons Cheshire is still the main source from which we draw ou wn supplies, and export to the United States, Russia, and ther countries. There we have had considerable landslip in working it, but there are the red rocks showing kcuper or saliferous marl, with thin beds of limestone, and then 200 et of rock salt. In Worcestershire, at Droitwich and Stoke Prior, the salt is made from brinc alonc. A large proportion of what is made at Norwich, Middlewich, and Winsford, in Cheshire, is sent down the river Weaver. the quantity in 185% having been 772,175 tons, and in 1866 it had increased to $1,118,991$ tons. During the last 20 years, how ever, the increase in the production has been of a mos marked character, whilst the price has gonc down very much. In 1855 the salt raised in the kingdom was $1,094,770$ ons, the average price at the works being about $\$ 6$ per ton In 1875 there was raised $2,316,644$ tons of salt, the price be ing barely $\$ 3.60$ per ton. The value of the salt exported in 1855 was $\$ 1,738,570$, and in 1875 it was only $\$ 860,255$, when our exports were 916,468 tons, or nearly as much as the en ire produce of the kingdom in the former ycar. Our prin cipal customers include the United States, British India, British North America, and Russia. From the figures given it will be scen that nearly 40 per cent of the salt produced in the kingdon is exported to other countries.-Mining Journal.

GADGES.

Since the introduction of special machines and tools designed to produce and reproduce the various parts in quan ities, and of exactly uniform size and shape, the importance of standard gauges has been greatly increased; and in es ablishments where this system is followed, the best of skill nd the greatest of care and watchfulness are necessary to maintain the exact standard. It is ubvious that, when the various parts of a piece of mechanism are made separately in large quantities, and are not assembled until the whole are finished, a slight variation of size or form would soon im pair the fit of the various parts, and therefore the value of the whole system. Now, theoretically, a new tool decreases n size from the moment it commences to perform cutting duty until it is worn out; and the point at which the wear ing-ont process may have arrived at its greatest permissible imit is, under light duty, more of ten determined by the re duction of its size than of the loss of its keenness or other cutting properties. Many firms prescribe a definite permis sible limit of wear to certain tools, such as the one thousandth or two thousandth of an inch, and make two sets of gauges, one of the precise size and the other showing the extreme

