Business and eersonat.

The Charge for Insertion under this head is one Dollar a line for each insertion. If the Notice exceeds four
lines, One Dollar and a Half perline will be charged. Spy Glasses and Telcscopes of all kinds and prices. Lenses for making the same, with full directions for
mounting. Mllustrated priced circular free. McAllister Manufacturing Optician, 49 Nassau St., New York.
Wanted-To purchase a Manufacturing concern, ould take an interest in a business already established Blank Book Back Shaping Machine. Illustrated cir Blank Book Back Shaping Machine. Illustrated cir Electric Gas Lighting Apparatus, applied to public and private buildings. The latest improvements.
Patent Taper Sleeve Fastening and Wooden Pulley Works are now in full operation. Orders solicited. sa factiong
Small Fine Gray Iron Castings a specialty. Warranted
soft and true to patterns. A. Winterburn, 16 and 18 De soft and true to pattern.
Witt St., Albany, N. Y.
Painters, etc., get circular, prices, etc., of New Metallic "Wiping out " Grain
J. Callow, Cleveland, 0 .
Removal.--Fitch \& Meserole, Manufacturers of Elec trieal Apparatus, and Bradley's Patent Naked Wire He hices, have re
mental work.
Silk, Cotton, and Flax Strength Testers, from 1 lb . to 120 lbs . Manu
Paterson, N. J
Territory, on a Useful Household Article,
free. Address Ezra F. Landis, Lancaster, Pa.
Patents at auction. See advertisement, page 36.
More than twelve thousand crank shafts made by
Chester steel Castings Co. now running; 8 years'constant use prove them stronger and more
iron. Sce advertisement. page 366 .
The best Burglar Alarm in the world. Agents wante For sale.-Large lot of Tools in Sewing Machine Man 1factory. Send f
Philadelphia, $\mathbf{P a}$.
Split-Pulleys and Split-Collars of same price, strength and appearance as Whole-Pulleys and Whole-Collars. Philadelphia, Pa.
Fower \& Foot Presses, Ferracute Co., Bridgeton, N. J. Superior Lace Leather, all sizes, cheap. Hooks an Couplings for flat and round Belts. Send for
C. W. Arny, 148 North 3 d St., Philadelphia, Pa.
For Best Presses, Dies, and Fruit Can Tools, Blise \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, Ny
Lead Pipe, Shect Lead. Bar Lead, and Gas Pipe. Nend Lead Pipe, Shect Lead. Bar Lead, and Gas Pipe
for prices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand
athes and Machinery for Polishing and Buffng metals athes and Ma.hinery for Polishing and Butang metals.
Solid Emery Vulcanite Wheels-The Solid Original Emery Wheel - other kinds imitations and inferio Btandard Belting, Packing, and Hose. Buy that only thandard Belting, Packing, and Hose. Buy that only
the best, is the cheapest. New York Belting and Pack
ng Company, 37 and 38 Park Row, N. Y . ag Company, 37 and 38 Park Row, N. Y.
Stcel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free. valuable for strength and durabiltty. Circ
Pittsburgh Steel Casting Co.. Pittsburgh. Pa.
For Solid Wrought iron Beams, etc., see advertise
ent. Address Union Iron Mills, Pittsburgh. Pa., fo ithograph, etc.
Skinner Portable Engine Improved, 2 1-2 to $10 \mathrm{H} . \mathrm{P}$
Yacht and Stationary Engines, 2 to 20 H. P. The bcst or the price. N. W. Twiss, New Haven, Conn
All nervous, exhausting, and painful diseases speedil yield to the curative influences of Pulvermacher's Elec-
tric Belts and Bands They are safe and effective. Book,
with full particulars, mailed free. Address Pulvermacher Galvanic Co , 292 vine st., Cincinnati, Ohio
To Clean Boiler Tubes-Use National Steel Tube Machine Diamonds. J. Dickinson, 64 Nassau St.,N. N. Y D. Frisbie \& Co. manufacture the Friction PulleyEmery Grinders, Emery Wheels, Best and Cheapest. Jardened surfaces planed or turned to order. A Aarded Medal and Dipluma by Centennial Commission. Address
American 'Twist Drill Co., Woonsocket, R.I.

4 4icsterneris
It has been our custom for thirty years past to devo considerabie space to the answering of questions by useful have these labors proved tha he Scientific Americ an ofllce has become the factotum, or headquarters. to which everybody sends, who wants special information upon any particular subject. So large
is the number of our correspondents, so wide the range of their inquiries, so desirous are we to meet their wants and supply correct information, that we are obliged to experienced writers, who have the requisite knowledge or access to the latest and best sources of information. For example, questions relating to steam engines, boil-
ers, boats, locomotives, railways, etc., are considered and ers, boats, locomotives, railways, etc., are considered and
answered by a professional engineer of distinguished ability and extensive practical experience. Inquiries elating to electricity are answered by one of the mo Astronomical queries by a practical astronomer Chemi cal inquiries by one of our most eminent and experienced professors of chemistry; and so on through all the various departments. In this way we are enabled
to answer the thousands of questions and furnish the large mass of information which these correspondence columns present. The large number of questions sent hey pour in upon us from all parts of the world-ren from the mass those that he thinks most likely to be of
general interest to the readers of the Scientiric Amer-
an. These, with the replies, are printed; the remain
der go into the waste basket. Many of the rejected der go into the waste basket. Many of the rejected questions are of a primitive or personal nadure,
hould be answered by mail; in fact, hundreds of correspondents desire a special reply by post, but very few of them are thoughtful enough to inclose so much as a postage stamp. We could in many cases send a brief reply by mail if the writer were to inclose a small fee, a
dollar or more, according to the nature or importance o dolar or more, according to the nature or importance of the case. When we cannot furnish the in
N. A. R. will find directions for browning gun barrels on p . 11, vol. 32. This also answers G. D. on p. 102, vol, 25.-M. L. is informed that a recipe for oot beer is given ou p. 138, yol 31,-A. D. B. is informed that there is no simple rule for the proportions of a screw propeller. He should read the subject up in the
special treatises devoted to it.-O. B. S. does not give ufflcient data as to his boiler.-L. T. F. and many thers will find rules for calculating the horse power of whitening ivory on p. 10, vol. 32 . -M . W. will find direc tions for making hard plaster of Paris on p. 43, vol 34 T. J. McN. should read our article on lightning rod on p. 144, vol. 31.-H. W.S. will find directions for mak ing printers' rollers on p. 283, vol. 31.-M. A. A. will
ind something on cancelling postage stamps on pp. 83 find something on cancelling postage stamps on pp. 83,
135, 266, vol. 36 .-M. F. F. will find directions for reoving freckles on p. 347, vol. 32.-E. R. C. will find directions for mounting chromos on p. 154, vol. $27 .-\mathrm{E}$ able for medical purposes on p. 196. vol. 27.-W. H. C.
J.J. Q., C. A. S.. J. D. H., I. P., W. S., I. K. B., W.L. J.J. Q., C. A. S.. J. D. H., I. P., W. S., I. K. B., W.L
G. N. T., N. T., and others, who ask us to recommen books on industrial and scientifc subjects, should ad
dress the booksellers who advertise in our columns, all of whom are trustworthy firms, for catalogues.
(1) G. A. asks: 1. How thick must a tub of cast steel be to hold $1,000 \mathrm{lbs}$. pressure per squar nch? A. These questions are too indefnite. Th Through 34 inch hole, how many gallons water would
Thill dite be forced out per minute with a pressure of $1,000 \mathrm{lbs}$. per square inch? A. The discharge through the orifice will depend upon its shape and location.
(2) A. J. C. asks: How can I make a pattern by which to cast a cam wheel having upon its outer edge ne above and the other below, the levers having upo ach one a roller which presses upon the outer face of the wheel. thus giving three strokes of the levers fo
each revolution of the wheel. A. Make the outline the cam such that all lines drawn through the cente will be equal.
L. asks: How many lenses, and what sizes and foci, are required to make a camera bscura for copying pictures? A. It requires but on nd it is not material about its size and focus. One inches in d
(4) J. B. H. asks: 1. On. p. 186, vol. 36 (4) J. B. H. asks: 1. On. p. 186, vol. 36
in reply to J. N. A., you say that a horse power to 1 . bs. coal is among the best results. Will you state what
class of boiler will accomplish this result? A. The fils ure represents exceptional results with marine engines having very efficient boilers, and giving a horse powe
with the consumption of 14 or 15 lbs . of steam an hour. I suppose that the heat given up by the condensatio or any given amount of steam would, if all used, evapo And, if true in theory, about how much result in evapo ration can be gotten from the condensation of a given quantity of steam? A. You will find this matter discussed in nearly any modern treatise on the steam en
(5) H. H. F. asks: Is the usc of alum in noderate size, injurious? A. Yes. The presence o (6) E. L. W. asks: 1. Can you inform me (G) re usually made of hard brass. The letters and char dies; but whal, are than stamped out with suitab cutting. 2. Are they treated with hydrochloric acid A. Not that we know of
(7) J. D. E. asks: What are the curves and positions of the lenses of the Huyghenian eyepiece? A.
There are two plano-convex lenses with their plane sides wards the eye. Their aperture is 16 their focal length The fleld lens is of 2 or 3 times longer focus than the eye lens. Their distance apart is one half of the sum of
their focal lengths: that is, if the focus of one is 1 inch
. of the other 2 inches, the distance apart is 11% inches of the other 2 inches, the distance apart is $12 / 2$ inche eye lens is placed between the lenses at che focus of tha be 1 inch, of the other $1 / 3$ inch, etc.
(8) W. J. G. asks: How many lensesand of era to take pictures 4×6 inches? A. It requires achromatic combination of fint and crown glass. The diameter is not material, say 1 inch, with a focal length
of about 8 inches. The smaller the lens, the sharper (9) F. W. G. says: In a very severe thun derstorm last summer, a large brick house here was truck by lightning. An "American District "tele the house. Parties at the house coim that boxes in brought the lightning to the housc. I say that the house would have been struck anyway, and that the wire was a protertion. Who is right? A. It is most proba
that the wire had nothing to do with the matter discharge which would damage the house would, in all
(10) P. M. S. asks: Can you give me some information abcut rosin oil? A. When rosin is distilled, it yields about 74 per cent of liquid distillates. The first
portions are mobile, yellow, and strong smelling, and are known as essence of resin (colophonone). Later in the distillation the viscid fluorescent rosin oil (or pino-
lin) passes over. This body is used in paints, for the
manufacture of printer's ink, in making soap, and as
heap lubricant.
(11) W. E. B. says, in answer to G. S. W., who asked if there is any rule for dividing a circle into 3 , 4 or more equal parts by parallel lines: He will not prob ably find any general rule for this purpose; but 1 find
by calculation that the chord of an arc of $149^{\circ} 16^{\prime} 30^{\prime \prime}$ cuts off a segment whose area is about in excess one third the area of the circle, and the chord of an arc of $132^{\circ} 21^{\prime}$ cuts off a segment whose area is about si ${ }^{2}$ or in excess of one fourth the area c the circle. These
values are probably sufficiently accurate for all practical oblems.
(12) A. E. F.-A good recipe for silver iting fluid is the following: Mix 1 oz. finest block tin in shavings with 2 ozs. mercury till they become per ottle with enough gum water to give proper conist bottle with enough gum water to give proper consist-
ence. The writing, when dry, will have the appearance
(13) H. S. asks: How is manganese ob ained from the ore? A. Metallic manganese may be by tis, when free from carbon and silicon, a soft, easily tarnishable metal, resembling iron somewhat in appear-
ance; and it has a specific gravity of about 7 :2. It sells in small thas a specific gravity of about 72 . It selle, in small quantities for about $\$ 1$ per lb. Manganese has This occurs in Nature (in a nearly pure form) in the ineral pyrolusite, which, broken into lumps or powde is commercially known as black oxide of manganese o The black oxide is worth from $\$ 10$ to $\$ 20 \mathrm{a}$ ton in New York. See p. 226, vol. 35.
(14) L. G. asks: 1. What is the greatest force, as expressed in horse power, which has as yet
been obtained by means of electricity, and please tell me what is the name of the inventor A. Professor
Page, as long ago as 1850, constructed electro-magnetic engines of between 4 and 5 horse power. 2. As this engines working separateiy and giving the maximum power each is capable of, and working together on the same driving beam, obtain as great a power as desired, costing less and wilh less weight than from a steam en
gine of same forces A. No system of magnetic engines ast been found as economical as the steam engine
(15) J. E. S.-Your relay for submarine tel graphy might be used on lines of moderate length; bu
(16) F. S. says: 1. I wish to construct a te hone. Can 1 be prevented from making and using nake one for experiment, but could be prevented from sing it after its successful working. 2. What number together about 190 feet of No. 24 copper wire will an swer for short circuits. 3. How and of what material
hould the sounding plate be made? A. It can be mad of thin iron. A very good description of the apparat ric Te found in Prescott's "Electricity and the Elec tric Telegraph." 4. Do you think a good mechanic
could construct one that would work well from these di tions? A. Yes
(17) J. F. says: For gumming envelopes I ase mucilage composed of 2 ozs. dextrin, 1 oz. acetic
acic, 1 oz. alcohol, 5 ozz. water. I am not satisfled with t . The adhesiveness is not suffcient. It is more adheive without the alcohol. A. A strong aqueous solution dhesive and cheap mucilage. Alcohol, or rather dilu ted wine spirit, is usually employed as the solvent whe he mucilage is to be used for gumming envelopes, post ge stamps, etc., in order to acthe the drying, and The strong aqueous solution is more adhesive than that prepared with alcohol, for thc reason that it contains a greater proportion of the gum. To prepare this, add an excess of powdered dextrin to boiling water. stir for
ooment or two, allow to cool and settle, and strain th iquid through a fine cloth. The addition of a little powdered sugar increases the glossiness of the dried
gum, without interfering greatly with its adhesiveness. The sugar should be dissolved in the water before the extrin is added.
(18) F. B. says: On p. 187, vol. 36, C. V. W. ays that $\frac{3 / 2 \text { chord }^{2}+\text { height }^{2}}{2 \text { heights }}=$ radius of the circle. Can this be true? I have tried it several times with a raduated beam compass, but cannot make it so. A. The ine applying it.
(19) J. H. F. says:I bought a small engine ominally of 43/2 horse power. The dimensions are as fol lows: Steam chest 4×5 inches, cylinder $8 \% 2 \times 43 /$ inches troke 7 inches, upright boiler is about 6 feet high, with water space 4 feet 5 inches, and 2 feet in diameter. I hav
made several attempts to run a corn mill, and have tried 12,16 , and 18 inch burrs; it will pull them if they are ed sparingly, but if fed in the ordinary manner the stop the engine. If running fast, pulling the mill, the piston rod or the rod running fromeccentric to slide valve bend s and quivers from top to bottom. This rod has no knuckle joint, but is made thin in one place to give it the right motion. I notice that running at gond
speed with 60 lbs . of steam a man can stop it by simply speed with 60 lbs . of steam a man can stop it by simply
bearing his weight against the pulley. Please tell me what power the dimensions indicate, and give me you opinion in regard to the unsatisfactory manner in which it works. A. From your account the engine does not eem to be very well constructed. We advise you to test it with a friction brake, and see how much power
(20) F. L. says: 1. How should I treat eak in a flue of an upright boiler? When I let the wa
er out, by the blow-off cock, I can hear the air escape out of the flue. When I have a fire under the boiler
he flue does not leak at all; but as soon as the fire is out the flue does not leak at all; but as soon as the fire is out
the leak begins again. A. Such a leak can doubtless be made tight by caulking, if a slight expansion is suffcient to stop it. 2. What is the best way to reft a pair of
safety valve seats, the valves on which do not set very
closely, and stick somewhat, after being opened by a
high head of steam? A. You can grind them in with
oil and brickdust oil and brickdust or emery. 3. To have two safety at the same weight, or should one be a little heavier than the other, say one for 60 lbs . and the other for 70 lbs. 9
A. If each is large enough to relieve the boiler, they A. knocking in steam pipes? A. It is caused by water in the pipe, or condensation and sudden changes of temhoies in the outside shell of the boiler at the level of the crown sheet, so as to be able to clean the crown and flues with a hose? A. This arrangement is sometimes adopted.
Will the rubber waterproof garments that ladies wear on damp days do to make a balloon? A. It might be 2. How is this rubber material to experiment, it would be better to obtain samples from manufacturers than to attempt to make it.
(21) J. K. W. asks: What is the trouble with a double acting pump, which, in pumping from the (about 20 revolutions per minute) will work; but when he speed is increased to 100 revolutions, it seems to drop the water and the speed increases to 500 or 600 revolutions per minute, and it does not pump. A. The
trouble is probably caused by the collection of air in the pipe.
valve.
How can I burn naphtha in a boiler furnace? A. We believe that there are special devices in the market for this purpose.
sonal column.
(22) J. E. asks: Can you inform me of any varnish for insulating No. 36 copper wire. I have used A. You cannot hope alcohol, but it would not answer. such fine wire by merely varnishing it. The wire must be covcred with silk, cotton, or some other similar insulator. On cotton or silk covered wire, a strong solu-
tion of shellac gives very good results, and is very commonly employed. Fused paraffn waxis sometimes used, nd is one of the best of insulato
(23) C. G. L. says: You advise the use of a ators tothe steam-heating boilers. A trap of any kind is worse than useless, if the apparatus is for heating only, and all the radiators are above the water line of the boiler. It is only necessary that the pipes be of suitable size, and that all pipes and radiators shall incline
toward thereturn pipe, which enters the boiler below

the water line. The water must stand at the same level in the boiler and return pipes, returning as fast as the steam condensed. I have known a boiler to be run for
several months without the addition of any water: and in well constructed apparatus, the loss would be but a few gallons per month. The cracking and thumping often complained of is probablycaused by water remainraising any depressions in the pipe, where the water is trapped, or by taking the water from such depressions he I. Nipe by a drip.
(24) J. N. says: 1. I wish to make a boiler which when finished will be exactly 30 inches high by 14 inches diameter. I intend making it of $1 / 1 /$ inch
wrought iron, and the boiler heads of $1 / 2$ inch cast iron. wrought iron, and the boiler heads of $1 / 2$ inch cast iron. small engine, size $3 \times 1 \%$ inches, to do light work? A.
We advise you to make the heads of wruught iron. 2. How much steam can I carry? A. You can carry about 30 lbs. per square inch.
Whatis the best way to clean the rust off iron and polish it afterward A. If the work is very rusty, you
can use olland brickdust or emery, and fnish with a
(25) J. P. G. says: 1. I would like to know the difference between phosphorus and amorphous phosmodifled form-an allotropic condition-of the ordinary vitreous variety. Their chemical nature is identical, though they differ greatly in their physical prop-
erties, This difference is believed to be due to an altererties. This difference is believed to be due to an alter-
ation in the molecular grouping. This property is known asallotropism, a word which means simply "difconflned to phosphorusalone, but of allotropss a mop erty of all the elements. Carbon in one condition gives is the brilliant, transparent, and nearly incombustible, diamond; in another, the black, opaque, easily inflamnable charcoal or coke, while in another we have the metal-like graphite. The red phosphorus is usually obor nearly to, its point of vaporization in an atmosphere
of carbonic acid or hydrogen. It is more passive or inert than-white phosphorus; it is heavier, of a brick-red color, andis not phosphorescent. It does not oxidize at ordinary temperatures, and requires a much greater degree of heat for its fusion than the waxy or vitreous va-
riety. into which it may be directly converted by heating A. Both active and passive phosphorus are used in the . Both active and passive phosphorus are used in the
preparation of matches; but the latter, although more costly, is coming into more general use in parlor or safety matches and the like, in which it is mixed with safetg matches and the like, in which it is mixed with
chlorate of potash to cause it to ignite readily by fric
tion. When once ignited, it burns as readily as the vit-
reous variety.
(26) W. P. C. asks: Can you tell me of any substance soluble in water, for which sulphuric acia
(diluted) has a stronger aflnity than for iron, lead, tin, and zinc A. Your questions are rather indefnite. of the alkalies-soda, potassa, ammonia, etc.-also some of the alkaline earths, as lime, baryta or strontia, are for sulphuric acid than iron. 2. Also any substances oluble in water for which sulphuric acid has less affin ity than for copper? A. If we understand you, most the metallic sulphates are soluble in water, and are no ecomposed by strong oil of vitriol. If you mean me allic bodies, there are none that we know of that dis solve in water without decomposing it and combinin
with one of its elements to form bases Platinum, sil er, gold, lead, mercury, etc., are not attacked by sul phuric acid in the cold, the former not even by the hot
cid. 3. Can you tell me where I can find a table showing the relative affinities of the principal metals, acid and alkalies? A. You will find such tables in most good
(27) M. E. says: You once published a re cipe for milk paint which contains considerable lime.
have used it on my walls and find it very satisfactor but knowing nothing of the effect that lime has on dif erent coloring, I have been unable to obtain the colors and a brown? A. Use oxide of iron or yellow ocher panish brown withber for the brown. A mixture of ellow. Use Vandyke brown for a strong tone.
(28) W. H. R. asks: How can I make and se a quick bleaching liquor, for bleaching cotton goods which have become yellow from long servicef A. of lime-bleaching powder) in water, allow to settle, and draw of the clear liquid. Rinse the goods in clean water containing about 5 per centof sulphuric acid, and
then pass them slowly through the bleaching solution. They should then be well rinsed in water containing a保的e carbonate of soda. Ir the cloth in the bath. This is the usual method of bleaching in
in and undries.
(29) H. M. S. says: I shook some pieces of litmus in a bottle partly filled with water, until the lat-
ter became of a deep blue color. Corking it up tight, I laced it on a a deep bine color. Corking it up tight, cre several acids. About a fortnight afterwards I ob aerved that it had turned to a yellowish brown color, quite transparent compared to what it was before. gradually to a deep red or carmine on top, and this ex tended upon shaking until the whole liquid was so; and it became opaque again, though of a different color. Can
you explain thisp A. Litmus is very often adulterated you explain thiss A. Litmus is very often adulterated
with lime, plaster, Prussian blue, etc. The action you noted may have been due to these other adulterants, or making the solution
(30) F. S. \&S. ask: What is the best ce ment for filling white metal eigns with A. Try the fol best asphaltum and g.tta percha; stir well together, and then add 1 part of gum shellac in fine powder. It may
be used hot, and mixed with smalt, vermilion, or other be usel hot, and mix
pigment, if desired
(31) B. P. asks: Please give a recipe for making paste to stick bills which are exposed to the
weather? A. Take flour 25 bse., alum in powder 36 lb., ather? A. Take flour 25 los ., alum in powder $1 / 2 \mathrm{lb}$.,
boiling water sufficient quantity. Paste will not very long resist theaction of wet weather, but may be made to do so by giving the bill, after sticking with it, a wash ude lac in naphtha
(32) F. S. C. asks: What will restore faded lack but the color of the wood is gone. A. It will be ne cessary to first remove the shellac. Much of it may be removed with alittlea mmonia water and alcohol; but it
is best toscrape off the last portions, and sandpaper the wood. If the wood is genuine walnut, a little oil will then bring out the color, and it may be finished with n good coat of copal varnish. If the doors are of imitaion walnut, make a solution of $2 \sqrt[1]{2}$ ozs. Vandyke brown water, and add to it about $1 / 4 \mathrm{oz}$. of powdered bichromate of potassa. Stir well together, and when cool strain
through a cloth for use. This will give you an excellent imitation of dark walnut; and when dry, it takes a ood coat of varnish
(33) A. F. H. asks: How can I make a new is गecesssary to take all the old white coat off complete, thersaghly wet the brown coatlefton, and then finish
to thorone ith a new white coa
(34) W. A. H. says: I wear a small compass attached to my watch chain; and in casually look-
ing at it I noticed that it deviated about 90° from north. I also noticed that, when I stood alongside of our safe, the compass pointed directly to the safe. I walked to The stove, and my compass again swerved; but instead of oointing directly to the stove, it pointed diametricaleach otherto exert any combined influsnce. The only difference between the situations is that one lumpof iron was hot and the other cald. Please give vour ex-
planation of this remarkable effect of caloric over the magnetic needle. A. The data given are not explicit enough to enable us to give a satisfactory explanation; but it will probably be found that the pole of the needle nearthe top or same will be the case as regards the stove. The safe or stove, or both, may have become
the inductive action of the earth.
(35) W. S. says, as to the welding of the point of a spindle to the plate on which it rested, while running: We had a parallel case in our mill some years
ago. The borrs were 4 feet diameter, spindle was 10
feet long, 4 inches diameter, of cast iron, with a taper $13 / 2$ inches in diameter. flat: it ran on a steel plate, above which was a collar, about 1 inch thick, fastened securely in the oil pot, which was square and always full of oil.
The motion was observed to be getting slower, and omething was unusual about the running of the burrs The engine was stopped to examine, and it was found that the end of the steel point was perfectly welded to e got out it bed to be heated to a red heat in a blackmith's fire and driven out by punching a hole through the steel plate. The tapering end, however, was loose, and allowed the spindle to revolve when the point
stopped. The pot was full of oil inwhich the point wa stopped. The pot was full of oil in which the point was
running. Had we not seen this, we could hardly have credited it. If the supply of oil were insufficient, and the heating had been caused by want of it, the wonder would depth of 2 inches, it is difficult to account for the phe-
(36) I. B. C. asks: 1. In making a core for Which ectromagnet is soft iron the best? A. Yes. 2 Which m
soft iron
(37) J. M. H. and several others write as ollows: Your answer to query of W.D.S. in regard to carrying the bar of iron is incorrect. The true answer
being 2 feet 3 inches instead of 3 feet, as published No. 8 , versight. A. As our correspondent correctly surmises, the answer was due to an oversight, or perhaps some-
thing of the same character, as Mr. Richard Grant White halls " he the same chy " since the conditions to which answer applies are those in which a weight is shifted on the bar for proper distribution, the bar being supported at the ends, and its own weight disregarded. The numerous corrections that have been sent to us show the
interest with which this column is regarded; and as our only desire is to furnish correct and useful information, e are always grateful to our readers for calling
(38) F. G. W. asks: In making a small en. gine, cylinder $11 / 2$ inches in diameter and of 3 inches
stroke, would gas stop cocksbe sufficient as cut-ofs, or must I have a slide valve? A. If the cocks were nicely itted, they might answer very well.
(39) M. O. S. asks: Do you consider a ro a a cylinder engines If not, what is the differences A. We understand you to ask whether the rotary engin will give out as much power with the consumption of definite amount of steam as a reciprocating engine. In
special cases it may; buton the average, we think not.
(40) S. B. W. asks: What does a first-class nd engineer get a year? When do you think that the me will come when they will stop putting on so much heap help to run engines, and have every engineer ex buildings and hotels where the engineer ble machinery, pipe conections, to tooter, the compensation is proportionately large. We imagine that, including all classes of establishments, the pay of the engineer varies from $\$ 30$ to $\$ 300$ a month, perhaps,
in exceptional cases, being higher. Laws regulating the appointment of engineers may be good in theory; in their practical application, however, they are not alway
(41) S. \& K. say: 1 . We are pumping oil Prom one tank into another. S. says his pump is suck-
ing the oil from the tank. K. claims that the oil comes to the pump by the atmospheric pressure upon the oil in the tank. Is there any such thing as suction in the true
meaning of the word A. What is called suction is due meaning of the word A. What is called suction is due
to atmospheric pressure. See p. 352, vol. 31. 2. Can wou pump as well out of a tank which stands on a level some distance higher? A. When the tank stands above the level of the pump, the pressure forcing the oil into the pump is increased by the weight of the column of
(42) F. W. asks: 1. Will a boiler 4 feet ong, 1 foot in diameter, with flve 2 inch flues through it, put in an arch horizontally, make steam suf-
acient torun an engine, 225×5 inches, at 300 revolutions per minute? A. The boiler will scarcely be large enough. What power will such an engine give with st
lbs. to the square inch? A. See p. 33 , vol. 33 .
(43) H. J. D. says: I inclose a specimen of cale from my boiler. T have used potatoes, petroleum, do as much good as anything. Is there any danger to the iron from sal soda in large quantitiess A. With frequent blowing, you can use considerable amounts of soda safely. 2. Do you consider such scale, in places
nearly $1 / 4$ inch thick, dangerous? A. Scale should no be allowed to collect to the thickness mentioned. 3 Could I keep the boiler clear by using soft water, say or 5 months in the years A. If you can use soft water
occasionally, it will be likely to loosen the scale. From occasionally, it will be likely to loosen the scale. From the greater part from entering the boiler by using a feedwater heater with sediment collector.
(44) J. N. P. says: I fitted up two baromethe other. Would boiling the mercury before flling the other. Would boiling the mercury before filling up
the the air out? A friend says it would not, but that I must boil it in the tube after filling. Can I do that successfully without bursting or warping the tubee A. It is desirable, to insure a good vacuum, to
boil the mercury in the tube, and in a vacuum. If you have no experience in such matters, it will be much bet
ter for you to have the tubes filled by a philosophical in

nt maker

(45) T. J. M. asks:In floating down a river, will a flat-bottomed boat go at the same speed as the
currentif nopower is used to push it or increase its ma tions A. Yes.
(46) A. S. T. says: We have laid a pipe underground from a spring, and have bronght it above the
surface in one vlace for the purpose of tapping. Will the water continue to be discharged in an unbroken
stream, thatis, overthe crooks A. Air may collect at
the highest point, and should be removed byopening a
valve or cock.
(47) P. W. asks: If a weight be suspended by a wire in water, one inch below the surface, weighs
$1,000 \mathrm{lbs}$., would it weigh the same if lowered in the water half a mile deeper? or course the weight of the suspending wire is to be dedncted. A. The weight of a body immersed in water is reduced by the weight of the
water which it displaces. As water is slightly comwater which it displaces. As water is slightly com-
pressible, the body will weigh a little less at a consider pressible, the body will weigh a
able depth than near the surface.
(48) E. W. P. says: We have an artesian well which does not overflow. The water is elevated by steam pump, the suction pipe of which passes down inside of the well tubing, leaving a small space between
the two pipes. If the well tubing was attached to the the two pipes. If the well tubing was attached to the
pump and made airtight, leaving out the inner suction pump and made airtight, leaving out the inner suction
pipe, would the pump work? Would it not be on the same principle as trying to draw water from a barrel
(49) S. D. Y. asks. If I make a model of a
($)$ a 1,728 times less than that of the boats A Yes if you , 728 times less than that of the boat? A. Yes, if, you
mean by buoyancy the volume of water displaced, and of you use in the model materials of the same specific
(50) H. M. says: I am about making water velocipede, but do not know of what size and
weight the wheel should be. How deep should the wheel be in the water? The length of platform is 31 feet, length of floats 8 feet, width of platform 2 feet 8 inches, height of seat 1 foot 4 inches, floats are to be 10 inches in diameter, platform 3 inches above the floats, from upsetting, and make it safer. How long should the crank or treadle and the posts on stands for the wheel be? A. As we have had no practical experience with these devices, we are not sure that we can aid you much.
Your proportions seem to be judiciously chosen. The crank, treadle, etc., may be arranged with the same dimensions as in ordinary velocipedes, suited to the pro perimented with these water velocipedes, we would be
(ij) A. B. says: 1 am building a steamboat, the diameter of my pad dle wheel is 8 feet, and is 6 feet 8 inches across. I use an 8 to 10 horse power engine
Boat draws from 8 to 12 inches water. How many buckets should I have, so as to have the least amount of slippage? A. Make it so as to have 3 or 4 buckets (52) 0 .
(52) E. O. M. asks: 1. Which is the best way to learn the exact amount of priming when a boiler is tested? If the method is expensive, and requires the skill of an expert, what is a tolerably good way which
is inexpensiv? and adapted to the capacity of an ordinary boiler tender? A. Some form of calorimete should be employed; and we know of none that can be
used successfully by an inexperienced person. 2. What is the peculiarity about a boiler which inclines it to en culiari quire of the patentees. 3. Robert Wilson in his work nsteam boilers under the heading of "Incrustation, says that the light carbonates, when entrained, are hable the engine. Did you ever hear of such damage and what are the particulars? A. If any of our readers can furnish information on this subject we would be glad to hear from them. No such occurrence has ever been
brought to our notice. 4. Is it possible for any boiler to brought to our notice. 4. Is it possible for any boiler to
entrain all the scale-forming impurities of salt water? entrain all the scale-forming impurities of salt water
A. We thinls not. 5. What can be done to elieve the A. We think not. . What can be done to eelieve the
cylinder of the engine from its trials when so much solid matter is thrown into its A. Use large relief
(53) C. H. H. asks: How are electric bells constructed so that they may be made to ring for five or spring against which the armature rests when it is not attracted; also, connect the armature to one end of the magnet coil. The other end of the coil is to be con-
nected to the battery, and the circuit completed; this will cause an attraction of the armature; and after trav eling together fora very short distance, the latter leave no longer attracted, returns t' its normal position and completes the circuit again, when another attraction re
(54) B. N. G. says: 1. I want to build a long with a screw 18 inches in diameter, of 3 feet pitch I intend to build the boiler by placing the heads on the end of the shell, bolted on with sevcral of the tubes
with nuts on the ends. Do I need shoulders on the inside of tubes? How large should the shell be? A. No side of tubes? How large should the shell be? A. No
2. How large an oscillating engine should I want to run boiler would it take? A. You can mand how large Make the boiler 20 to 22 inches in diameter, and 3 feet high. 3. Should an oscillating engine be larger than a slide valve engine, of the same power? A. An oscil
lating engine, if properly constructed, will not take any more than the other, under the same conditions. 4 Shall I need a license to run my boat on the Merrimac
A. According to the Tnited States law a license is re quired. Whether the law is strictly enforced in your
(55) H. M. C. asks: If the sides of a triangle $\mathrm{AB}=a . \mathrm{A} C=b, \mathrm{~B} C=c$, are known quantities, how can
I find the area A B C of the triangle, in terms of a, b, and cs Perpendicular, A D, is supposed to be unknown. A The following is the formula, the demonstration of
which may be found in any good treatise on plane trig
onometry: $\mathrm{S}=\frac{a+b+c}{2}$. Then
Area $=v \mathrm{~S} \times(\mathrm{S}-a) \overline{\times}(\overline{\mathrm{S}-b}) \times(\mathrm{S}-c)$.
(56) G. J. R. says: I have been thinking o bulding a smalisteamer: I do not think the water wnh
average over two feet deep. I have an engine of 2 inch
bore with a 3 inch stroke. Please tell me its capacity? bore with a 3 inch stroke. Please tell me its capacity
Will this engine do to drive a boat 26 feet long and abou

5 feet wide, to carry 8 or 10 persons? A. The engine is,
(57) E. C. W. asks: 1 . Which is the better, cypress or cedar, for light boat building? A. Cedar is
generally considered preferable. 2. How ought boats to be treated, after finishing, to protect from the water and weather? A. The joints can be made tight with putty or
painted.
(58) M. F. says: I am the owner of a tract he levin carson valley, that lies some 25 feet above I am at a loss to know how to get much of it under cultivation, as it must have irrigation, and ditching would cost me more than I am able to expend. Can I force pump, say, through a 3 inch pipe? If so, what size or power of pump should I have? How much fall of water should I have back of the pump, and would it do to set the pump in an excavation in order to give it a falls A. If you can use a windmill, your plan of artifcial irriga-
tion may be successful; and by addressing a manufacurer, you caccessful; and by addressing a manufac uired
(59) C. C. C. asks: How can I line sheet iron tanks with Portland cement? A. We do not think you can sacceed in caus ing to the cement o ad here perma nen ly and built in with cement mortar. Portland cement can be obtained of any dealer in building materials.
(60) Mr. J. H. Tjörswaag, of Flekkefjord, Norway, says: As an example of how fast the appear
ance of a landscape can change even under higher latitudes, I can mention that last year in the carly days of June the snow covered the ground at Masi, in the north ernmost part of Nor way under 70° north latitude, and in the middle of July the potatoes were all in full bloom Itis but fair to add that the sun does not go below the horizon from the 15th
above-mentioned place

A couple of years ago I built a new barn with barnyard all of wood. Partly for the sake of appearance,
but chiefly to make the barnyard more easy to clean, I gave the walls and ceiling two coats of oil paint. Now as long as mild or warm weather prevails, it is all wel enough; but as soon as cold weather sets in, the evaporation from the animals (only four or five cows) settle
under the ceiling, collects in drops, and (when heavy enough) falls on the floor, on to the animals, or runs down the walls, making everything wet and dirty. Can I ventilate the room ($25 \times 14 \times 71 / 2$ feet) in an efficient man ner, and at the same time retain sufficient warmth fo the animals, and how? The temperature here during
winter varies from 18° to 45° Fah. A. The space is winter varies from 18° to 45° Fah. A. The space i
rather small for that number of cows, and a little ven rather small for that number of cows, and a little ven-
tilation would beneft them. A small opening at the floor upon one side and at the ceiling upon the othe would answer the purpose. The size
might be graduated by sliding shutters
(61) E. R. asks: 1. If I have an air-com pressing pump which will hold $1 / 2$ cubic foot of common air, how many times must I force the piston up and down until I have respectively pressures of $15,30,50$
${ }^{2} 5,100$, and 125 lbs. perinchover the atmospheric press re in an air tank of the same dimensions as the pump A. It will make considerable difference whether you formulas by which you can make the necessary calcula formulas by which you can make the necessary calcula-
tions, in question (26) on p. 235, vol. 35. 2. If the valve that connects the pump with the tank be 2 inches in diameter, will it take a greater force to move the piston
down when the communication between the tank and pump is open, and does the compressed air in the tank press with a greater force on the valve than if the valv were only 1 inch in diameter? A. By using
valve, the friction of the air will be reduced.
(62) F. G. T. asks: 1. What size of boiler will it take for a small engine $3 / 4$ by $11 / 4$ inches? A. You
can make a boiler 3 inches 8 in diameter, and 5 inches high. 2. Would it do to make it out of tin? If so, what pressure would it stand? A. It can be constructed of tin for a pressure not exceeding 10 lbs . per square inch.
3. Could I keep up steam with burners and coal oil? If , how thould they be placed, under the boiler or in flues A. The lamp should have a burner that would an swer without a chimney, or by having a central flue in the boiler, that would take the place of a chimney. of ready made castings? A. The tools required to fit up of ready made cast be a vise, some flles, taps and dies, ham
(63) R. K. asks: Will you please tell m whatis the difference of heat in the sun's rays on a per pendicular round stick 4 inches thick by 2 feet high, and one of the same size placed to incline 6 inches to the
south? A. We presume you refer to the different areas exposed at right angles to the direction of the rays. in the two cases. You can easily plot or calculate this fo
(61) F. W. S. says: I wish to build a vas hichshall hold about forty gallons of water, to b placed where I can have pipes running about five fec noch a manner that by the use of pipes, the water of it own weight may be made to form a fountain from one t t wofecthigh? A. Yon can arrange it on the principle of
Hero's fountain, which is illustrated in many elementary treatises on natural philosophy

[^0](66) W. G. says: I have a steam pump o he following dimensions: 22 inch steam cylinder, 1 inch discharge pipe. The discharge pipe runs 250 feet north on a rise of 40°. It makes a quarter turn, and uns 94 fecteast, horizontally, and then another quarter turn and runs 290 feet north on a rise of 40° to the poin of delivery. The pump works as smoothly and with a title jar as possible, but there is a heavy jar in the disharge pipe which moves the whole column when the less than 18 strokes, there is no jar. Will you please tell e the cause and the remedy? A. According to dat ent, the vertical height of column of water is near 350 feet. The jar is probably due to the stopping an startingat the end of each stroke,
(67) J. V., of Canterbury, England, says Thave a traction engine, with one cylinder 8 inches in pressure. What difference will there be in the power if Iput on an 8x16 inches cylinder, all other things being 9×12 inches and a 994×16 inches engines, all otherthing ing equa, at 100 lbs pressures A Colling the powe of the 8×12 inches 1 , that of the 8×16 will be $1 \cdot 33$, tha
.
(68) J. H. E. says: The following is take from a book high in authority on mechanical subjects, troduction of steam to the cylinder, it has a pressure o piston with all this force to couse it will act upon the piston with all this force to cause it to descend; since communication with the external atmosphere, there is resistance $=1$ atmosphere opposed to its movement therefore the actual effective pressure on top of pistonmospheres) is that which is indicated by the steam gauge, and what becomes of the pressure of the air in the boiler after the air is worked out? I know that a gauge. A. In the statement quoted by you the referenc vacuum. The steam gauge, being preseed internally b the steam and externally by the air, indicates the differ ence of
sphere.
(69) W. S. says: 1. Given the boiler or re ervoir of a fre extinguisher, tested to 150 per square inch, 24 inches long, of 9 inches diameter, and about $1 / 4$
inch thick, laid horizontally and fired with charcoal, re quired the size of engine it will run, and the best work swer as a boiler; but it would not be advisable to carr a pressure of more than 60 or 75 lbs . 2. I wish to cas the cylinder of brass. If I take a piece of iron, turn it off smooth, and polish it, could I use it for the core to cast the cyllnder around, and could I drive the iron out A. You will not be able to make a very good cylinder in
the manner you propose. There is no diffculty in mak ing a sand core quite as smooth as the one that you sug gest.
(70) I. C. C. asks: How can I make a good days I have made my box 14×14 inches 2 at bottom, with a height of 3 feet; and I flled it with alternate layers of charcoal, coarse gravel, and sand. For a week or 10 days it will work well, and then the your purpose to use sand only, spread out over a larg horizontal surface, and when choked by the accumu the sand and renew it. After a more extended interva he whole might be renewed
(71) T. P. B. asks: What is fire? A. Fire is, cemmonly speaking, gaseous matter in a state of inenergetic combination with atmospheric oxygen. Scientiffcally it might be described as matter under the in fluence of intense atomic or inter-molecular vibration. Consult some good work on chemistry or chemica philosophy.
Minerals, etc.-Specimens have been re examincd, with the result stated
C. W. R.-It contains carbonate of lime and alumina.-clay.-G. F.-They are all crystals of quartz (pure silicic acid). They are quite common, and of little value. - M A.- It does not contain silver, but antimony and lead - M. A. A.-The sand you send consists princip
M. H. H. says: $\overline{1 .}$ An acquaintance claims that, in a augar cane mill, one of the crushing surface sents a smaller surface to the cane, it will do the same disadvantages of horizontal and perpendicular rollers? .W. D. asks. Which steamboat, running in fresh , the fastest, and what ie her speed?

COMMUNICATIONS RECEIVED.

The Editor ofthe Scientific Americnn acknowledges, contributions upon the following subjects: On Saving Life in Case of Fire. By J. S On Nickel Plating. By D. G.
On High Interest. By J. H. S.
On Reclaiming the Desert of Sahara. By R. T. E. On a Tidal Motor. By A. s. Ont \quad.
risection and Multisection of Angles. By On Pernicions Literature. By C. W. B.
On Labor-Saving Machinery. ByT. R. V.
Also inquiries and answers from the following:
F. M. B.-C. G. L.-D. B.-G. W. K.-M. A.-W. D
HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should
that, for good reasons, the Editor declines th
address of the writer should always be given. Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be publishe ere. All such questions, when initials only are give re thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleagiven.
Hundreds of inquiries analogous to the following re sent: "Who ells lampblack by whoteat ond wh its price? Who sells apparatus for the production of ulphate of potash? Whose is the best metallic pisto packing? Who makes cotton and wool carding mahinery? Whose is the best gas meter? Where ca he best fireworks be obtained?" All such personal inwiries are printed, as will be observed, in the co et apart or that purpose, subject to the charge med ioned at the head of that column. Almost any de red information can in this way be expeditiously btained.

official.

INDEX OF INVENTIONS

or which
Letters Patent of the United States May 1, 1877,
AND EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed ust Acluding boththe specifications and drawings, will be urnistied from this offle for one dollar. In ordering easestate the number and date of the patent desire nd remit to Munn \& Co., 37 Park Row, New York city.

Air into vessels, forcing, J. F. Hess.
Burk mill, w. H. Glbson
asket,folding, J. J. Pesinger.
Bedstead, sofa, C. Kade
Beer cooler, A. Kunkle
Bell, w. H. Nichols....
illard chalk cup, H. W. Collend
oatts and vessels, A. Crosby
oiller feeder, A. I. Sternberg
oiler furnaces, grate bar for, P. J. Schmitt
Boot heels, , , Jaking, W. B. A
Boot sole buffer, F. Winslow
oot cleaner, \mathbf{C}. H. Southal
Bottle stopper fastening. F. Sch?l
Bottles, locking device for, E. M. Deo
Brick killn, H. Dickso
Brick kill furnace
Brick killn furnace
Bullets, patching, s. W. Wood
Butter pail coverer, J. G. Fisher
itter worker, C. A. sands
Can, J. W. Masury
Canal boats, steering, B. R. Cole
ar axle, W. Winslow
ar axre lubricator, Bollman \& Ernst
Car coupling, Gibford \& McCormick.
Car coupling, M. Helnes
Car coupling, G. D. Lea
ar coupling, B. Rowell
Car screen, W. D. May
Car spring, J. B. Quirk
Car starter, D. Shoup
Carbonic acld generator, F. W. Wiese brock
Cartridge, B. L. Budd
Cartridge, metallic, J. H. Gill
Budd (r)
Cartridge, signal, E. W. Very ...
Caster, furniture, A. C. Martin
Chain, drive, J. F. Kingwill
hair, barber's, J. Griendling, Sr......
Churn, O. W. Davi
Churn, power, W. H. Sterns...........
Churn, reclprocacating, J. J. J. Curooking
Clgar lighter, I. N. Clawson
Clay and ore crusher, T. \& J. Cliford (r)
lothes dryer, G. S. Walser
Clothes pounders, w. T. Robertson. Coffee roaster, Caldwell \& Pleitz. (finn, F. H. Hill (r)
oolling board, T. H. Grave
Corn shelling machine, J. Lipp
Orn stalk cutter, J. P. Brower
orset, M. P. Bray.
ottoncleaner, J. Greave
Cows, restraining, B.
Crutch, L. F. Weldo
Cultivator, R. W. Alezan
ultivator, A. Buseng
untivator attachment, Hubbard \& Robinson
cultvator, veretable, etc.. W. Plerce...
Curd cutter and agitator, M. P. Jackson
Dental tool, Babcock \& Mason
Dish holder, H. C. Milligan..
Draft regulator, T. Baker
Drawhead plates, former for, J. Green
Draw frame, stop, J. Bullough......
bave trough
Egg beater, J. F. Monro
lectro-magnetic motor, W. w. Gary
Electro voltaic belt, J. Bryant.
Elevating earth, C. E. Millizen
Embossing prosesi, D. Koenig...
Emery composition, B. L. Budd
Engine and propeller, Gray an
ngineand propeller, G. E. Noye
Exercising machine, A. W. Lozier
Exhaust steam, utilizing, W. H. Thoma

Eyeglass, s. Oppenhelme
Fare box, J. B. Slawson Faucet, Dummer \&
Faucet, F. Messmer
Feathers, renovating
Feathers, renovating, M. L..........
Felt, non-conducting,
Felt, non-condu
Fence, P. Kirby
Fence, wire, barbed, D.
Fire escape, E. B. Lake
Fish hook, spring, J. O. King.........
Fhat iron heater, O. F. Monfort.
Flat iron heater, C . F. Monfort,
Flour bolting machine, F. Feiste
Flowers, artiticlaal, s. Potts
rult dryer, B. L. Ryder
 Furnaces, feeding steam to, w. Rumbey
Gaiters, etc., muking. P. Fischer
Gas generator, T. s. Stewart
Gate, swinging, J. R. Brott
Grain cruslier, J. \& R. Reld
Grain distributer, J. W. Lewis..
Grain reducing apparatus, C. Bail
Grain reducing apparatus, C. Ba
Grinding mills, adjusting. Westcott \& Randall.
Gun-cleaning brush, B. L. Budd.
Gun-cleaning rod, B. L. Budd .
Gutter and moulding. H. Strater, J
Gutter hanger, C. M. Peet.
Harness check hook, s. W. Sticknes
Harrow, T. J. Holmes, Sr.
Hay elevatur, C. S. Kersha
Hay elevator, H. C. Stouffe
Health lift, A. W. Lozier.
Heulth lift, A. W. Lozier
High pressure engines, relieving, T. Shaw
Hinge, J. S. Lash
Holsting apparatus, D. Brobs
Horse hay ruke, H. H. Hathe
Hose carriage, I. W. McGarrey.
Ice conveyer, A. Hu
Ice plow, C. A. \& l . L. Hilles.
Ind
Injector, steam enginv, G. H. Little (r
Ironing table, Hotchkiss \& Hebard.
Jib sheets, traveler for, H.s. Laws
Key ob latench, reveresible, N. O'Brien.
Knub latch, reversible, W. E. Spark
Knob, metal covered, McManus \& Colburn....
Knobs to spindles, attaching, W. Sutherland
Ladder, J. W. Allen.
amp bracket, Bllven \& Parker
Lamp burner, J. Rasch
Lathe work, currier for, G. Harman.
Lathing, metallic, J. W. Kensett (r).

Lightning rod, N. Van Loon.................
Lip and strainer, F. G. \& W. F. Neidringhaus Lock case, C. H. Lambkin.
Lock for cell doors, G. Ropes..........
Lock for drawers, etc., Egge $\&$ Smit
Low water alarm, Bingham \& McTighe.
Magazine fire arm, Wetmore \& Bennett Manure, distributing ilquid, J. D Manure spreader, J. S. Kemp
Mashing machine, J. Brandenbur
Metal composition, F. Porter Middlings separator, C. N. Smith...
Millstone feed regulator, N. Hamer Mining drill, T. J. Morgan. ...
Nail machine feed, B. F. Rice. Nut lock, F. L. Williams
Ore grinding machine, H. Trumbull ore roaster, revolving, J. Howe ores, etc.., crushing, w. Hooper. Ores, sludge from iron, W. Hoope Paint composition, J. Fetzer
Palint composition, roof, A. Blaisdel Paper pulp dresser, w. c. Tuttle
Paper rolls, dressing, fly burs, J. H. Robinson Paper rolls, dressing, fly bars, J.
Paravaseline paste,, . L. Budd ...
Peg float, w. B. A rnold.............. Pen, fuuntain, Berlie \& Pen, fountann, A. T. Cross
Photographe printing, O. Sarony
Plano action frame, P. Gmchlin. Planoforte key, U. Pratt
Plpe and clgar holder, J. T. Connolly Pipe tongs, A. B. Jarecki...............................
Plow cleaning attachent, J. H. storm
Radiator, steam. W. M. Fuller
Rallway rall joint. G. H. Grant
Rallway rails, carrying, A. J. Gustin.
Rallway carrier roll, A. J. Gust1
Rallway algnal, C. \& F. Baise
Rallway signal, c. \& F. Haise
Railway signal, electric, c. s. Shiver
Rallway wheel, J. A. Osenbruck
Reamer, A. Goddard
Refrigerating oysters,J. C. Jone
Revolving fire arm, D. Moore........
Rock drilling machine, A. J. Mershon
Roofs, snow guard for, G. F. Folsom....
Rouge paste, composition, B L. Budd.
Rouge paste, composition, B
Rowlock, P. A. Danielson.
Rowlock, P. A. Danielson................
Safe, burglar proof, A. T. Woodward
Safety pln, W. A. Butler
Sash fustener, J Hatzl
ash fastener, W. Kemp, Jr.................................
Scales, sack, E. A. Murtic
crew diver, B. L. Buda
Settee, A. Taylor
Sewer trap, H. A. Paimer
Sewing button holes, T. S. Hantington.
Sewing machine, ruffler, etc., N. Wliso
ewing machine shuttle, D. A. Daly...
ewing straw, Blackburn a Moeslein.

190,403
190,255

DESIGNS PATENTED. 9,949.-Handles for ten Shits, etc.-E. Haviland,
 ,954.-TowEL Borders.-R.T. Webb, Randalilitown,Ireland. 9 ,95.-Necklace.-H. W. Woods, Brooklyn, N. Y.
[A copy of any of the above patents may be had by remitting on
York city.]
ghavertisements.

ROSES Hize=
S. B. JEROME \& CO., Extra quallty Clocks.

a manual of rules, tables, and

[^0]: (65) J. B. says: 1 . We have to use salt ater in a boiler. Is it injurious? A. Salt water form denser made? A. A condenser is a vessel in which the steam is condensed either by contact with or by being exposed to the cooling influence of water. 3. What i the hottest water which a common force pump will throw in a boiler? A. Pumps made for hot water wil act when the temperature is quite high. With others,
 the temperature of the water should not ordinarily ex the temperature of the water should not ordinarily ex
 ceed 100°. 4. Is salt water more injurious to a boile than sulphurous or lime waterp A. There are some عalt water from the ocean.

