major part of the matter; we wash it to carry off all the scapes. This series ended with the introduction of man, the
nitric acid, then we dry it. The yellow, bitter matter i crowning glory of all. The lecture was well received and at thus obtained is entirely soluble in water, alcohol, and cther; its yield is from 66 per cent of the aloes employed. Aloc dye wool without a mordant, in shades which go up to a deep brown. We obtain mode shades very varied with mixtures of orchil and aloes; we grind up, for example, 20 parts of orchil with 1 of aloes, and we dissolve them in soda. We obtain the same varied shades by the employment of aniline colors. A mixture of aloes and soda ash dissolves in wate with a beautiful purple color, which gives in dyeing fast bluish grays, analogous to those which are obtained with fustic on an indigo blue ground. We dissolve $1 \frac{1}{2}$ parts of aloes in water, and we add 2 parts of soda ash; after 12 or 24 hours we dye. If before dyeing we neutralize the bath and add to it afterwards chalk, we obtain green olive shades. -M. Victor Preston, in Muster Zeitung.

NEW YORK ACADEMY OF SCIENCES.

A regular monthly mecting of the section on "Geology and Mineralogy" was held at the School of Mines, on Mon-
dity evening, May 21, 1877, Dr. J. S. Newberry, President, day evening, May 21, 1877, Dr. J. S. Newberry, President,
in the chair. Dr. Martin offered a serics of resolutions in regard to the scientitic use of the public parks, praying that they may be guarded from encroachment, and misuse, that they be made schools for taste and scientific instruction, and that they be stoc
Dr. Newberry exhihited a photorraph of the restoration of a mammoth from siberia. It is 26 feet long, 16 feet high, and represents an animal cight times as large as an elephant The president also showed a new fossil from the Catskills, which seems to connect our red sandstones with the old red sandstone made famous by Hugh Miller; also a plaster cast of the new crustacean found in the upper silurian and named cosareus.
The first paper of the evening, by Mr. B. B. Chamberlin, was on
some choice minerals at the centennial and was illustrated by a large number of beautifully ex ecuted water-color drawings. Among the minerals referred to were the native copper and silver of Lake Superior. Drawings were shown of calcite crystals of a delicate wine color, also of stalactites and stalagmites from the lead mines of Iowa. Arizona sent a meteor weighing 1,400 lbs., and Mexico another. Among the beautiful things there were meralds, rubies, and crystals of corundum from North Carolina. Mr. Chamberlin also spoke of the amazon stone from Pike's Peak, Cal., and exhibited beautiful drawings of this green mincral, some specimens of which have sold for $\$ 150$. He described the diamond exhibit from South Africa as exceedingly interesting, embracing both white and colored stones. In the collection sent by the School of Mines, St. Petersburgh, was a topaz 5 inches in diameter, also emerald in rock, crocoite, and other beautiful and rare minerals. In other portions of the Russian exhibit, the magnificent display of polished stones and gems, lapis lazuli, mala chite, labradorite, rhodonite, etc., made a splendid display.
the evolution of the norti american continent
was the subject of a paper by Dr. J. S. Newberry. The speaker said that the oldest rocks we know are themselves formed from sediment deposited by the disintegration of till older rocks of which we have no trace, and which may have likewise been the sediment from a still carlier conti nent. Of this older continent, we know not where it was or what it was; we only know that it was large enough to form a continent from its own ruins. Its history has been obliterated. Beginning with the old metamorphic rocks, known as the Laurentian and Huronian, which extend from Labrador to the Lakes of the Woods and as far north as the Arctic Ocean, we have the oldest known form of the American contincnt. Since that time it has been changing form by the formation of newer rocks. Owing to the cooling and contracting of the earth, there is a continual tendency to raise the high lands higher and depress the valleys lower; while at the same time other influences are at work, grinding off the elevations and filling up the depressions. In many places we dig or bore down to the old metamorphic slales and slates, surroumded by newer rocks. There are islands of these old slates in Texas, and the Black Hills were found by Messrs. Jenney and Newton to be an island of these old rocks very much disturbed, with the slates turned up on dge. They contain characteristic shells which connect them with the Potsdam of New York. The Pacific coast is a rock-hound shore that seems totally invulnerable; but the big rollers come in and pound away at the rocks perpetually, until the rocks are undermined and fall. Finally the rocks are pulverized and carried off to be deposited in the far distant sea. This sea has taken possession at different times of different parts of the continent. Wherever there was a depression, there has been a deposit of the remains of sea fisl, spines, teeth, etc., on the bed of the sea. When the sea became shallow, another series of deposits, shells, etc., was made. Thus each period left a record of the physical con ditions and the kind of life that existed in the sea at that time.

By the aid of the magic lantern, Mr. Russell threw upon the screen a series of pictures showing the shape of the continent in the Silurian, Devonian, carboniferous, tertiary, and and other ages; also pictures of the crustaceans, fish, rep tiles, birds, and mammals that existed at cach of these peri-
ods, together with iageniouly resto:ed imazinary land-
tentively listened to throughout.

What Liquor is Doing.

R. F. Mushet writes to the English press that Liquordom killing trade, and, after mentioning the amounts spent an nually, he remarks: " Now I say to manufacturers that it is all very well to reduce wages, and to economize their pro-
cesses of manufacture, but unless they unite manfully, and put down the liquor fiend, he will crush them all. Besides the nine hundred and forty millionsactually paid in the past seven years, the effect of swallowing the Satanic solution itself has lost and cost the nation at least an equal sum. I the days' works lost through drink in the last seven years were reckoned up, thic amount of wages thus sacrificed would appear incredible. If manufacturers were to unite, as one body, and refuse to employ any man or woman who frequented drink shops, and would set the example hy themselves abstaining, prosperity would soon return; for a sober England could compete successfully against all other na tions."
We are most forchlly reminded of the truth of all this by an item in the Labor Tribune of Pittsburgh, which gives an account of the number of drinking shops in Allegheny City the editor proceeds to use the stirring words: "When will men rise above this serfdom to a soul-enslaving appetite Reform is impossible while saloons abound. Good wage cannot be long preserved where men encourage such vices.
The working classes will be compelled sooner or later to The working classes will be compelled sooner or later to
acknowledge that abstinence must be practised before there can be any permanent amelioration in their condition."Coal Trade Journal.

Calender Rolls

Paper calender rolls are almost as hard as iron, but are used in preference to iron because, while they will preserve their roundness, truth, and smoothness, they possess a cer tain amount of elasticity, and are therefore less liable to damage from the strain due to any foreign substance passing through them. The method of fixing the paper to the rolls is as follows: Disks of thin common brown paper, of a diam eter large enought to turn up to the required diameter of rol and with a hole in the center of each large enough for them to pass freely over the roller shaft, are first cut out; then a number of similar disks, with the central hole made about four or six inches larger, are made. In putting these disks upon roll shaft, four having the smaller holes are put on, and then one with the large hole, the object being to insure that the paper shall press together at and towards the outer diameter of the roll, and not bind so tightly towards the center; thus the outer part of the roll is sure to be the most compact, and therefore the most durable

To avoid bending the rollshaft by reason of any unevennes in the thickness of one side of the shect of paper from which the disks are cut, every other disk is turned halfway around when placed upon the shaft. When the shaft is filled with tthese disks, it is placed under a very powerful hydraulic press, giving a pressure of about 200 tons, which compresse the disks solid together without the aid of glue or other ad hesive substance. The disks are allowed to stand until they are compressed sufficiently to give room for additional disks, which are added in the same manner as before, the whole being again compressed. This process is continued until th intended length of the roller is filled with compound paper, when the latter is fastened as follows: Upon each end of the roll shaft a recess is turned, and a fiange, made in two halves, is bored, smaller than the recess referred to by the amount allowed for shrinkage. The outer diameter of the flange is then turned, larger than the recess cut in the iron disks or flunges forming the end of the roll by the amount allowed for shrinkage; which flange is made slightly smaller in diameter than the intended size of the paper roll. The two half flanges are put in place upon the recess in the shaft, and the end flange or disk is shrunk on over the diameter of the two hal flanges, thus firmly locking the whole to the shaft through the medium of the recesses on the shaft. This locking de vice is placed on one end of the roll before the paper disks are placed in position; then, after the disks are compressed and while the roll is in the hydraulic press, the flanges or disks at the other end are shrunk on. This plan is the one generally adopted in this country, that employed in England being considered deficient in that it gives the paper oppor tunity to expand $\frac{3}{8}$ inch in the locking process. The rolls are then turned up in the lathe with a front tool for iron, the speed being but little greater than that employed to turn iron of equal diameter. The finishing is doneby an emery wheel
the same as for an iron roll.

Dyeing Straw.

The season approaches when dyers have to take in hand articles of straw, and especially hats. As a rule, straw good should be well steeped, and then treated with alum, orchil, and extract of indigo, and yellowed with turmeric. Th shades most in demand are black, brown, and gray. Black (for 25 hats): Logwood, 4 lbs. 6 ozs.; bruised galls, 174 ozs. turmeric or fustic, $4 \frac{1}{4}$ ozs. Boil for two hours, and the steep in a beck of black liquor (crude acetate of iron) at 4 or
$5^{\circ} \mathrm{B}$., and rinse in several waters, dry, and rub with a brush of dog's grass, to bring up the polish.
Gray.-This shade can be obtained only on very white straws. Steep in a bath of soda crystals to which a little lime water has been added, to causticise the alkali. The pur
pose of this washing is to remove all traces of sulphur from the straw. For 25 hats, take: Alum, 4 lbs. 6 ozs.; tartarid acid, $3 \frac{1}{2}$ ozs. Add ammoniacal cochineal and extract of indigo, according to the shade desired. By making the one or the other of these wares predominate, we obtain a reflection more bluish or reddish. A little sulphuric acid is added o the beck, to neutralize the alkalinity of the ammoniacal cochineal. The hats are boiled in the dye for about an hour, and rinsed in water slightly acidified.
Maroon (25 hats): Ground sanders, 1 lb: 10 ozs.; turmeric, round, 2 lls. 3 ozs.; bruised galls, 7 ozs.; rasped logwood, 24_{4}^{1} ozs. Boil in a kettle so roomy that the hats may not be bruised. Rinse. Steep over night in black liquor at 3^{\prime} B., and rinse in several waters. To produce a deeper black, reurn to the first beck, which is strengthened by an addition of sinders and logwood. Polish as for black.
Havana.-This shade, being a degradation of maroon, may be obtained by the same process, reducing the proportions by one half or one third, and omitting steeping in black liquor. The hats may be soaked for a night before dyeing in 4 lbs .6 ozs. or 6 lbs .9 ozs . of alum. - Moniteur de Teinture.

NEW BOOKS AND PUBLICATIONS

Fires: their Causes, Prevention, and Extinction, combining

 also a guide to Insurance Agents. By F. C. Moore New York city.Athough this work is primarily a manual of instruction for insurance corporition, it embodies much that is new and valuable on above-named fire prevention. There is of course no one class in the community who
have a nure direct interest in lessening the number of tres than the fire underwriters, and consequently it is to them we may louk for thoroughly prictical suggestions, basel on the best experience and not combined wit
doubtful speculations. As a means of information of what is as likely to cause fires in workshops, factories, and buildings of all kinds how much the rate of insurance risks are enhanced by the presence of such perilus material, how to prevent fires, how to deal with them, and lastly, as a full exponent of the rightsand dutics of buth insurer and in-
sured, we can cordially commend this book. It contains much that not think has ever been published elsewhere, and it is written clearly and well.
eam Injectors: their Theory and Use. From the French of M. Leon Pochet.
D. Van Nostrand, 23 Murray and 27 Warren strects. the injector is now coming into use for other purposes than the feednd action; and this M Pochet has done much to supply. The mathe matics of the subject are exhausted in his little treatise.
Evglish Science Lectures.-Messrs. Macmillan \& Co., of Astor
Place, New York city, are now issuing series of the lectures addressed to popular audiences which are delivered in London, Manchester, and othe J. Nermand. We have now before Coe, and one on "the Succession of Life on the Earth," by Professor W C. Williamson. The names of the lecturers guarantee the accuracy and alue of the information contained in the discourses; and we are glad to in every way adapted to the purposes of popular instruction.

DECISIONS OF THE COURTS

United States Circuit Court-District of Minnesota

 The patents granted to David C. Price for improvements in portable

Nelson, J.:
Opinion of the court.
The complainant obtained two patents, Nos. 125,329 and 134,486, date

 ith the supports an."
ecure the supportg."
Tcure the supports,"
The diamgam of this invention shows the ordinary stringers used in cir-
cus and outdoor portable seats, elevated and adinuted on an inclined plane cus and outdoor portable seate, elevated and ad insted on an inclined plane,
the sfringer\& bing notched for the support of boards and elevated at the

 tions and pattented improvements.
It it admitted that there is no nivy itiv in using stringere and trestles to
torn portable show seats, nor in maki:E every alternate board on the

