cusimess and extsonal.

The Charge for Insertion under this headds one Dollar

 a line for each insertion. If the Notice exceeds four.lines, One Dollar and a Half perlinevill be charged.

A first-class Mechanic, thoroughly acquainted with Steel Plowshare work in all its branches, can secure a
good situation by addressing, with references, South
Bend Iron Works, South Bend, Ind

Glan Mon,

 Glass Monuments, patented Sept. $7,18 \%$. The whole
Stone-Dressing Hammer.-Patent (dated January 2
Alex. Mc onald, Mount Auburn, Cam1877) for sale.
bridge, Mass.

Patent for sale.- Entire interest in Self-Measuring
Fluid Tank. The patentee must sell for cash. Box 143, Geddes, \mathbf{N}.
Removal.--Fitch \& Meserole, Manufacturers of Electrical Apparatus, and Bradley's Patcnt Naked Wire Helices, have re
mental work.
The Eclipse Engine. See Scientific Λ merican, Feb. 17 1877. Highest Cen
Westbrook, Conn.

New Lathe Attachments, such as Gear Cutting, Tap
and Spline Slotting. W. P. Hopkins, Lawrence, Mass nd Spline Slotting. W. P. Hopkins, Lawrence, Mass. Wanted-Latest Improved Bobbin-Turning Machin-
ery. Address with description, H. L. Ashmead, 1238 N. ery. Address with desc
Silk, Cotton, and Flax Strength Testers, from 1 lb . to
1201 lbs . Manufactured by Norris, Steam Gauge Maker
Paterson, N.J.
Engines, 12 to 5 H. P. Geo. F. Shedd, Waltham, Mass
Gas lighting by Electricity, applied to public and private buildings. For the
gart, 702 Broadway, N. Y.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J.
Superior Lace Leather, all sizes, cheap. Hooks and Couplings for flat and round Belts. Send for catalogu
c. W. Arny, 148 North 3 St., Philadelphia, Pa W. Mry, 13 North Dis 1

For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y Lead Pipe, Sheet Lead. Bar Lead, and Gas Pipe. Sen or prices. Bailey, Farrell $\&$ Co., Pittsburgh, Pa
Hydraulic Presses and Jacks, new and second hand
Lathes and Machinery for Polishing and Buffing metals. Len at Co., 470 Grand St., N.
. Lyon
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel-other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
tandard Belting, Packing, and Hose. Buy that only tandard Belting, Packing, and Hose. Buy that only
Phe best is the cheapest. New York Belting and Packhe best is the cheapest. New York
ing Company, 37 and 38 Park Row, \mathbf{N}. Y.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free Pittsburgh Steel Casting Con., Pittsburgh, Pa.
For Solid Wrought iron Beams, etc., see advertisc-
ment. Address Union Iron Mills, Pittsburgh, Pa., for ment. Addre
Help for the weak, nervous, and debilitated. Chronic and painful diseases cured without medicine. Pulver
macher's Electric Belts are the desideratum. Book, with full particulars, mailed free. Address Pulvermacher
Galvanic Co., 922 vine st., Cincinnati, Ohio.
Improved Pat. Friction Hoisting Engines of any
Bookbinder's Stock Cutting Machine. Send for Cir-
cular. Frank Thomas \& Co., Home St., Cincinnati, O.
Tackle Blocks with our New All-Steel Roller Bushed Sheaves. Same price as with brass. Penfleld Block

The Zero Refrigerator was awarded a grand Centen-
nial medal. Send for book. Lesley, 226 W. 23 St., $\mathbf{N} . \mathbf{Y}$ Silver Solder and small Tubing. John Holland, Cin
innati, Manufacturer of Gold Pens and Pencil Cases.
Mill Stone Dressing Diamonds. Simple, effective, and
Patent Scroll and Band Saws. Best and cheapest
Glase Oile Cly

(6)
B. will find directions for making an molian harp on p. 315, vol. $33 .-$ J. M. McG., Jr., should
read Paddlefast's articles in the Scientific American read Paddlefast's articles in the Scientific American
Supplementr--S. B. W. hould read our article on p. 33 , ol. 33, on the horse power of an enginc.-C. S. S. ca calculate the proportions of gear wheels by following
the directions on p. 107, vol. 34.-C. D. L. will find onp 26, vol. 33, an excellent recipe for paint for outdoor
work.-C. A. S. should valcanize his iron castings. See work--C. A. S. should vulcanize his iron castings. See
p. 315, vol. 33. This also answers S. T. B.-A. S. C will find directions for fastening leather or rubber to metal on p. 101, vol. 34.-H. W. S. will find directions
for making printers' rollers on p. 283, vol. 31.-C. S. M. for making printers' rollers on p. 283, vol. 31.-C. S. M.
will find directions for raising mushrooms on p. 129 vol. 34.-R. B. L. will find on p. 360 , vol. 34 , directions
for renorating galvanic action set up by putting zinc into an iron boiler supposed to prevent the formation of scale.-J. W. G $\&$ Co. will find tables of the specific gravity of water in
Box's "Practical Treatise on Heat."-B. B. will find something on the passage of water through pipes on p.
48 , vol. 29.-I. P. I. will find directions for making wood incombustible on p. 103, vol.34.-J. J. will find a good
(1) A. B. R. and many others: The Spitz nd has much of the same habit and temperament. Dr Hammond thinks that the Spitz is a cross between the Pomeranian hound and the arctic fox, and that it is probable that the saliva of the animal is nearly always poisonous in our climate, and particularly so when the
dog is at all irritated or excited. It is safe to say that he Spitz dog has never been completely domesticate cation. Nature has fitted him with a very warm an cation. Nature har, which allows him to be acclimated
only in the arctic regions, whence he has evidently been
brought, an unwilling captive. In appearance, the dog t maturity, generally averages 26 inches from the tip of his sharply pointed snout to his tail, which is quite bushy
and in general curls up overhis back. He stands about 12 or 15 incheshigh. His head much resemblesthe fox in shape; the ears are small, and the entire body is thickly covered with beautifully white, stiff hair, that stand
more or less straight out from the body. This hair very long-in so cases as men as three inchere pecially around the head, throat, and flanks, and gives
the dog the appearance of having a much larger bod heg the appearance
(2) C. S. V. says: A friend argues that cow can at will hold up her milk, that she can purposely hold it to go dry. Can this be true? A. The secretio
of milk by the cow is wholly involuntary. But it within her power to prevent the fiow of milk from the udder under ordinary circumstances. It is best thatthe
animal be relieved of her milk whenever the udder becomes fully distended.
(3) E. T. V. asks: What is the law as to he examination of druggists' clerks in New York city? A. All pharmacists must present satisfactory credentials or certificates of competency and qualifications to the Board of Pharmacy, when, on payment of a fee of two ness upon the register, they are entitled to a certificate from the Board. In order to register, the person must raduate having a diply, a some legally const tuted medical college or society. Graduates, in the mean ing of the law, are those persons who have had at least four years experience in stores where prescriptions of
medical practitioners have been compounded, and who have a diploma from any college of pharmacy within th
United States, or from some authorized foreign institution or Examining Board. Licentiates are those wh have had at least four years' experience in stores, etc., Examining Board or Board of Pharmacy. Applicant or examination must pay a fee of five dollars to the Board, and pass exama to ject. Persons fo a heavy fine.
ject
(4) H. W. S. says: We use wood basket or throwing charcoal on forge fires, and they are thu exposed to the fire, and are charred and burned.
cheap preparation can we use as a coating to protect them? A. Use a strong solution of tungstate of soda in hot water, or one of water glass. The tungstate costs
bout 25 cents per lb. The fireproof asbestos paint re of the asbestos powde. (a) T. Nod.
(5) T. McC. asks: 1. Is it possible to mix senzine and water? A. No. 2. Is it possible to mix linied by heating with an alkali, and the soap so forme dissolved in water. 3. Is there anything that will dis
solve glue without heat or water? A. Try strong acetic cid. 4. Is there anything that, if put on rosin, will d rosin on the roof that is newly tinet it off without dam aging the paint. A. We do not know of anything of the kind. Rosin is quite soluble in turpentine, benzine, naphtha, etc. 5. What is the quickest dryer for dis
temper color? A. See answer to C. D. R., p. 300 , vol. 36 . (6) C. H. W. asks: What is there about oncentrated lye to cause an explosion? A short tim nd was using concentrated lye: she had put a boo soa in a kettle, and when she thought it was boiled out, she ook it in her hands, and it exploded (there being a smal She has since taken lockjaw from the injury. A. We re at a loss to explain this strange occurrence. You
vidently have not given us all the facts in the matter. You should have stated what kind of a box contained
the lye, and what else was in the boiler at the time. Or the lye, and what else was in the boiler at the time.
dinarily there is nothing in potash or soda lye that can
(7) C., in speaking of an article publishe in our issule of March 24 on "Light and the Distance of the Stars, says: I question a problem frem them at a rate of 185,000 miles per second without knowing how long the light has been traveling. A. We reply by say-
ing there are no such problems, the distances of but very ing there are no such problems, the distances of but ver
few of the stars have been or ever can be measured these are measured by accurately observing their posi-
tion with regard to otherstars; and then, six months af tion with regard to otherstars; and then, six months af-
ter, when the earth has made one half of a revolution of miles to the right or left of ite former position, observations are again taken. And if there is no apparen change in the position, then we have no means of deter mining their distance; but if there should be a sligh change of position, the same as there is when a perso ances from him then knowing the distance we tave moved and the, mont of displacement produc hav may compute the relative distances of the objects. With tance is only a matter of reasoning: Take a group of stars like the Pleiades; if they are not at a very great distance from us, then they are quite near to each othe and as they have no motion to prevent, they would drawn together by their mutual attraction. Therefore
we reason that they are immense distances away from us and from each other, and the apparently small mo tions which they have are velocities which we have no conception of. Butwhether it takes light thirty years or thirty thousand to reach us makes very little difference, as the distance of either is incomprehensible Some persons have asserted that the immensity of space must be filled with stars, or else the outside ones would
be attracted toward the center, and thus fall togethe But this is not so, for a group of stars may have an or bital motion in which the centripetal and centrifugal orces are balanced, in which case it requires no outsid ttraction to keep them in position.
(8) S. B. G. asks: Why is it stated in text books that a degree is longer at the pole than at the
equator of the earth? A. It is because the length of
the degree on the earth is not measured from its center,
any more than a degree on an ellipse is measured from a cercle of which the. curve between the points measured on a art; therefore a degree at the equator is measur on a circle of shorter radius than at the pole. The
ength of the degree being proportional to the radius o the circle on which it is measured, it will be longest he pole.
(9) T. H. L. asks: 1. Why is it that some nd it wo difticult to climb ertrong in other respects, physical development scems to be no better, walk up themwithout any apparent difficulty? A.'The only assign able cause is an existing difference in the physical pow rs-strength of muscle and lung capacity-in comparison with the total weight. The difference betwee
many people in this respect is often a radical one What is the bestmeansthat may be used to overcome the difficulty? A. Physical culture in general is the only thing to be observed. Work in the open air and
(10) J. O. M. asks: How is the copper plat ng deposited on iron? A. It is usually applied by dipping the chemically cleaned
ion of sulphate of copper.
(11) D. C. H. says: Some months ago there appeared in a journal of materia medica an article describing a new kind of pottery which was said to stand toring sulphuric acid after the oil refiners have used it A. There is no ware of this kind thatwe know of that would prove of much service for your purpose. See p.
68 (No. 17) vol. 1, of Screvtific Americav Sup
(12) W. E. B. says, in reply to W. H. B.'s guery as to bisecting a triangle by a line passing through The following solution is from
"Land Survey
be the given tri
angle, and P be
the given point.
From P draw P
D parallel to
AC and $P E$ par-
allel to $\mathbf{B C}$. Bi-
sect A C in \mathbf{F},
nd join F D. From B draw B G parallel to FD, and bisect GC in H. OnHEdescribe a semicircle. On it Then $L M$, drawn from L through P, will be the re quired line bisecting the triangle
(13) A. C. says, in reply to C. A. C., in ron: We find the best speed to be that which cives circumferential velocity of about 24,000 feet per minute using a steel disk 42 inches in diameter, and from $1 /$ nch to ${ }^{\frac{5}{6}}$ inch in thickness.
(14) W. A. M. asks: What is boro-silicate of soda? A. It is a glass or enamel made with bor biborate of soda), soda and silicic acid (sand).
(15) E. W. asks: How can I make a cement quid? A. Fused paraffln is often employed for th purpose, also sealing wax. Sealing wax may be mad ccording to the following recipes: Fine red, No. 1 hellac (bleached), 4 ozs., cautiously melted in a bright 114 ozs Venice turpentine and 3 ozs vermilion. No Shellac 3 lbs., Venice turpentine 19 ozs., finest cinnabar los.; mix, and fuse as before. No. 3.-Same as last,
but use half the amount of vermilion. Common red Resin 4 lbs., shellac 2 lbs ., Venice turpentine and red lead, each, 11 l lbs. Bottle wax, No. 1.-Black resin 634
lbs., beeswax 2 ozs., finely powdered ivory black 1 lb . No. 2.-As last, but substitute, No 1 , very fine ivory black in impalpable powder, 30 parts, Venice turpentine 2 parts. No. 2: Resin 6 parts, shellac and Venice turpentine, each 2 parts. Soft red
Beeswax 8 parts, olive oil5 parts, Venice turpentine 15 parts, and red lexd to color. Green: As last, but substi-
tute powdered verdigris for red lead. The addition of little camphor makes the wax burn better. T d be dry, and, if possible, warm.
(16) J. S. B. and others, who ask about postage stamp mucilage: The government mucilage made as follows: Gum dextrin 2 parts, acetic acid 1 part, water 5 parts.
(17) H. G. says: I am running a horizontal engine of 4 inch cylinder and 6 inch stroke, with an upnches tubular boiler, the outside measure of which is 30 nches by 6 feet; and I experience considerable difficulty
in keeping up steam, and am in doubt as to whether th trouble lies in the engine, which is a pretty old one and Ooses steam somewhat, or whether the boiler is too small. What is the nominal horse power of the engine and of th boiler? A. You might settle the question definitely by
measuring the waterevaporated by the boiler, and using abrake at the same time to determine the power exertce by the engine. Any guess we could give from the data ent would be of very little value.
(18) R. G. G. asks: Will you please inform he how a compass is carried on an ironclad vessel, so that the iron will not have any effect on it? A. It is
eitherput up so high as to be out of the influence of the , orthe effect is counteracted by magnet
(19) J. H. M. says: 1. I have a $1 \frac{1}{2}$ horse power 6 inches in diameter. The boiler has twenty 15 and inch
in tubes. Cylinder is 3×4 inches, pipe from boiler to cylinder is $5 /$, and exhaust pipe $\frac{7}{8}$ inch. Engine when started requently throws water up the extaust pipe; and when
at work it will often throw ap a stream of water, which unless shut off, puts out the fire. Sometimes it will run
all day without throwing water. What are the cause and the remedy? A. You do not send sufficient particu-
ars to enable us to form a decided opinion. From your statement, it seems problable that the circulation in the
boiler is not very good, and that the water level is boiler is not very good, and that the water level is not
maintained constant. If this is a correct view of the case, you may derive some advantage by introducing a dry pipe, such as is used on locomotives. 2. The pump on the engine also troubles me occasionally, unless I loosen the cap of the first supply valve and let in a little air to start the suction, it will not pump. With a little air, it works all right, but causes a leak of water. A.
It may be that the connections are too It may be that the conn
speed at which it is run.
(20) B. S. asks: What are the advantages of cars running on trucks with 4 or 6 wheels vis \grave{a} vis to ne cars of two axles, with 4 wheels only? A. Every doubtless know; but their advocates consider that larger cars can be used, that will run more steadily, and go
round sharper curves. You will find a good discussion (1) W. D.
(21) W. D. D. says: I have a tank which bottom of tank 300 feet long, to fill a street sprinkling wagon tank. The water does not half fill the 3 inch pipe. What is the cause? A. It is quite likely that the
pipe has high points in which the air collects, and thus the effective area
(22) G. W. B. asks: If a gallon bucket be placed 20 feet under water, the top of the bucket bereaching up through the water through which the air may pass out, the bottom of the bucket being open, how ong will it take for the bucket to fill with water? How ong will it take for each distrnce under water for a $3 / 4$ inch pipe? A. The difference of time in the several
cases would vary as the square roots of the depths. cases would vary as the square roots of the depths.
There would be no appreciable difference with the two
(23) T. H. says: In your reply to W. L.'s Genery as to why a gun barrel scas due to the fact that the barrel is not soial or is foul, or to the shape of the breech. I have got a 0 fee it is an easy matter to hit a nail head in a rence cover with 20 slhot, as they scatter from 4 to 5 feet from hemark? A. You are confounding two distinct ar-
icles.
(24) E. H. says: A. claims that, when a steam fire engine goes to work from a cistern she is
pumping water, and, when the same engine goes to a plug and receives all the water she wants, that she is only discharging what she receives in her pumps or wells. B. claims that a steam fire engine is pumping water, no
matter how or by what means she gets it. A. There seems to be some confusion of terms in these questions, but we answer according to our understanding of them, water, while at the hydrant it only forces

Why are the front wheels of a wagon so

 man the hind ones? A. Principally to enable imaller readily.(25) L.F. C. asks: Why does the light coming ous from fixed stars appear to twinkle? A. Because
of the sudden changes in the refractive powers of different strata of the atmosphere, which are not sensible
the case of stars that have perceptible disks.
(26) J. H. S. says:1. I have an engine of 16 t 75 revolutions, with steam 10 lbs to the inch, cut-off at half stroke. The engine is doing all that it is safe to rive with it, by shaft 8 inches in diameter. Belt is so
large thatit will hold the engine still at any part of the stroke. I wish to drive two engines, each as powerful as the one I now have; and I propose to add one of the ame size on the other end of the shaft. The experts here say that I must make the shaft as large again as it
s, and the belt also. I say that both belt and shaft are as large as is required, as they have beaten the full power of the one engine. A. It is possible that you are right;
but you cannot know without making an experiment At most, however, the size of theshaft will not have to be greatly increased. 2. How long is the expanding steam useful after being cut off? Condensation has nothing to do with this; I take the ground that there is useful effect in steam until it is down to the pressure of the atmosphere, assuming in this case that there is no con10 ensation. My opponents say that if the engine takes 10 lbs . of steam to turn it over the center, that the ex-
pansion is of no use after the pressure has fallen below 10 lbs . I say that there is useful effect in steam as long as it is above the atmosphere, and so long will it give out useful effect on the piston. A. You have the right pressure, that is the limit of the expansion. 3. Is there any advantage in the engine valves like Corliss' over ordinary valves? Take the common slide valve with a
cut-off on the back of the main valve, the top valve to cut-off on the barked by the governor so as to cut off the steam at
be worked any part of the stroke. Is this advantageous, and which is the best of the two systems? A. The valve that
closes most quickly, and is the most nearly balanced, willgive the best results, other things being equal. (27) H. T. says: I see in your Supplement east 50 per cent lost. How does this loss occure If I orce 10 cubic feet air into 1 cubic foot space, would it exert a force of 150 lbs . to the square inch, and would it not give back all the power that it cost to compress
it, less the friction for packing, etc.? A. The statement to which you refer gives the reason. The air, instead of beingallowed to expand and give back the power re-
guired to compress it, is supposed to be admitted for the whole of the stroke.
(28) J. H. G. says:1. I am building an engine $114 \times 41 / 2$ inches, and wish to put it into a boat, with fine
ines, 30 feet long, of 7 feet beam and 30 inches draught. Pease give me the probable speed obtainable, the en and maki 500 a and making 500 revolutions per minute? A. Probable
apeed from 9 to 10 miles an hour. 2. What should be the heating surface of boiler and diameter and pitch of the screw? A. Heating surface of boiler, 150 square eet. Propeller, as large as can be submerged, of 3 feet
(29) M. T. S. says: I am making a machine can fing A. Paints or varnishes will not answer for this purpose. It is best to have the iron nickel or silve plated. See p. 232, vol. 36. "Prevention of Rust on
(30) G. C. Q. asks: 1. What volume of water in the state of vapor can be absorbed by a given
volume of sulphuric acid before the acid becomes completely saturated? A. Strong oil of vitriol will absorb more than twice its volume of water vapor; but as the ilution procecls, the absorbing power of the acid de nethod by which the acid can be rid of the water it ha bsorbed, so thatitis ready to absorb again? A. The only way is by evaporation with the aid of heat in glas porcelain, or platinum vessels.
(31) G. E. asks: How can I mix paint that will do for painting steam pipes or the parts of an en-
ine which are heated by steam? If I use water color it ubs off; if oil, it turns dark from the heat? A. If you do not wish to use a dark color, mix your paint to a
lighter shade than it is permanently to be, and let the lighter shade than it is permanentl
(32) J. V. B. says, in reply to D. D., whe asks what is the cheapest and best preparation for the preservation of shingles. Use to the 1,000 shingles. This preserves the shingl water to the 1,00 shingles. This preserves the shingles
and renders them to a great extent fireproof. Shingles made from wood of evergreen trees are best.
(33) R. B. R. asks: Is there any instrument in which, as in a reservoir, electricity could be stored to produce motion? If I should employ a windmill to generate electricity by a Gramme machine, could I store up the electricity until it acquired a certain and suff-
cient tension, and then draw from it as I choose, without the necessity of using plates, porous cells, carbons, etc and without danger? A. No. A battery composed of
Leyden jars may be charged with statical electricity, but the quantity of electricity that can be so stored is lim of time. Low tension electricity, such as is used on telegraph lines, cannot be stored.
(34) J. F. D. says: Some time ago I made a voltaic pile, which I cannot get to work. I put circula blanks, 4 inches in dhameter, thus: Copper, zinc, fabric,
copper, zinc, fabric, etc., punched holes in center of copper, zinc, fabric, etc., punched holes in center of
them, and piled them up around a stick. Please tell me what is necessary to make it work? A. Remove the the disks moesten the pieces of cloth. The shape way infiuence the strength of current. Make the cloth the same size as the disks with which it is in contact. It will require several hundred of the couples to produce a sensible spark.
(35) A. B. asks: How can get I rid of lice hot soap and water, and afterwards apply spirits of tur pentine or kerosene oil. Also strew some sprigs and
branches over the floor of the coop. The building should be kept clean.
(36) S. R. S. says: Having read that an en gine has been disabled by putting a bar of soap in the
tank, I wish to know what the action of the soap in the boiler was? Did it cause fouming? A. Yes. without injuring the cloth? A. Moisten the spotte without injuring the cloth? A. Moisten the spotted
parts thoroughly with pure benzole, and immediately cover them on both sides of the cloth with dry pipeclay or tripoli powder. Then p.ace under a weight for some time, and the spots will disappear
(37) H. E. L. asks: Is there anything that where is nothing that we know of, except a good stee eraser or sanded rubber. Indian ink contains finsly a vided carbon, which is unaffected by any ordinary sol
(38) J. A. H. asks: What size of wire and how much in length shall I use for magnets for the elec tro-magnetic engine described in ScIentific American Supplement No. 19, to give the most power with a
simpth Calland cell? If I use 2 cells, how shall I connect them? What is the rule for estimating the resistan of batteries and of magnets and other wire connections
in order to proportion one to the other? Mr. Sawyer says, in descrioing the engine above referred to: "No 31 wire is the best size for magnets;" you say, in an swer to a subsequent inquiry on the same subject, "use No. I8 w.re. Can you explain this? A. With a given the resistances of the battery and magnetizing helix ar qual. The average resistance of a medism size Cal and cell in good condition is about 1.5 ohms, cons quently the resistance of the helix shonld be the same according to the above statement, and this is equivalen to about 350 feet of No. 18 or 90 feet of No. 23 pure cop per wire. With a Grove cell, large wire and fewer convo
lutions would be best.
(39) H., I., \& Co. ask: Does the putting of oncentrated lye in boilers, to soften the scale, injure ut may cause the water to foam.
(40) C. R. asks: How can the lambskin prons used by freemasons be cleaned? I used be ne, it frees them of dirt, but makes them look ding and yellow. A. Have you tried soap and water? It ot probable that the benzine would leave a stain on the ool if used in excess. Bisulphide of carbon is amon he best solvents for oil and grease, and will perhap
give better results than the benzine. Try also wood naphtha. If too little of the solvent is used, it will only carry the stain from the surface further into the mate rial. It should be observed that all of these oil solvent end to destroy the pliability of the leather and necessi ate its re-priming or oiling after drying
Minerals, etc.-Specimens have been re eived from the followinr correspondents, and examined, with the result stated:
D. M. B.-It is a coarse sand formed bythe disintegra
ion of granite. If you look at it with a strong magni
fying glass, or low power microscope, you will find it
composed of films of mica, orthoclase, and quartz cry tals. It contains some iron oxide and pyrites,-N. B. B. -They appear to be all carbonate of lime crystals-ca
ite. The varieties of calcite are very numerous and verse in their diaphaneity, crystalline structure, and color, the variation being due to the different modes of rigin and impurities.-W. R. L.-It is graphite or plum able to classify the shells, as they were very much broken and imperfect-M. M. B.-It is a hematitic iron ore, containing crystals of iron pyrites. See p. 7, vol. 36. It is of little value.-A., Bros.-It is graphite, an allotropic form of carbon, sometimes called plumbago and black lead. It is found associated with sphene, tabula par in granular limestones, with pyroxene, spinel, chron-
drolite, hornblende, scapolite, syenite, and in some iron ores. It is used for lead pencils in black lead crucibles, and as a substitute for oil in lubricating machinery; and it constitutes what is known as stove blacking. It is found in many parts of the United States, and is mined at Ticonderoga and Fishkill, N. Y.,
at Brandon, Vt., and in North Carolina. Its marke at Brandon, Vt., and in North Carolina. Its marke
priceis from 3 to $61 / 2$ cents per lb.

COMMUNICATIONS RECEIVED

The Editor of the Scientific Ambrican acknowledges, ontributions upon the following subjects: On Flying Machines. By D. J. On Interference Colors. By H. M On Interference Colors. By h. M On a Snake-Eating Frog. By C. F. S
On a Needed Invention. By J. E. E. On Microscopy. By P On the Flight of Birds. By J. H. H. On Cutting Gears. By M. J. S

HINTS TO CORRESPONDENTS

 Correspondents whose inquiries fail to appear should that, for good reasons, the Editor declines them. The ddress of the writer should always be given Inquiries relating to patents, or to the patentabilityof inventions, assignments, etc., will not be published here. All such questions, when initials only are give re thrown into the waste basket, as it would fill half of ur paper to print them all; but we generally take pleas ure in an.
Hundreds
e sent: "Who sells hydraulic ros to the following circulars descriptive of them be obtained? who makes steel wire, suitable for spiral springs, to be wound cold? Whosells sal soda and soda ash? Who buys bones, and what are they worth? Who sells machines for setting pins in rubber cloth, for making metallic hair brushes? served, in the column of "Business and Personal," which is specially set apart for that purpose, subject to the charge mentioned at the head of that column. Almost any desired in
expeditiously obtained.
official

INDEX OF INVENTIONS
Letters for whic

Granted in the Week Ending

April 24, 1877,
AND EACH BEARING THAT DATE.

[Those marked (r) are reissued patents.]

A complete copy of any patent in the annexed furnished from this office for one dollar. In ordering, and remit to Munn \& Co., 37 Park Row, New York city

Air, cooling, etc., M. J. Kelly (r) Anvil, cast iron. C. Fis
Awl, G. P. Harley...

Barrel hoop, wooden, McEachern \& Burrell.

Bed bottom, J. J. Lucas.
Bedsteads, W. J. Myers 190,06
Beer forcing apparatus, J. s. Von Nieda......
Bleaching cotton seed oil, etc..................... Macdonald
Blind slat adjuster, J. G. Broemser
Boat, folding,J. H. Bate

Boiler heads. flanging, Miller \& Folden

Boots, nailing machine, L. R. Blake 189,835, 189,836,
Boot uppers, crimping, E. Corbett
Boot making, nailed, L. R. Blake
Boot making, nailed, L. R.
Bottle stopper, C. Sedgwik.
Box scraper, J. P. Tierney.
Bracket, E. H. Bates...
Breech loading fre arm,
Brich kilading fire R. McDougal. Butter worker, D. A. Frick
Cake cutter, H. Erzinger.
Calico printing blanket, C. McBurney
Car brake and starter, W. Marea
Car coupling, R. A. Kelly (r)...
Car coupling, R. A. Kelly
Car heater, L. Capron.....
Car spring, A. Middleton.
Car starter, J. s. Van Pelt,
Car, steam street, J. D. Im boden
Car, etc., steam plowing, S. T. Shankland
Cartridge base former, Salisbury \boldsymbol{d} Hunt.
Casting mould boards, chill for, J. Olive
Chain, ornamental, H. Wexel...
Chair, folding, Stevens $\&$ Walla
Chair, oscillating, H. Geise......

Check rower, and dropper, S. 11. Worth
Chronometric governor, E. H. Randall Chuck, A. Hurd......

Chuck, Siler \& Brooks. Churn, G. W. Crosby.

Churn dasher, J. A. Starnees Clock, electric, C. E. E. Brush.
Coal cabinet, G. Rosenqvist Coal cabinet, G. Rosenqvist....
Coil spring band, F. Armstrong. Coin drawer, J. A. Read ...
Coin holder, H. G. Huested Cooling liquids, H. B. .scharman
Copy book, J. W. Mannin Copy book, J. W. Mannin Corn planter, F. W. Shellabarger Corn stalk press, Davis \& Fisk
Corset, M. M. Harriman...... Cotton, opening, etc.. Whitehead \& Atherto Culinary boilier, I. A. Robinson.. Cultivator, J. M. Long.......
Curtain tassel, S. H. La Rue Cutter head, O. Lindblad................ Ditching and draining, A. Swift.
Doll, talking, W. A. Harwood..
Door check. J. B. Everest
Drilling, holding work for, A. Hur
Drilling mechanism, O. S. Hosmer Drilling mechanism, O. S. Hosmer.....
Electric alarm indicator. A. Bradford. Electric machine, magneto, C. F. Bru
Electric railway signal, H. Brunius Electric railway signal, H. Brunius...
Elevator, W. W. Blakeslee.........
Elevators, indicator for, T. S. Young Elevators, indicator for, T.
Engine, rotary, N. Nilson. Fare box. J. D. Pierce.
Faucet, H. B. Leach. Faucet, L. A. Rebasz... Faucet, drip cup for, F. Brigham
Feed water heater for boilers Feed water heater for boilers, A. T. Denison.
Fence, barbed, G. G. Hunt..................... Fence, barbed wire, A. E. Bronso
Fence, barbed wire, C. W. \& W. Fence post, metallic, J. Brinkerhoff Fence rails, making barbed, L. M. Woodcock Fire escape, c. Dwight.
Fire escape, O. Sherwood. Jr.....
Fire extinguisher, A. S. Austin
Fire extinguisher, C. F. Girard
Flour, reducing cereals to, \mathbf{v}. Ryerson....
Frame corner, J. E. Goodrich
Fruit dryer, S. Myers...........
Fuel composition, C. M. Adam
Fumigator, G. T. Blancha
Gas burner, F. D. Bliss.
Gas heater, C. H. Prentiss (r)
Gas machine, F. W. Ofeldt
Gas machine, F. W. Ofeld
Gas making, W. H. Tupper
Gas retort chargers, flling, T. F. Rowland (r)

Grain binder, H. Hull

Grain separator, T. J. Hubbell
Grain separator, G. B. Turner.
Grinding machine, T. R. Stewart.
Gun stook, adjustable,. . Hartley
Harness sad. J. Vinton,
Harrow, cultivating, R. Hamilton
Harrow, cultivating, R. Ham
Harvester reel, J. J. Dewey
Hay for fuel, twisting, J. S. Foster(r)
Hinge, D. W. Long
Hinge for carriage doors, etc.,................
Horse rake, revolving, L. Bissell
Horses to vehicles, attaching, H. E. Chadwic
Horseshoe naing, W. B. Killourne...
Hosecoupling, W. A. Rideout....
Hosecoupling, W. A. Rideout......
Hose reel, automatic, H. C. De Witt.
Hot air regulator A. C.
Hubattaching device, Lathrop \& Allen
Hydraulic engine, W. H. Clark....
Ice boat steam, J. \& J. Arnao, Jr
Ice batat steam, , J. $\boldsymbol{\&}$ J. Arnao, Jr
Ice creeper, A. T. Moore
Ice creeper, A. T. Moore.
Ice machine, D. L. Holden
Ie machine, D. L. Hoate.........
Irourng table, D. Choal b.
J. Sturtevant.
Knife and fork cleaner, A. E. Van Horn
Lamp, G. Chappel.
Lamp, J. Kirby, Jr....
Lamp, L. H.olmste.
Lamp burner, G. H. Chinnock (r)
Lamp chimney, W. H. Mason
Lamp chimney, W. H. Mason................................
Lamp fixture, extension, J. A. Evarts (r)....
Lamp, student, J. Kirby, Jr...
Lamp, vacuum, H. Wellington
Lantern, pocket, G. E. Parker
Leather for ornamentation, H. Huck..
Lifting jack, F. Griscom......................
Lock, combination, Pillard $\boldsymbol{\varepsilon}$ McPhe
Lock, combination, P. Shellenback
Locks, key guide for, L. Hillebrand.
Loom shuttle box mechanism, F. Christen
Lubricator for steam engines, w. R. Petrie
Magazine fire arms, lock for, G. F. Evans
Magazine gun, W. R. Evans (r).
Measuring coal, etc., T. F. Rowl Measuring coal, etc., T. F. Rowlan
Meat chopper, M. . Edwards.....
Mechanical movement, N. Nil
Mill bush, R. T. Jennings, Sr..
Musical instruction, device, R. S. Hill(r)
Neck band, N. W. Caughy
Neck tie retainer, W. T. Buckner
Nut lock, J. C. Wright...............
Ore feeder for stamps, M. P. Boss. Ore sluice and concentrator, G. R. Evans. ore washer, H. E. Taylor.
oven rack, J. F. Houghton
Oven rack, J. F. Houghton
oyster opening machine, ,. W. Temple
Packing, making asbestos. H W. G
Pantaloons, S. L. \& L. M. Thompso
Paper bag machine, R. H. Thayer.
Paper bag machine, R.
Paper box, E. Morgan
Paper box, E. Morgan
Paper cutting machine, E. R. \& T. W. Sheridan
Parquetry, making, Newhouse \& Allen....... Parquetry, makng, Newhouse \&.
Passenger register, Fowler et al..
Peg float or cutter, Maris \& Hart. Peg float or cutter, M
Pencil, O. M. Allen
Photographs, enameling, M. R. Freeman Picture exhibitor, O. Williamson
Picture e rame Picture frame, F. Odenbaugh
Piles, drawing broken Piles, drawing broken,
Plow, C. Atkinson.....

	Plo
	Plow, J. F. \& R. I. Wilson
	Plow stock, N. J. Skaggs
	digger, L.
	ller, steering, टnler
	Pruning implement, J.
	11 for
	Pump, J. C. Wright 189,983
	Rails, reducing odd Hill et al 199894
	Rails, ete, detecting, A. Herring.................. 19,8,88
	Railway switc
	e, Br
	Range, nursery cooking, L. Tobey................... 189,968
	Rattan, sawing, E. F. Woodbury................. ${ }^{190,109}$
	tan machines, measuring, N .
	igerator building
	exhauste
	Sash fastener, C. W. Penfild -......... 190,074
	hold
	Saw, W. P. Miller................................ 19,002
	Aler and
	handles
	es, pla
	ees, sack, C. F. Fla
	cutting die
	ndin
	Sewer gas trap, B. P. Bower . \qquad 189,888
	ngac
	gmach
	g machin
	g machine clutch, F .
	Shaping metal articles, G. F. Evans............... 189,49
	Sheetmetalcan, F. C. Fleming......... 199,91
	t metal can, L. \mathbf{V}. Sone..................... 190,094
	el and tongs, G. W. Whe
	aki
	Show cards, etc., mounting,
	Slasher, Briggset al
	C.
	spark arrester, w. - . Urea
190,026	Spool show box, r. Trautmann................... 190,099
189,9	Station indicator, J .
	Steam boiler, P. Fitzzibbon
	steam boiler, C. D. Smith
	Steam boiler feeder, D. Iffland
	Step ladder, o. Sherwood,
7,636	Stove, cooking, N. A. Aoynton (r)................. 1 , 18937
189,873	Stove, oil burning, J. H shaut 190,034
189,9	damper, N. C. Whitcomb............... 190,106
7,631	etc., grate for, R. Simpson 190,91
	le, extension, G. Hes
	Eaking, Le S.
\%,022	Telegraph, printing, P. A. J. Dujardin (r) ${ }^{7,627}$
退 88	Telescope, A. Moser T.i.......................... 189,950
189,955	Timber, dressing, w. H. Knight..................... 189,64
189,	Tobacco, marking plug, G. S. Myers............... 199,951
189	brush. S. Stevens.......................... 189,963
190,	rithmetical. L. Wieser...................... 199,979
$19,0,031$ 190013	money box, J. Hall 189,987
8,013	
7,639	
$\begin{aligned} & 189, \\ & 189, \end{aligned}$	
	mbling barrel, J. C. Coonley 190,009
	pine water wheel, J. Hough
$\xrightarrow{\text { 199,011 }} 1$	Tuyere, C. A. Woif 190,108
	Umbrella, A. A. E Cohn Umbrellarunner, J. J.
	ve gear, T. Scheftler 190,083
19	etable silicer, J. H. Alfred -................. 189999
	iole platform spring, Milks $\boldsymbol{\&}$ Wataon.......... 189,871
	gon, dumping, L. Rodenhausen.................. $19.0,078$
${ }^{189,999}$	on loader J. J. Verckler 19,9975
190	gon spring, J. D. Brunner 19,0009
189,	(enon, steam road, G. W. Wade 189,987
	gon top, H. W. Calderwod.........................199840
189,974	sh board, J. Poole....................................19,876
${ }^{199004}$	Wash boiler, H. Gotharat..................... 190,129
	Wash bowl, W. H. Cloke 189,84
1900069	chman's time detecter, J. H. Marvil.......... ${ }^{\text {190,058 }}$
	er closet. W. S. Carr (r)..................... ${ }^{7,626}$
189	ter closet service box, R. Mitchell.............. 189,947 ter closet valve R. ${ }^{\text {a }}$ (Thomas
${ }^{7,7628}$	Water closet valve, R. J. Thomas 189,983
1001	Water wheel L L L ${ }^{\text {denuria }}$.......................... 199.012
190.104 19003 10,	Water wheel T. Tripp 189,970
1999,953 19	
190	Whifletree hook and clip, Ewart \& Coonley....... 190,019
1199956	Whip, G. P. Overin 189.954
	Wire stretcher, Davenport \& Hicks 189,966
190,088 190,035	Zinc, prepariog sheet, A. O'Neill 190,31
189,922	
189,875	DESIGNS PATENTED.
7,635	
190,017 190,066	
190,048	9.033,-CARPEts. - A. baye, London, England.
190,025	9,904.-Chairs.-P. Diehl, New York
T,40,03	9,905, 9,906.-Button Cards.-J. Fenton, Birmingham. England.
190,001	
189997	9,914,-Organ Cases.-J. r. Lomas, New Haven, Conn.
1899,988 18988 18	9,915-Glassware.-J. B. Lyon, Pittsburgh,
189,937	9,97\%-BAs RELIEFT.-G. Beck, Highland, N. Y .
966	9.918.-BAder.-J. McCoy, Ypsilanti, Mich.
	9,919.-Dress Fringe - M. Blau, New York
	${ }_{9}^{9,920,9,921 .-C A R P r e s s,-E . ~ D a n i e l, ~}$
9,899	9,932 to 9,935.-CARPETing.-O. Heinigke, New Utrecht, N. Y.
\%,089	
	-Locket.-F. Keller et al, New York
	9,942, 9,943.-CARPbting. - C. w. Piggott, New York city.
	to 9,946.-CARPeting.-J. E Rollings, N. Y
189,986 190,083	9,947.-Towel Borders, etc.-R. T. Webb, Randallstown, Ireland.
189,912	remitting one dollar to MUNN \& Co., 37 Park Row, New York city.]

