The Achievements of Science

Dr. Oliver Holmes, the poet, author, scientist, inventor of addres ar stereoscope instrument, recently delivered an mainly an illustration of the progress of microscopy-in the construction of the instruments and in the discoveries by their aid. "To those of my generation," he began, "this modern world which most of you take as a matter of course it being the only condition of things of which you have had experience, is a perpetual source of wonder-a standing miracle. Science and art have in our time so changed the aspect of every-day life that one of a certain age might well believe himself on another planet or in another stage of existence. The wand of Prometheus is in our matchboxes; the rock of Horeb gushes forth in our dressing rooms; the car pet of Arabian story is spread in our Pullman car; our words flash from continent to continent; our very accents are transmitted from city to city; the elements of forming worlds are analyzed in our laboratories; and, most wonderful and significant of all, the despotic reign of tradition received its deathblow when the angel of anæsthesia lifted from woman hood the worst terrors of the primal malediction."

Mind and Health

The Science of Health says on this subject: "The mental condition has more mfluence upon the bodily health than is generally supposed. It is no doubt true that ailments of the body cause a depressing and morbid condition of the mind; but it is no less true that sorrowful and disagreeable emotions produce disease in persons who, uninfluenced by them, would be in sound health-or, if disease is not produced, the functions are disordered. Not even physicians always consider the importance of this fact. Agreeable emotions set in motion nervous currents, which stimulate blood, brain, and every part of the system into healthful activity; while grief, disappointment of feeling, and brooding over present sorrows or past mistakes, depress all the vital forces. To be physically wellone must, in general, be happy. The reverse is not always true; one may be happy and cheerful, and yet be a constant sufferer in body.

Curious Electrical Experiment.

If an ebonite electrophorus be whipped with a fox tail, it is negatively excited, and the condenser gives positive sparks. If, again, the electrophorus be rubbed with leather on which is some mosaic gold, the ebonite disk is positively excited, and the condenser gives negative sparks. It is stated by M. Schlosser, however (Poggendor:f's Annalen), that if the same ebonite disk be excited on one side with the fox tail, on the other with mosaic gold on leather, one may at any moment obtain from the same disk positive or negative electricity, according as the one or the other surface of the electrophorus is used as the source. The most important point in this double excitation is the very much greater ength of spark, as is readily observed by the eye. On the ther hand, considerably shorter sparks are obtained from the same electrophorus when both sides are similarly excited, for example, whipped with the fox tail.

NEW YORK ACADEMY OF SCIENCES

A regular meeting of the Academy was held in its rooms, at Madison Avenue, on Monday evening, May 1, 1877, Dr. J. S. Newberry, President, in the chair. The audience, drawn together by the announcement of an exceedingly important paper on a new and interesting subject by one of our leading chemists, was unusually large and intelligent, and included several ladies.
After the transaction of some routine business, Dr. H. Carrington Bolton read a paper on the

CTION OF ORGANIC ACIDS ON MINERALS
The speaker at first described the use of organic acids in quantitative analysis to prevent the precipitation of certain metals, and the use of tartaric acid in Fehiing's sugar test, and to dissolve antimony, etc. The use of organic acids for decomposing minerals is, however, a novel one. While on a mineralogical tour in North Carolina, he had frequently felt the inconvenience and danger of carrying a bottle of mineral acidfor recognizing the carbonates; and he determined, on his return, to try to substitute for it some crystalline organic acid To his surprise, the results were very satisfactory; and he extended his investigations to a dozen different carbonates, eighteen sulphides, twelve oxides, twenty-four silicates, and several miscellaneous minerals, in all 120 specimens, embracing 90 different species. The action of citric tartaric oxalic, malic, pyrogallic, benzoic, and other acids was studied. The following are a few of the points noticed: Organic acids act more slowly than mineral acids, and frequently some time elapses before effervescence begins. Citric acid acts most rapidly and satisfactorily; next to this is tartaric acid; oxalic acid acts in a similar manner, but more frequently forms insoluble compounds, which are sometimes characteristic of the mineral. Acetic acid does not have any effect on the carbonates; and when heated to boiling, the acid distils off, whereas the other acids are concentrated by boiling. Glacial acetic acid does not act unless somewhat diluted. Formic acid is more active than acetic. Propylic acid decomposes several carbonates; pyrogallic acid decomposes calcite. A few experiments were made with metals. Citric and tartaric acids dissolve iron; and citric acid, with zinc, can be employed to generate arsenurietted hydrogen.
When sulphides are subjected to the action of citric acid, sulphuretted hydrogen ($\mathrm{H}_{2} \mathrm{~S}$) is evolved; carbonates yield carbonic acid, CO_{2}.

In the case of minerals not attacked by an organic aci alone, the experiment was tried of mixing citric acid with saltpeter $\left(\mathrm{KNO}_{3}\right)$, whereby nitric acid is generated on boil ing. Chlorate of potassium was also mixed with the citric cid, but with less satisfactory results.
When silicates are boiled in a solution of citric acid, silicic ad ($\mathrm{Si} \mathrm{O}_{2}$), either pulverulent or gelatinous, separates.
By mixing citric acid with fiuoride of ammonia $\left(\mathrm{NH}_{4} \mathrm{~F}\right)$ hydrofluoric acid is evolved, which is able to attack most of the silicates not otherwise decomposed, including all the constituents of our common rocks. The following tabl shows at a glance the
MINERALS DECOMPOSED BY CITRIC ACID ALONE AND WITH
The mineral tested is to be in a fine powder.

In the cold.	
B.	C.
With liberation of	With liberation of
CO	
H.	

	On boiling.	
D. Without evolution of gas.	$\begin{gathered} \text { E. } \\ \begin{array}{c} \text { With liberation of } \\ \mathbf{C O}_{2} . \end{array} \end{gathered}$	$\begin{gathered} \text { F. } \\ \text { With liberation of } \\ \mathrm{H}_{2} \mathrm{~S} . \end{gathered}$
Zincite.	Magnesite.	Bornite.
Gypsum.*	Siderite.	Bournonite.*
Apatite.*	I'yrolusitc. \dagger	And those in C.

Inventions Patented in England by Americans.

 From April 10 to April 23, 1877, inclusiveBreecr-loadiva Gun.-B. Fasoldt et al., Albany, N. Y.
Cartridge Shell.-C. D. Leet et al., Springfield, Mass
Cigar Lighter, etc.-R. R. Moffatt, Brooklyn, N. Y. Cigar Lighter, etc.- -G. Selden, brie, Pa.
Coai oil Stove.-J. A. Frey, New York city. Fire extinguisher.-H. S. Maxim, New York city. Fluting Machine, etc.-C. M. Meserole, New York city
Fruit Jar.-A. Dickey, Middetown, Ohio Frutr Jar.-A. Dickey, Middletown, Ohio.
Lighting Gas, etc.-E. Lindsley, Cleveland, Ohio
dighting Gas, etc.-E. Lindsley, Cleveland, Ohio.
Loom-J. V. D. Reed, New York city.
Metallic Packing.-W. H. Floyd, Boston, Mass.
Pulley, etc.-G. G. Lobdell etal, Wilmington
Pumping Engine.-G. F. Blake, Boston, Mass.
PUTTING UP Powders, etc.-C. R. Doane, Brooklyn, N. Y.
Refrigerator, etc.-J. C. Mack, Brooklyn, N. Y.
Refrigerator Car.- W. H. Klapp et al, New York city
Refrigerator Car.- W. H. Klapp et all, New York city.
Rock Drill.-W. W. Dunn (of San Francisco, Cal.), London, England.
SHEet MEtal.-C. D. Leetet al

Sugar machinery.-F. O. Matthiessen et al., Irvington, N. Y.
Winding Thread.-A. C. Carey, Malden, Mass.

为efent Smerican and forgign zatents.

Inventors who are desirous of disposing of their patents would find it Inventors who are desirous of disposing of their patents would ind it ican. We are prepared to get up first-class wood engravings of inven tions of merit, and publish them in the Scientific American on ver reasonable terms.
 We shall be pleased to make estimates as to cost of engravings on receip of photographs, sketches, or copies of patents. After publication, th cuts become the property of the person ordering them, and will be foun

NEW MISCELLANEOUS INVENTIONS.

improved die for cutting leather.
Albert Warren, Jefferson, O.-This die, which is made of steel, of the shape of the article to be cut, and a little smaller at its cutting end than a heother, so that the pieces cut may pass through it freely, is fitted into hole in a block of wood, so that its rear edge may be flush with the lowe it of the same shase the A block or wood having a hole formed throug it of the same shape as the cutter serves as a base support for the die. In or counter for the pieces to drop through. The material to be cut is the laid upon the edge of the die and is struck with a wooden mallet. With this construction the whole force of the blow is expended in making th cut, as the die does not have to be moved by the force of the blow.

IMPROVED HARNESS PAD

Miron V. Longsworth, Delphos, O.-The object of this invention is to improve the construction of the harness pad for which letters patent wer granted to same inventor July 18, 1876, so as to make it stronger ard more durabie, and less liable to get out of order. The device consists in the crossbars upon the
the saddle strap.

improved ice ax.

William H. Coleman, Salisbury Mills, N. Y.-This tool combines in single instrument an ax for cutting ice, a pike for pushing it from place to
improved crayon for marking on glass
Bernard J. Clarke, New York city.-This crayon is adapted for marking on porcelain, glass, or other smooth surface; and it consists in a compo sition formed by mixing a pigment with melted beeswax, suet, and oil of cedar. The marks made may be readily erased by rubbing.

IMPROVED PHOTOGRAPHIC BURNISHER.
James H. Ferguson, Leavenworth, Kan.-This consists in the combina tion of a bedplate, to which a burnisher is attached, a feed roll, and an adjustable frame for supporting the feed roll over the burr:isher. The object of the invention is to provide apparatus for which the ing ing photographs, in difficulty of the roll becoming moist from the condensation of the vapo from the lamp used.
improved steam tank for cooking fish and meat in
Francis M. Warren, Portland, Oregon.-One end of this tank, which i of boiler iron, is left open, and around its edge is formed a rim having cams, which, when the door is in place, may be turned to press the sai door to its seat steam tight. In the bottom of the tank is coiled a stean pipe, which is perforated with numerous small holes, to allow the steam to escape into the said tank freely. To the bottom of the tank is attached track for the hand cars, upon which the cans are piled, to be run in an track for the
out upon.
improved ten pin ball
William Woods, Brooklyn, E. D., N. Y.-The object here is to improve the construction of ten pin balls, to prevent the balls from being chipped offls, so that they will roll perfectly true. To this end, metallic bushes ar inserted in their finger holes.
improved apparatus for drying hides.
James N. Duffy, Newark, N. J.-This invention furnishes an mmproved means for drying and stretching hides. thus dried without fold or wrinkle.

Improved cast iron exterior coffin or vadit.
Robert Beachman, Lyons, N. Y.-This is an improved individual vault air, and thus preserve them. It protects the body and enables the vault and body to be removed.

IMPROVED BUTTON.
Benjamin Bailey, Yale, British Columbia.-This consists of a button with recess for attaching a spring steel hook of the suspenders, the button plate, to the waistband of the pants.

