## Srimutifir Smorian.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors

## published weekly at

NO. S' PARK ROW, NEW YORK
o. D. MUNN
A. e. BEACH.

## TERMS FOR THE SCIENTIFIC AMERICAN

 One copy, one year, postage included...One copy, six months, postage included

The Scientific American Supplemen

| $\begin{gathered} \text { cove } \\ \text { for } \end{gathered}$ |
| :---: |
|  |  |
|  |  |
|  |  |
|  |  |

Publishers' Notice to Mail Subscribers. Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to For the convenience of the mail clerks, they will please also state whe their subscriptions expire.
New subscriptions will be entered from the time the order is received,
but the back numbers of either the Scisw but the back numbers of either the Scientipic American or the SCIEN-
TIFIC AMERICAN SUPPLEMENT will be sent from January when desired. In this case, the subscription will date from the commencement of the volume, and the latter will be complete for preservation or binding.

VOL. XXXVI., No. 20. [New Series.] Thirty-seoond Year. NEW FORK, SATURDAY, MAY 19, 1877


TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT, NO. 72,
For the Week ending May 19, 1877








 trical Eeals - B
5illustrations.



## recent improvements in photography.

Two interesting improvements, of promising practical im. porance, have of late been made public. The first relates to without the use of the nitrate of silver bath.
The common method of photography, that universally practised in all galleries for portraiture, and for the best outdoor work, is known as the wet plate process. It consists in sensitizing the collodion plate by dipping in a liquid charged with nitrate of silver. The sensitization is effected in about three minutes' time; the plate is then withdrawn from the bath, quickly placed in the camera, and the picture taken and developed before the plate has time to dry When all the chemicals are in good order, the bath pure, the exposure rightly timed, and the development skilfully done the most beautiful results are produced. Indeed, there seems to be no room for improvement in picturesque details, realized by the best wet plate operators.
But the method is attended with many inconveniences and irksome details. The gallery photographer must keep in readiness a first-class bath, the purity of which is lessened by every plate that goes in: and the bath soon requires renovation. The plates cannot be prepared and sensitized so as to be ready for use in advance of the opening of the day's business, but must be prepared and developed after the customer comes. Should the negative proveunsatisfactory, a new plate must कe prepared and developed; and thus the bother of the plates involves the loss of so much time that the operator has little chance to consider the best positions for his subject or to study the artistic accessories that go to make up a finished picture. For outdoor work, wherever the photographer goes he must lug his bath along, even to the mountain top, and must there have a dark tent, and water for washing and developing; otherwise his efforts are fruitless. For several years past it has been the study of photographers to discover a reliable method of preparing highly sensitive plates without the use of the bath-a method by which the plates could be used when dry. Among the results of these efforts are a of skilled operators, yield excellent results. But nearly all of them have proved less sensitive or less excellent in their results than the wet process; and none have been able to compete with the latter for portraiture or gallery work.
The French Photographic Society in 1876 offered a prize for the best dry process which should unite rapidity with all the other qualities that go to make a good negative. The
competion was closed in December last ond the jur competion was closed in December last, and the jury have
recently awarded the prize to Mr. Alfred Chardon. The process appears to have advantages over some of its prede cessors, but there are inconvenient details about the development and some uncertainty in the summering and wintering of the emulsion; while the prepared plates require twice as much time for taking the picture as the wet plate. Moreover, the proc
of the gallery.
The author of the new process which we have now to de scribe, and to which we would direct the attention of photo graphers as a complete and perfect substitute for the wet process, both for indoor, gallery, portrait, outdoor work, and all descriptions of photography, is Mr. Heiry J. Newton, of this city, President of the Photographic Section of the American Institute
We have seen the process worked under the author's hands and examined some of the results. We believe that practical photographers, when they come to examine the negatives and prints, will agree with us when we say that they are unsurpassed by anything as yet produced by the
wet process. They will akso agree with us that Mr. Newwet process. They will also agree with us that Mr. New-
ton's process is simpler, quicker, easier, less expensive, and ton's process is simpler, quicker, easier, less expensive, and
more certain in the excellence of results than the old method. Moreover, for gallery and outdoor work, it presents the striking advantage of enabling the photographer to
prepare in advance a stock of sensitive plates, and of keep prepare in advance a stock of sensitive plates, and of ke
The Newton is an emulsion process. The silver is mixed with the collodion, which remains good for use at any time within a year or more. A glass plate is flowed with this collodion in the usual manner; the plate is then dipped in water: it is then ready for use either before or after drying. The picture being taken, it is developed by simply flow-
ing the plate, in the ordinary manner, with a solution of cerbonate of soda and pyrogallic acid; then fixed with hypo. or cyanide as usual. This is all the manipulation required ior the most beautiful, clean, and splendid negatives. As to than half the time necessary for wet plates. Portraits by the Newton plates are taken in from five to ten seconds while the wet process, same light and lenses, requires from twenty to forty seconds. For outdoor work, the Newton plates yield as good or better instantaneous pictures than wet plates
The exact formula for the emulsion has not yet been made known by Mr. Newton, but will in due time be freely given to the public. It is sufficient for the present to say that the emulsion is prepared with an excess of free nitrate of silver, which is allowed to remain for a certain number of hours, when chlorides are added. The Scoville Manufacturing Company of this city supply the new emulsion, with practical directions for its use.
The second photo improvement relates to printing, and is that of Mr. William Willis, Jr., of Birmingham, England. The surface of the paper, sized with arrowroot, is first moistened
ounce) and dried. In this condition, the paper keeps for any length of time. The paper is further sensitized by coating with a solution of chloro-platinite of potassium and a solution of ferric oxalate. It is then exposed under the negative for only one sixth of the time required for a common silver print. The picture is then toned with gold treated with hypo., washed, and finally placed in a weak solution of hypo., washed, and finally placed in a weak solution of oxalic acid, again washed and dried. The permanency of
these prints is remarkable. Mr. T. Rodger recently subnese prints is remarkable. Mr. T. Rodger recently submitted specimens to the Edinburgh Photographic Society, which he said he had put to extreme tests. One of them, for example, had been subjected to sulphuretted hydrogen for twelve hours, and then to twelve additional hours in the acid solution employed to form the gas, all without change. We have lately had the pleasure of examining some of these platinum prints, brought to this country by the author, which in tone and color, were in every way equal to the best silver prints.

## nedralaic storm belts.

Dr. S. Weir Mitchell, a physician of Philadelphia, Pa., has recently conducted an important series of very interesting investigations with reference to the relations of bodily pain to the weather. It is an old popular idea that diseases and injuries of the bones, chronic rheumatisms, and ancient wounds produce a renewed pain on the approach of a storm; so much so, indeed, that persons thus afficted frequently are able to predict impending changes of weather with remarkable accuracy. In the course of study of many of the curious symptoms belonging to the stumps of amputated limbs, Dr. Mitchell frequently encountered the above notion; and he became so impressed by the repeated testimony of patients, who stated that their comfort depended largely on the state of the weather, that he resolved to undertake careful research into the subject. He was fortunate enough to obtain the cooperation of Captain Catlin, U.S.A., who had lost a leg in action during the war, and had become a sufferer with neuralgia in the stump, the pain seemingly residing in portions of the absent foot. This officer kept records of his painful sensations, in connection with the weather reports as shown by the Signal Service, for three years; and he prepared elaborate maps and charts, showing just how certain attacks corresponded to certain periods of barometric depression and other meteorological phenomena. In brief, he conducted his elf-examination with an accuracy and scientific thoroughness which cannot be too highly commended.
The result now adduced by Dr. Mitchell is that there is very reason to believe that the popular view which relates some pain fits to storms has a distinct foundation; but that, as the single element of mischief has not been detected, he is driven to believe that it is the combination of atmospheric conditions which starts the pain into being. The separate factors of storms, such as lessened pressure, rising temperature, greater humidity, and winds, appear as a rule to be incompetent, when acting singly, to give rise to attacks of pain. Either it is, as above stated, a combination which provokes the pain, or it may be some as yet unknown agency, acting alone. It was observed by Captain Catlin that his sensations of pain prevailed when the aurora was intense. Whether this was due to the magnetic crelectric disturbance prevalent or to the succeeding storm, Dr. Mitchell thinks is questionable.
About the most striking conclusion reached is that relating to the neuralgic storm belt. Every storm, as it sweeps across the continent, consists of a vast rain area, at the center of which is a moving space of greatest barometric depression known as the storm center, along which the storm moves like bead on a thread. The rain usually precedes this by 600 miles; but before and around the rain lies a belt, which may be called the neuralgic margin of the storm, and which precedes the rain by about 150 miles. This fact is very deceptive, because the sufferer may be on the far edge of the storm basin of barometric depression, and, seeing nothing of the rain, may yet have pain due to the storm. "It is somewhat interesting," adds Dr. Mitchell, "to figure one's self thus-a moving area of rain girdled by a neuralgic belt 150 miles wide, within which, as it sweeps along in advance of the storm, prevail, in the hurt and mained limbs of men and in ender nerves and rheumatic joints, renewed torments called into existence by the stir and perturbation of the elements."

## a new explosive compound for large guns.

The dangerous element to a gun, from any explosion taking pace within it, is the rate at which that explosion occurs. Stress due to a blow is verymuch more difficult to resist than strain gradually applied; and for this reason it is that the slow burning and comparatively weak gunpowder is retained when so many much more powerful explosives exist. No gun has yet been invented capable of withstanding the effects of explosion of gun cotton charges for any length of time, although abundant experiment has been made in this direction in the hope of substituting gun cotton for gunpowder. It is known that an immense advantage would be gained if the whole force of a nitroglycerin explosion could be concentrated on the base of a projectile; but the trouble is that no one has discovered how to harness nitroglycerin for artillery purposes; or in other words, no one has yet devised an apparatus whereby nearly the whole power of the explosion can be directed upon the ball, and merely a minimum left to act towards rending the gun asunder
It follows from this that the theoretically most advantageous explosive for gunnery purposes is one which has an iaccelerating action, and that it must focus its power upon
the projectile, in a relatively gradual scale, through all the stages, and thus impart to the same the utmost possible vebustion, layer by layer; and the amount of gas developed depends directly upon the extent of the burning surface. Consequently, if the size of the grains be increased, the weight of the charge remaining the same, there will be lezs surface exposed to combustion, less gas evolved in the first instants of time, and less pressure on the gun. In gun cotton, however, there is, in lieu of combustion, a disintegration which occurs instantly throughout the entire mass; and thus, while the explosion of powder is such that it may be easily controlled, no mode of preparing gun cotton in any particuar shape changes its peculiarity of instant detonation.
When a grain of gunpowder is fired in the gun, the first gas that is evolved starts the projectile; and as the latter travels, the combustion area of the powder is constantly augmented until, by the time the flame reaches the interior of the grain, the small remainder of the same is incompetent to evolve by its combustion gas enough to compensate for the increased area over which it must act. Hence that nucleus of the grain serves no useful purpose, and certainly affords no acceleration to the shot: but in the new "compensating" powder, which Captain Charles A. L. Totten, U.S.A., has devised, this nucleus is made to render an accelerating force through being formed of gun cotton, which, exploding in an increased area, exerts little strain on the gun, and checks the tendency of the gas to lose its tension, thus compensating for the increasing space in rear of the projectile. Not only does the inventor claim for this compound explosive high impulsive power, but he states that the waste of largegrained powder, which is blown out of the gun with the grain still burning, often reaches 60 per cent of the charge, and that this is saved by the addition of the gun cotton nucleus. In general, he affirms that the combined gun cotton and powder is lighter, and four and a half times more effective, charge for charge, than gunpowder. If this can be substantiated by experiment, there can be little question but that the new explosive will be of the greatest value in modern largeartillery, in which gunpowder has been proved too weak to project the mmense shot and shell with proper effective velocity. Captain Totten finds, by test, that no chemical change attributable to the mutual action of gunpowder and gun cotton occurs in his powder. The gun cotton nucleus is spherical, and half an inch in diameter, the powder envelope raising he diameter to one inch. No special machinery has yet been invented for its manufacture
We may add that the present is the time for inventors to turn their attention to inventions of this class. The war in Europe will result in a great demand for improved arms and explosives of all kinds; and an efficient substitute for gunpowder in cannon, which shall be much stronger in its effects and at the same time as easily controlled, would be f the greatest value to both contending parties.

## WHY FRESH WATER FISH CANNOT LIVE IN SALT WATER.

It is well known that fresh water fish cannot live in sal water, and vice versa; and it has been supposed that the reason existed in some poisonous effect which the inappropriate water exerted. M. Paul Bert has recently been investigating this subject, and his conclusion is that the death of the creature is not due to any toxic action, but is simply a phenomenon of osmosis or transmission of fluids through the membranes. In order to prove this, it is only necessary to weigh the animal before and after the experiment. A frog, for example, plunged in sea water loses one third its weight. If only the foot of the frog be introduced, the blood globules can be seen to leave the vessels and distribute themselves under the skin. If an animal be taken, the skin of which is not entirely osmotic, the same phenomena occur in the bronchial system.
There are certain fish, however, which exist sometimes in salt, sometimes in fresh, water, changing their habitat in different periods of life or of the year. It therefore, in view of the above, becomes interesting to see how M. Bert applies his discovery to such apparent exceptions to the general rule. A fresh water salmon, for instance, plunged abruptly in sea water, resists the effects longer than other fresh water fishes; but he dies within five or six hours. This shows, according to M. Bert, that the fish never proceed suddenly from fresh to salt water, but enter brackish water where the tide ebbs and flows, and live there a sufficient time to habituate themselves to the change. This accounts for the frequent discovery of large numbers of such migratory fish in the vicinity of the mouths of the rivers which they ascend.
A fresh water eel, plunged in salt water, does not seem to be affected. But in investigating the peculiarities of this species, M. Bert was led into a wrong conclusion, which may be cited to show how easy it is, often by pure accident, o reach an erroneous determination in laboratory experimenting. After having himself placed several fresh water eels in salt water, he found, as already stated, that they remained alive and unharmed. Wishing to continue the experiments, he directed his assistant to introduce the fish, and report esults. To his surprise, the eels then persistently died after a three or four hours' sojourn in salt water, and long search failed to discover the reason why it was that, when M. Bert placed them in the tanks, they lived, while, when the assistant did so, they perished. Finally M. Bert found that his ifted them with a piece of the of the slipperiness of the eels, lifted them with a piece of cloth in his hand. The cloth
protected it from the salt water. Osmosis then o
the denuded portion, and the eel eventually died.
The converse experiment, of inserting sea fish in fresh water, produced analogous results. The gills were the sea of alterations, the same as those noted in fresh water fish placed in salt water. M. Bert also observed that the life of water, thus adding further confirmation to his theory.

## "LOST HIS AMBITION."

We met, the other day, an expert workman who said tha he had lost his ambition. "Where is my incentive?" sai he. "I am only a mortal, just like other men. Energy among others is a means to an end. Health, fame, ease, and luxury are the prizes for which men strive. Show me the man who is energetic in a single cause in which one of these is not the aim, the incentive, and the reward, and answer me honestly how can I make an exercise of more than common energy or industry subservient towards giving me one of these prizes.'
' You will never be out of work and will always command respect," was the answer. He smiled, and holding a scraper in onehand and a file in the other, replied: "I never was ou of work a day; I am too well known. I put forth my energy when I want work, and get it at once. Having got it, I work along easily and pleasantly; am always on the best of terms with my employer, get the best wages, work tẹ hours a day and ${ }^{\circ}$-jog discontentedly along, my ambition, energy, and extra ability rusting away for want of the incentive which all men require to call forth more than ordinary exertion. Now, where is my remedy?" "P Piecework," was the sugestion made in reply

You have struck it," was the response. "When I worked on piecework, the work I did seemed mine; every job well done brought me more work; I engaged other men, and taught the boys all I knew; every scrap of information I gave to my men or boys brought me in money by increasing their skill; every extra dozen blows I struck wer represented in my wages on Saturday night. I looked well ahead at my work, often preventing blunders from being committed; I was a hardworking, happy man, putting by something for old age. But where am I to get piecework now? One establishment has been working short time another is doing little or nothing, and most of the others don't see the advantages of the piecework system, which can and has been carried to the greatest of success, even in repair shops.'
We have often suggested piecework, but the reply is that work. Why not? An average job, even in a small shop lasts a day; and how much trouble would it be to estimate the value and keep an account (in a small shop) of six jobs a week? Any job done in a shop a second time can be estimated upon for piecework. Sometimes people say: "We do not know what the job is worth." Of course they do not. If a man ties his arm in a sling, he must expect it to grow weak. Just the same with the judgment and perception: men used to piecework can estimate how much there is in a job down to an hour's work in a week; but men who never too old to work at all," said our friend, "there will be no such thing as daywork, except for laborers."

## How to Live Long.

The desire for length of days seems to have been far greater in times past than it is now. With a view of bestowing some timely hints on our active business men, who are rushing on in pursuit of riches regardless of the exhaus tion of theirphysical and mental faculties, our contemporary the New York Sun publishes a lengthy article, from which we condense the following
Nearly all the principal writers on longevity are agreed that human beings may, under the most favorable conditions, live to a hundred, and several have recorded instances of persons reaching a much greater age; but the instances given do not in any case satisfactorily bear rigid examination. Hufeland, public lecturer at Jena, who published a work on longevity in the last century, thus describes the sor man who has the best prospect of long life: He has a well proportioned stature, without, however, being too tall. He is rather of the middle size, and somewhat thick-set. His complexion is not too florid-at any rate, too much ruddiness in youth is seldom a sign of longevity. Hair approaches rather to the fair than to the black; his skin is strong, but not rough. His head is not too big. He has arge veins at the extremities, and his shoulders are rather round than flat; his neck is not too long; his belly does not project, and his hands are large but not too deeply cleft. His foot is rather thick than long, and his legs are firm and round. He has also a broad chest and strong voice, and the faculty of retaining his breath for a long time without diffculty. In general there is complete harmony in all his parts. His senses are good, but not too delicate; his pulse is slow and regular. His appetite is good, and his digestion easy. He has not too much thirst, which is always a sign of rapid self-consumption. His passions never become too violent or destructive. If he gives way to anger, he experiences a glow of warmth without an overflowing of the gall. He ikes employment, particularly calm meditation and agreeable speculations-is an optimist, a friend to Nature and domestic felicity-has no thirst after either honors or riches, and banishes all thought of to-morrow. This power of ban-
ishing anxiety has an immense deal to do with longevity.

It is, in fact, that " management of the mind" which Dr Johnson so justly told Boswell was "a great art," adding
that a man when miserable should not go to his chamber and that a man when miserable should not go to his chamber and try to think his trouble down, but should seek every possibl most seriously, the digestive organs.
There are not a few people the very fineness of whose constitution proves their ruin. They draw so extravagantly upon their powers that they are dust and ashes forty years before the creaky wheels who started in the race with them have done running. In this country we discount our future more heavily, perhaps, than in any other; not by dissipation but by overtaxing our energies. A very large proportion of men who die rich here die twenty years before they ought if they had properly husbanded their vital resources. Mr Macy, the well known fancy dealer, was, we believe, onl 56 or 58, and had been slaving his whole life; in fact, his complete break-up was explained by his intense toil. Such a career seems like getting very little out of life. A still more striking instance of the kind was that of Mr. Augustus Hemingway, of Boston, who worked himself into a lunatic asylum, whence he came worth some $\$ 15,000,000$, only to get into his grave a few months later. We doubt whethe the history of the world could show a more reckless disre gard of life than is shown by commercial men in this coun try. The science of combining intense application with those habits which conduce to longevity is one that they have not acquired. That it may be acquired cannot be doubted. Newton lived to a great age; and great lawyers have been famous for long life. There seems to be a lack of wisdom in commercial men as to the real value of life. The put a wholly inordinate estimate upon the power of getting and spending
Rest assured that there is, in brief, only one golden rul to be followed by all who seek longevity-moderation in all things, and management of the mind.

## Preparation of Phthalic Acid

A convenient method for the preparation of phthalic acid for the laboratory is given by Haüssermann in Dingler' Journal, page 310. A mixture of one part naphthaline and two parts chlorate of potassium is thrown, small quantities at a time, into five parts of common hydrochloric acid; and the brownish-yellow products, a mixture of addition and substitution products of naphthaline, is thoroughly washed with lukewarm water by decantation. The mass is then dried at a gentle heat to prevent its freezing together, or, a Böttger suggests, it is pressed between white blotting paper, and then shaken in a flask with petroleum ether (naphtha) to remove the liquid chlorides mixed with it and inclosed with in the mass. After filtering and washing with naphtha, and drying the mass, which consists chiefly of tetrachloride of naphthaline, is snow white. It is heated in a sand bath with five or six times its weight of nitric acid, which should not be stronger than 1.35 specific gravity. Several hours ar necessary to render the liquid homogeneous. After expellin the excess of nitric acid, it is allowed to cool, when th phthalic acid crystallizes out. The acid is purified by re crystallizing it several times from hot water.
If the nitric acid employed to decompose the tetrachloride of naphthaline is stronger than $1 \cdot 35$, the reaction will go on more rapidly, but an easily perceptible quantity of nitro naphthalic acid is formed, which cannot be easily separated from the phthalic acid
To convert the phthalic acid into the anhydride, it is only necessary to fuse it and keep it at a temperature of $180^{\circ} \mathrm{C}$. or $356^{\circ}$ Fah., as long as moisture escapes, although some of the anhydride may sublime off. If the temperature has no exceeded $180^{\circ} \mathrm{C}$., the residue will consist of anhydrou phthalic acid pure enough for the manufacture of fluores cine and other compounds. By this method, 30 parts of the anhydride can be obtained from 100 parts of naphthaline To make it perfectly pure, the acid is boiled with water, and the anhydride purified by sublimation.
For the preparation of phthalic acid on a commercial scale the method above described is quite expensive, owing to the cost of the materials employed; but for laboratory use and experimental purposes this method is worthy of a trial.

## New Weighing Instrument.

The ordinary chemical balance is, of course, rather a costly instrument, it being difficult to make the two halves sufficiently alike, and to combine stability with sensitiveness. M. Pager proposes the following arrangement for small weights. A two-armed tube is filled with mercury, and on one of the mercury surfaces is placed a well fitting plate which can move in the tube without friction. This serve as the balance scale, and the body to be weighed is placed on it. The liquid will rise in the other arm corresponding ly, and equilibrium is at once obtained with great certainty Place a known weight, 1 grain, for example, and note how high the mercury rises. Then place a second grain and note the additional rise. Going on in this way, a scale may easily be constructed. As for each rise in one arm there is an equal sinking in the other, this scale can be applied to the other leg also, of course in opposite direction. The sensi tiveness of the arrangement is considerable. It can be in creased by use of the Torricellian vacuum, the plate, with the body to be weighed resting, in this case, on the mercury in the open arm. The scale can here have no fixed zero, since the air pressure varies, which is only a slight inconvenience.

