Brintifir Smerirm.

ESTABLISHED 1845
MUNN \& CO., Editors and Proprietors. published weekly at
NO. BT PARK ROW, NEW YORK. -
O. D. MUNX. A. E. MeACM.

TERMS FOR THE SCIENTIFIC AMERICAN One cony, one year, postage included...

same proportionate rate. Postage prepaid.
The Scientific American Supplement
is a distinct paper from the SCIENTIFRC AMbrican. THIE SUPPLEMENI

Combined Rates. The SCIEATIFIC AM ARRICAN and SUPLLEM ENT
will be seut for one year. Dostane free.,
papers tecit of seven dolars. Both The safest way to remit is by draft, postal
the news sagents.
Publishers' Notice to Mail Subscribers.
Mail subscribers will observe on the printed address of each paper the
time for which they have prepaid. Before the time indicated expires, to insure a continuity of numbers, subscribers should remit for another year Insure a continuity of numbers, subscribers should remit for another year.
For the convenience of the mail clerks, they will please also state when their subscriptions expire.
New subscriptions will be entered from the time the order is received
but the back numbers of either the Scientipic Amirich or the Scivibut the back numbers of either the ill be sent from January when desired In this case, the subscription will date from the commencement ot the
volume, and the latter will be complete for preservation or binding.

VOL. XXXYJ., No. 19. [New Series.] Thirty-second Year. NEW YORE, SATURDAY, MAY 12,1877

Illustrated articles are marked with an asterisk.)	
Answers to correspondents. ${ }^{299}$	Locomotive engineer, the oldest 292
frict	Man
Bichromate of potash, antiseptic 296	
Blast, a tremendous mining.. ... ${ }^{291}$	Nickel and cobal
Blowpipe reag	Oil and sawdust (2) 298
Boilers, capacity of (4) 299, (34) $\ldots 330$	Panthers in Central Park* 295
İrs, eaks in (31) 300	Paper, transparent (16) $\ldots2{ }^{299}$
ers, management of ${ }_{29}^{39}$	Pazent decislons, recent ...l.... ${ }_{29} 9$
Bryant vase, the*	
Business and personal........... 299	
Calculating machine, new	gpho
alsis clea	
Correspondence, our Washington 292	Powder for mining coai
d, dangers fror	Practical mechanism-
ing horses	
Bryeing, wood liue (is)............. 299	Railmay ticket manuf
Education, self. 299	Salicylle acid.................: 294
ers, duties of	Screw-cutting, remarkable**.... 296
,	Silverware, manufacture of* 287,29
escape,	
${ }^{\text {Fire escape, improved*}}$	
Friction of a planed st	np
tion of a	
Great	Sun and the tre, the (30)......... 300
Icelind spar, new facts abuiut.... ${ }_{291}$	Time, pneumatic transmission of 292
Inventions patented in England. 298	Torpedo
etive progress, Amer	etariani
strength	ahing hard-t-tished wulls (\%). 300
${ }_{\text {the ocean leesel }}$	-
	inc, purifylng...............: 295

TABLE OF CONTENTS OF
THE SCIENTIFIC AMERICAN SUPPLEMENT, No. 71,
For the week ending May 12, 1877.

 Remit by postal order in stiff co

MUNN \& CO. $\underset{37}{\text { Ptubliserers, }}$

GANDE BELOW THE OCEAN LEVEL.

In an article treating on some remarkable results of evaporation and rainfall, published on page 257 of our issue of Aprit 28, this year, we described one of the instances of the great excesses of evaporation over rainfall, namely, the Cas pran Sea, ol which the surface is as much below the ocean svel as our Lake Champlain is above the same, namely, more than 80 reet. There are, however, two still more remarkable cases of the same sort, the Dead Sea in Palestine and the Great Desert or Sahara in Africa. The fornier is remarkable or the great amount of the depression, and the latter for the immense surface depressed, being in fact the bottom of an extensive inland lake, totally driedi up by the heat of a trop ical climate, aided by the absence of İeeding streams, and by the rainless area which covers its greatest portion. Yt is, on an average, 80 fect below the ocean, about as much as the 2,000 miles souare, or nearly $4,000,000$ square miles.
The F'rench government, having an eye to the colonization ol Northern Africa, with Algiers as a starting point, has for some time favored a project for restoring this sandy waste to its primeval condition by cutting a communication with the ocean, and so transforming it into a salt water inland lake. The effect of this on the climate of the surrounding country, and especially on the colony of Algiers, would undoubtedly be most beneficial, because the south wind, in stead of blowing, as it does now, over a sandy desert, would bccome a sea breeze; this would increase the rainfall, and change a rainless district into a fruitful region. In a commercial point of view, moreover, the benefits of such a change could not be overestimated. The introduction of water transportation is especially advisable in this tropical region, where the miserable and utterly inefficient caravan is now the only mode of carrying goods; and without doubt commercial cities would soon spring up around the shores of the proposed inland sea, which would become the scene of a mighty travel
and traffic, as the lake would give easy access to the sur rounding countries, and develop this part of Africa to an extent thus far utterly undreamed of.
But it is well to look also at the disadvantages of this gigantic scheme. In the first place, it will rob the ocean of such an enormous amount of water that its general surface will be lowered to an appreciable extent. In order to realize how much this lowering will amount to, let us consider that the total terrestrial surface is, in round numbers, $200,000,000$ square milss, of which the ocean occupies three quarters, or
$150,000,000$. If the $150,000,000$. If the estimate given of the Desert of Sahara, $4,000,000$ square miles, is correct, it occupies $\frac{1}{38}$ part of the abstracted for the Desert will diminish the ocean a foot; and the withdrawal of water for a lake 80 feet deep would leave the ocean level 80×1 lower, which would be plainly perceptile in the many harbors where careful tidal observations are made, and in some cases
changes may influence the shipping, robbing as it would do all parts of the world of over two feet depth of water, which would be very bad in those localities where the harbors are shallow.
This much as to an immediate result; but the ultimate onsequences would be much more serious. It should be would have no fresh water supply, by rivers; but the sea water would certainly rush in through the channel, to make up for the large evaporation, which we may safely set down at $1,200 \mathrm{lbs}$. of water per year for every square fcot. This would lower the level 20 feet per year, which is one quarter of the whole quantity of the lake. This, for a surface of $4,000,000$ square miles, or $100,000,000,000,000$ square feet,
gives $2,000,000,000,000,000$ cubic fect of water to be replaced gives $2,000,000,000,000,000$ cubic feet of water to be replaced annually from the ocean, or nearly $6,000,000,000,000$ cubic feet per day, or $250,000,000,000$ cubic feet per hour, or 4,166 , 666,666 cubic feet per minute, or 69,444,444 cubic feet or ries only 1 age, the channel bringing the supply to the Desert of Sahara from the ocean would have to carry as much water as is car ried by 525 rivers like the Rhine; and from the salt water only pure water would be evaporated, leaving the salt be hind. As this amounts to 4 per cent, or $\frac{1}{25}$ of the sea water, and as nearly 20 feet deep, or $\frac{1}{4}$ of the water in this new lake, would annually evaporate, it would only take 4×25, or 100 years, one single century, for all the water to disappsar, and a deposit of salt take its place. Then the now sandy deser would be changed into a desert of salt: Which salt would fill fliction to Algeria than the present sand plain can possibly

THE THORNEYCROFT FAST LAUNCHES

In a recent description of the French torpedo experiments at Cherbourg, we noted the wonderful speed of nearly 19 knots per hour attained by a steel torpedo launch built by Messrs. Thorneycroft. In such small craft, displacing at obtainable only over short extreme velocity appears to be has been maintained over measured distances for more than two consecutive hours, the engine then developing 220 horse power. The dimensions of a launch which attained this
speed are as follows: Length 68.04 feet, beam 8.53 feet draught of water (average) 2 feet, displacement (that is to say, the total weight of the vessel and all its contents) 15 tons.
While there can be no question but that these vessels de
monstrate remarkable progress in navigation, on the other hand this achievement cannot be attributed to any new dis overy, but results from improved application of known principles, and especially from the rare perfection of the con truction of the motive apparatus, which develops great power while its weight is reduced to the narrowest limits. This however, it not the only element of success. The model of the hull is such as to diminish to the utmost the liquid resist ance opposed to its onward movement. Again, the material of which the hull is built is such as not to absorb by it weight a fraction of the total displacement which may be usefully devoted to the motive machinery. To this end it is built of steel plates, and weighs but $9,900 \mathrm{lbs}$., or less than a third of the total displacement. In order that the propelle should afford the maximum effect, it is necessary that the liquid vein upon which it acts should be as large as possible in comparison with the resistant section of the vessel. Or dinarily the section of vein acted upon is less than the latter. In the Thorneycroft launch, the screw shaft is placed on a level with the keel, instead of being located at a point half way between the keei and the water line, as is usually the case. The screw then projects below the keel for nearly half its diameter, and consequently it acts upon a section of vein greater in area than the greatest section of the vessel. This arrangement doubtless contributes materially to the speed; while a sharp bend of the keel protects the propeller from damage.
As already noted, Messrs. Thorneycroft's success in pro ducing a motor both light and powerful has been remarka bie. The complete machine-that is, including boilers and the water contained-weighs in all $16,060 \mathrm{lbs}$. The power t the speed of $18 \frac{1}{4}$ knots having been 220 horse, the weigh s therefore but $72 \cdot 6$ lbs. per horse power. The machinery is herefore probably the lightest ever produced for purposes of navigation. Large marine engines for a long time rarely weighed less than 440 lbs . per horse power; and it is only through recent improvements that this has been reduced to 330 lbs. For ordinary launches, with non-condensing en gines running at high velocities, the usual weight per horse power is about 220 lbs . It is therefore interesting to note under what conditions Messrs. Thorneycroft's engines are produced. They are condensing machines, twocylinder, on the compound system. The boilers are of the locomotive type, with the difference that the tubular surface is reduced about one half. This is the only sacriflce which has been made for the economic production of power; and it was ne cessary in order to reduce the weight of the apparatus. The safety valves are loaded to $13{ }^{\circ} 2 \mathrm{lbs}$. The engine makes 430 revolutions per minute, which requires great mechanical ex cellence of the mechanism, and especially of the air pump. The consumption of coal per horse power per hour is 3.52 bs. The grate surface is 11.19 square feet. An artificial blast is conducted directly to the fire chamber instead of to the ashpit.

THE PERMANENT SUPPLY WATER WORKS OF BALTIMORE

One of the greatest engineering works now in progress is that to supply the city of Baltimore with water, and the gen lemen in charge of it have been so busy pushing it forward hat they have had very little time to talk about it: in conse quence of which not many people outside of the city know anything of it, and comparatively few have any idea of the immensity and difficulty of the works that are now so quietly progressing to supply them with an almost unlimited supply of the necessary article of water. One of our cor respondents lately called on Mr. Robert K. Martin, the en gineer in charge, who was so obliging as to show him ove the line of works, and we are thus enabled to lay the following particulars before our readers.
Baltimore is at present supplied with works having a ca pacity of about $15,000,000$ gallons a day, which comes from Jones' Falls to Lake Roland, whence it is brought by a conduit 3 miles long to Hampden reservoir and Druid Lake From the latter, which is 53 acres in extent and 217 fee above tide, one portion of the water is raised by power ful steam pumps to a high service reservoir 350 feet above tide, for supplying the highest region of the city; a second part is supplied direct to the mains; and still another portion is allowed to pass to Mount Royal reservoir, which is only 150 feet above tide, so as not to give too high a pressure to the lowest portion of the city.

This supply having been found to be insufficient in the summer season, it was resolved to increase it temporarily by erecting, near the Gunpowder River, a pair of Worthington's duplex compound pumping engines, capable of raising $10,000,000$ gallons a day from that river, over a hill 265 feet high, to Roland Run, a tributary of Jones' Falls above men tioned. This arrangement, however, was not sufficient for some of the more enterprising of the Baltimoreans, and a new plan was devised; and it is now being carried out, not withstanding considerable opposition by interested parties, by the capable and energetic civil engineer of the Water Commission, Mr. R. K. Martin, who had charge of the pre vious works, erected in 1858. The source of the new supply is the Gunpowder River, which at about nine miles from Bal timore makes its nearest approach to the city, as at this point t takes a bend in another direction Advantage is taken of his turn to form a dam across the stream, and so form a storage lake which will, it is believed, be capable of supply ing the city with $175,000,000$ gallons of water every twenty four hours. This lake will be from 500 to 1,000 feet wide,
about 20 feet deep on the average, and will extend up

