PROFESSOR GRAY'S TELEPHONE

We noticed last week the exhibition of Professor Gray's telephone in this city, the instrument being operated in Phil adelphia. In the annexed engravings, reproduced from the New York Daily Graphic, the apparatus is very fully represented.

Although the operation of the instrument is intricate, the description is not difficult, because all the effects that are produced by the magnetization and demagnetization of iron, by means of electric currents passing through coils of wire may be briefly referred to without the necessity of going into an explanation of how the wires are placed, or as to the arran o the arrangement and effect of the main and local batteries. By referring
to the picture of the to the picture of the apparatus used by the performer in Philadelphia, the reader will observe, beneath the keyboard of two octaves, a series of small pieces of apparatus placed on shelves. These are allalike, with anex ception that will be noted hereafter. An enlarged view of one of them is shown, representing a tongue of metal, A, vibrating between coils of wire B colls wir This tongue of metal vibrates automatically. When it is attached to the right, for example, its own movement is made to affect the electric current in such a manner that the bar of soft iron withiu the coil loses its power, and at the power, and at the
same time the bar on same time the bar on
the left is invested problem in electro-magnetism and requires no description that has made the telephone, as a musical instrument, possi- herewith. here. The tongue of metal, which corresponds to a tuning ble. If only one key were pressed at a time it is easily confork, is thus set to moving rapidly backwards and forwards, but the number of times per second depends entirely upon its own length. No matter how violently or how softly a tuning fork may be struck, the number of vibrations is al ways the same per second for the same fork. The pieces of apparatus beneath the keyboard areall provided with vibrating tongues of metal of different lengths-that is of such
the left is invested
with attractive power. To accomplish this was a simple Just here it is necessary to explain a peculiar discovery

length as will give all the notes of two octaves. As often as independently of those of all other notes. Following, then, any particular key is pressed down; and as long as it is kept these multifarious but separately cared-for elements of down, the electric currents operate to make the correspond- "Home, Sweet Home" to New York, we have to discover ing metallic tongue vibrate. These vibrations constitute the how they are received, sorted, and translated into air vibramusic that the performer hears, but they are by no means tions that may strike the tympanum of the ear. The wave he music that is heard at the other end of the line. As the lets are passed through sisteen pieces of apparatur, each , filh bidity the defies vision, they open and close the circuit of the main of an armature, a steel ribbon, D, stretched in ametallic frame | wirc. This, then, is all that is done so far. Each vibration | $\begin{array}{l}\text { This ribbon is tuned to vibrate at a particular pitch. Now, } \\ \text { is reproduced at a distance in successive waves of electricity. }\end{array}$ it is a fact, that when a piece of iron is magnetized it is in |
| :--- | :--- | creased in size very slightly, and when it is demagnetize it is restored to its original dimen sions. This chang is accompanied by a slight sound, sup posed to be due t the arrangement and re-arrangemen of molecular parti cles.

The wavelets of electricity produce in Philadelphia by vibrations of the metallic tongue tuned to the note D, for example, will pass through all the apparatus in New York, whose ribbon is tuned to C , with out effect; but as soon as it comes to the D apparatus the ribbon begins to vibrate, producing the note of D. In this way the New York way the New York apparatus sorts ou tricity and trans mutes them into music. These six teen pieces of apparatus in New York are each in closed in an oblong sounding box, to in rease the sound of rease the sound of could be sent over the wire from Philadelphia to New York But suppose two, five, or the entire sixteen notes are struck at the same time. Can one wire carry all these wavelets without confusion to New York? It can How it can is matter of theories. What is absolutely known is that the

Exports of Ice.-The fine new ship C. C. Chapman, built Bath, Me., recently cleared from Boston. Her cargo con sisted of 2,200 tons of ice for Calcutta and 350 bales of drills or Madras. The bark R. R. Allen, which cleared from Boston in the same week as the C. C. Chapman took 600 tons of ice for Havana. The same company have two other vessels loading with ice for export.

Fig. 2.-PROFESSOR GRAY'S TELEPHONE IN PHILADELPHIA.

