important and practical one; and as assisting to a decisive the upper or head ends of the outer rowsare necessarily bent ments which freed it from the earth, and which now burs answer, I have carried on a series of experiments which to the same extent over the inner rows-the eggs when laid will be presently detailed. To make the experiments the more being somewhat soft and plastic. There is, consequently, an intelligible, I will first give the reader a deeper insight into the philosophy of the processes of egg-laying and of hatch ing than I have hitherto done, and this the more readily that it has never been given by any other author.
I have already explained (Report VII, page 122) how, by means of the horny valves at the end of her abdomen (Fig. 1), the female drills a cylindrical hole in the ground in which to consign her eggs. The curved abdomen stretches to its utmost for this purpose, and the hole is generally a little curved azd is always more or less oblique. (Fig. 2, ed.) If we could manage to watch a female during the arduous work of ovi positing, we should find that, when the hole is once drilled, there com the hole is once drilled, there com-
mences to exude at the dorsal end of the aldomen, from

Ega of Rocky Mountain Locust.- a, sculpture of outer shell; b, same more enlarged; c, with the outer shell removed, just before hatcling; $d e$
eoints where the shell is rupturcd. points where the shell is ruptured.
irregular channel along the top of the mass (Fig. 4, c) which is filled only with the same frothy matter which surround each egg, and occupies all the space in the burrow not eccu pied by the eggs. The whole plan is seen at once by a reference to Fig. 4, which represents, enlarged, a side view of the mass within the burrow (a) and a bottom (b) and top (c) view of
moved.
how the young locust escapes from the egg.
Carefully examined, the egg shell is found to consist of two layers. The outer layer, which is thin, semi-opaque and gives the pale cream-ycllow color, is seen, by aid of a high magnifying power, to be densely, minutely, and shallowly pitted; or, to use still more exact language, the whole surface is netted with minute and more or less irregular hexagonal ridges (Fig. 5, a, b). The inner layer is thicker, of a decper yellow, and perfectly smooth. It is also translucent, so that, as the hatching period approaches, the form and members of the embryon may be distinctly discerned through it. The outer covering is more easily ruptured and is rendered all the more fragile by freezing; but the inner covering is so very tough that a very strong pressure between one's thumb and finger is required to burst it. How, then, will the embryon, which fills it so completely that there is scarcely room for motion, succeed in escaping from such a prison? The rigid shell of the bird's egg is easily cracked by the beak of its tenant; the hatching caterpillar, curled within its egg shell, has room enough to move its jaws and eat its way out the egg coverings of many insects are so delicate and frail that the mere swelling of the embryon affords means of escape; those of others so constructed that a door flies open or a lid lifts up by a spring, whenever pressure is brought to bear; in some, two halves open, as in the shell of a muscle whilst in a host of others the embryon is furnished with special structure, called the egg burster, the office of which is to cut or rupture the shell, and thus liberate its occupant But our young locust is deprived of all such contrivances and must use another mode of exit from its tough and sub elastic prison. Nature accomplishes the same end in many different ways. She is rich in contrivances. Evcry one who has been troubled by it must have noticed that the shanks (tibiæ) of our locust, as of all the members of its family. are armed with spines. On the four anterior legs these spines are inside the shank; on the long, posterior legs, outside. The spines of the hind shanks are strongest, an the terminal ones, on all legs, stronger than the rest. There can be no doubt that these spines serve to give a firm hold to the insect in walking or jumping; but they have first served a more important pre-natal purpose
When fully formed, the embryon is seen to lie within its shcll, as at Fig. 5, c. The antennæ curve over the face and between the jaws, which are early developed, and with their sharp black teeth, reach on to the breast. The legs are folded up on the breast, the strong terminal hooks on the hin shanks reaching toward the mesosternum.
Now, the hatching consists of a series of undulating contractions and expansions of the several joints of the body, and with this motion there is slight but constant friction of the tips of the jaws and of the sharp tips of the tibial spines, as also of the tarsal claws of all the legs, against the shell, which eventually weakens between the points d and e, and finally gives way there. It then easily splits to the eyes or beyond, by the swelling of the head. By the same undulating movements the nascent larva soon works itself entirely out of the egg, when it easily makes its way along the channel already described without in the least interfering with the other eggs and finally forces a passage way up through the mucous fil ing in the neck of the burrow. (Fig. 4, d.) Once fully escaped from the soil, it rests from its exertions, but for short time only. Its task is by no means complete: beforc it can feed or move with alacrity, it must molt a pellicl which completely incases every part of the body. This i does in the course of three or four minutes, or even less, by
the skin on the back of the head. The body is then gradually worked from its delicate covering until the last of the hind legs is free, and the exuvium remains, generally near the point where the animal issued from the ground, as a little white, crumpled pellet. Pale and colorless at first, the full born insect assumes its dark gray coloring in the course of half an hour. From this account of the hatching process, we can readily understand why the female in ovipositing prefers compact or hard soil to that which is loose. The harde and less yielding the walls of the burrow, the easier will the young locust crowd its way out.
The covering which envelops the little animal when first it issues from the shell, though quite delicate, undoubtedly affords protection in the struggles of birth from the burrow; and it is an interesting fact that, while it is shed within a few minutes of the time when the animal reaches the free air, it is seldom shed if, from one cause or other, there is failure to escape from the soil, though the young locust may be strug gling for days to effect an escape
While yet enveloped in this pellicle, the voung animal possesses great forcing and pushing power: and, if the soil be not too compact, will frequently force a direct passage through the same to the surface, as indicated at the dotted lines, Fig. 4, e. But it can make little or no head way, exc ept through the appropriate channel (d), where the soil is at all compressed. While crowding its way out, the antenner and four front legs are held in much the same position as within the egg, the hind legs being generally stretched. But the members bend in every conceivable way, and where several are endeavoring to work through any particular passage, the amount of squeezing and crowding they will endure is re markable. Yet if, by chance, the protecting pellicle is worked off before issuing from the ground, the animal loses all power of further forcing its way out.

THE BRITISH IRONCLAD ALEXANDRA

On page 258, we present a fine sectional view of a vesse hat is now one of the strongest in the English navy. Judg ing by the past history of ironclad ships, in a very few year hence the Alexandra will be deemed weak, or clse withdrawn from service altogether, adding another to the long list of armored vessels which have been set aside as useless because of the progress made in the construction of artillery capabl of perforating their plates. Even now the heavy Krupp guns and the 100 -ton English cannon not only pierce 12 -inch iron plating, which is the thickest carried by the Alexandra but send their bolts through two plates of that thickness sep arated by 9 inches of solid oak. It will be seen, therefore that against such weapons the sides of the Alexandra offe little resistance, and that the ship before such artillery is practically as vulnerable as a wooden frigate. Nor are ther any vessels now afloat which can oppose the shot of the 100 ton gin successfully. The Inflexible, now the most powerful of British ironclads, has 24 inches of plating, and the Dandolo nd Duilio, new Italian ironclads, nearly the same; yet the recent trials of the great cannon above mentioned, at Spezzia show that targets representing sections of these vessels were quickly destroyed. The ironclad of the near future mus carry either the 40 -inch plates which Shefficld makers hav promised to roll, or else be incased in stecl; for stecl armor now appears, has offered the best resistance to the shot of the 100 -ton gun. The thickest armor of the Alexandra, the belt at her water line, is the 12 -inch plating referred to. About her batteries the iron is only 8 and 5 inches thick, so that the men at the guns and the guns themselves are virtully unprotected against shot from modern artillery of even oderate weight.
Though laboring under a great disadvantage in point of ulncrability, the Alexandra embedies some of the newest nd most important improvements in naval construction She is a central battery ship, and is able to train four guns, including the two heaviest of her armanent of twelve, straigh head and two straight astern. This capability is of the greatest moment, since the vessel thus has a range of fire round the entire horizon
The section of the ship given in our engraving is taken hrough the battery, showing the two gun decks. The sills of the ports of the lower deck are 9 fect, and those of the upper deck ports 17 feet above the water. The guns are of the Fraser pattern, and are constructed of stecl tubes surrounded by coils of wrought iron increasing in number and thicknes toward the breech. There are two 25 -ton and ten 18 -ton guns. The Alexandra is an ocean-going cruiser, and is now flagship of the British Mediterranean squadron. Her dimen iens, etc., are as follows: Length between perpendiculars, 225 fect extreme breadth, 63 fect 8 inches; depth of hold 18 feet 75 inches; tonnage, 6,049 ; displacement, 9,492 tons raught forward, 26 fect; indicated horse power, 8,000 ; spee per measured mile, 16 knots.

A marble statue of Sir William Fairbairn has now been completed. The statue, which is to stand in the new Town Hall, Manchester, England, is cight fect high, and represent Sir William standing with papers in his hand as if delivering address to a scientific audience; the head is bare and slightly inclined, and the statue is an admirable likeness, in he features as well as in the thoughtful expression and quie nergy characteristic of the man.
Statistics show that about 250,000 barrels of apples wer exported from America last year to Europe. More than hal this quantity was sent te England, and about 11,000 barrel went to St. Petersburgh.

