about $\$ 280,000$. The preparations for opening will not be separates it from the next largest rainless region of Central interrupted, and it is thought that the future income from admissions will be ample to insure the success of the under taking.

ALLEGED MAGNETO-PHOTOGRAPHY.

Mr. William Brooks has recently communicated to the South London Photographic Society some astonishing statements (which we find in both the Photograplic Neecs and the British Journal of Photography) regarding impressions which he claims to have obtained in a sensitive plate exposed in total darkness to the influence of a magnet-said impressions be-
ing analogous to those due to light. The probabilities are that the investigator has overlooked conditions in his experi ments which would give another and more likely cause for his results; and certainly no one will accept the latter accord ing to his interpretation, in the absence of proof of the most convincing and conclusive nature.

Mr. Brooks places a horseshoe magnet, about 8 inches in length, poles uppermost, in a dark box. Over the poles, and about three eighths of an inch distant, he suspends a card blackened with Indian ink on both sides, and pierced with certain letters and geometrical figures. One eighth inch above the card, he places his sensitized plate, so that the lat ter is thus half an inch distant from the magnet. The ex posure lasts from three to fifteen minutes, after which the plate is removed and developed. Where the perforated parts of the card have not intercepted the magnetic aura, or influence, or mode of motion, or vibration (the reade may choose his own term), sometimes a negative and sometimes positive image is developed, as if ordinary daylight had had access to the plate. It will doubtless astonish many to find
that a card is capable of intercepting magnetism, as it is currently believed that that natural force acts through all inter posed bodies-as would-be inventors of magnetic cut-off have discovered to their confusion. But this is not ordinary magnetism-it is aura-od-the imponderable agent which Reichenbach conceived and supposed to emanate from most substances, and to affect people as well as sensitive plates. Mr. Brooks wisely offers no opinion on the matter; but no content with the remarkable statements already made, he adds that upon his plate appeared a portion of a word, which was not in perforated letters on his card screen. After exam-
ining the latter with great care, he discovered that the word ining the latter with great care, he discovered that the word
was printed on the card, but was illegible except when the card was held at an angle, and then only very faintly, being thickly covered with Indian ink. This spoils a good story by making it too strong. If the card intercepted the magnetic aura so that the same could only act through the per forations in the first case, how could the same influence, act ing on another part of the card at the same time, go through that card where the printed letters were impressed? And why did it not reproduce all the printing on the card instead of selecting a portion of a word? There is a mysterious dis crepancy about it all, which makes us think that Mr. Brooks is a "medium."

REMARKABLE RESULTS OF EVAPORATION AND RAINFALL.

The general belief that all dry land on the earth's surface must necessarily be above the ocean level is erroneous. Land is above the level of the sea only where there is a direct water communication, by the drainage streams of the district, with the ocean. But there are many instances where such a surface may as well be below as above the general ocean level, where there are depressions in the soil. Large regions that are below the ocean level will not necessarily be entirely filled with water, because as a rule the amount of evapora tion far surpasses the amount of rainfall. To realize this
fact, we have only to consider that one quarter of the terresfact, we have only to consider that one quarter of the terres-
trial surface is land and the rest is water; and it is certain that the evaporation from the land cannot amount to much, compared with that from the aqueous surface. It is true that vegetation throws some watery vapor into the air; but se on the other hand vegetation consumes a great deal of water, the elcments of which are fixed in the plants. We may assume, therefore, that the evaporation from three quarters of the earth's surface, occupied by ocean and lakes, provides all the water falling on the whole; therefore, as a rule, the evaporation from a given surface of land surpasses the amount of rainfall. The former differs for every climate, but is for each special belt of latitude a much more constant quantity than the amount of rainfall, which, by peculiar local circumstances, such as mountain chains, air currents ascending from arid plains, etc., is often so much interfered with as to leave in some places rainless regions: such dis tricts are the southern extremity of California, and New Mexico, near the mouth of the Colorado river, and there is another in the center of the Mexican Republic, and still another in a very elongated strip of land with its neighboring sea extending along the western coast of South America, from Peru to Chili. A larger surface of this kind is found in Central Asia, in and around the great desert of Gobi or Shamo, situated in Mongolia and Chinese Tartary. But the largest rainless surface is that which extends in Northern Africa, beginning some 300 miles inland from the western extremity, over a width of not less than 1,000 miles in an east by north direction. It covers a large part of Egypt and the \mid surrounding lands, including Arabia, and a narrow belt of it passes througn Asia and Persia. In the last named country, a long strip of country, extending some 200 miles on each side of the 70th meridian of longitude east of Greenwich

Asia, mentioned above.
times its own size; and if we suppose that three fourths of in Horn, at the appear to be, as far as they are known, Cape neighborhood of Sitka, at the southern part of Alaska Ter ritory, which formerly belonged to Russia, but which now forms part of the United States. It follows, therefore, that over the rest of the earth the fall of rain must be very un equally distributed; and we have compiled a series of obser vations as follows, which gives the average rainfall per year
in inches for several localities. in inches for several localities.

No. of inches falling	Locality.
13	Erfurt, Germany.
16	Cambray, France. Upsala, Sweden.
17.	St. Petersburgh, Russia. Copenhagen, Denmark. Toulon, France.
18.	Brussels, Belgium. Francke, Holland.
19.	Stockholm, Sweden.
20	Marseilles, France. Coblenz, Germany. Glasgow, Scotland.
25.	Rotterdam, Holland. Strasburg, Germany. Lisbon, Portugal.
30.	Funchal, Madeira. Rome, Italy.
	Liverpool and the Isle of Man, England.
	Mafra, Portugal. Florence, Italy.
45	Dover, England. Genoa, Italy.
80.	Bergen, Norway.
110	Coimbra, Portugal.

At the western limit of the rainless region of Central Asia are situated several lakes, receiving their water supply from rivers; these lakes are without communication with th ocean, but they are all situate on a table land, some of them many hundred feet above the ocean level. But they all dis pose of their supply of water by evaporation.
Every such locality forms a water system by itself, surrounded as it is on all sides by mountain ranges, without any local depression to permit the exit of the water; thus all the rain received must necessarily be disposed of by simple vaporation.
When we proceed westward from these lakes of Central Asia, the elevation becomes less and less until we reach the Sea of Aral, which is the largest of these inland seas, covering about 10,000 square miles; its surface has been found to be only 21 feet above the level of the ocean, while our Grea Salt Lake in Utah is not less than 4,220 feet above the sea Proceeding further west, the ground is still more depressed, and gives evidence that a gradual sinking has taken place towards the shores of the Caspian Sea, which at its nearest point is scarcely 100 miles west of the Sea of Aral, but of which the surface is 112 feet below that of Aral, and 86 feet below the level of the ocean. It is the largest body of water in existence which has no communication with the ocean It separates the southeastern extremity of European Russia from Asia, and it covers a surface of about 100,000 square miles; it is separated by a high mountain chain from Persia, a great portion of which empire is situated in the largest of
the four or five rainless belts. This belt extends through the the four or five rainless belts. This belt extends through the
whole of Central Africa and Southwestern Asia, as far as the sources of the river Indus. This sea, therefore, reccives no supply of water of any importance from the south; and on its eastern side only one river of any importance empties itself into it. This river is the Attruck, which has its source in the Persian mountain chain mentioned. The western shore receives the waters of several rivers, among which are the Kooma, the Terek, the Koor, the Avan, etc.; but the northern side receives an enormous amount of water from
two large rivers, the Volga and the Ural. The first is the largest river of Europe, having a length of 2,300 miles; it drains a surface of not less than 640,000 square miles, more
than half the area drained by the Mississippi and the Missouri, and more than the whole of the watershed of the mighty St. Lawrence, which with its chain of large lakes drains a surface of 600,000 square miles. The latter river the Ural, which belongs as much to Asia as to Europe, forming as it does a part of the southern boundary between th two continents, has a length of some 1,050 miles, and drains a surface estimated to be nearly equal to that of the Caspian Sea. East of the Ural, several other considerable rivers, each about as large as our Hudson, Delaware, or Susque-
hanna, pour their waters also in the northern extremity of the Caspian Sea; and it is no wonder, therefore, that old geographers, who did not know that its level was below that of the ocean, and who had no idea of the results of powerful evaporation, were unable to account for the disposal of all this mass of water, and so they imagined that there was a subterranean outlet toward the Black Sea or the Persian Gulf. Kircher, in his book on the subterranean world. gives a picture of this supposed channel, traversing at great depth the bases of mountain barriers and passing under the beds Thivers, etc.
These suppositions were definitely set at rest by the discovery that the surface of the Caspian Sea, as before stated, is 86 feet below the surface of the ocean; while the surounding shores, especially in the north and northeast, ex end for many miles as an alluvium, also below the ncean surveys for canals constructed with the intention of the lishing water communication between the Caspian and Black At one point these rivers are close together; but the Don At one point these rivers are close together; but the Don flows into the Black Sea, and the Volga, as we have stated, The Caspian.
he evaporation Sea is a forcible illustration of the fact that
the water falling in rain is utilized by vegetation, and so
never reaches the streams, there is still the watershed from two and a half times the Caspian's area, besides the rain which falls in that sea itself, which must be disposed of by evaporation; and such is undoubtedly the case. It is scarcely necessary to go into calculation of the million of tons of water which the Volga and the Ural supply annually-a calculation which offers no difficulty when we consider that the average rainfall on the ground drained by those rivers is nearly 12 inches, making 1 foot of water over a surface of about $1,000,000$ square miles; we leave this calculation to our readers, merely drawing attention to the enormous amount of saline matter washed out by this water from the soil through which and over which it flows. This salt is all carried to the Caspian Sea; and as only pure water is removed by evaporation, the salt remains behind, and that body of water must necessarily become more and more salt, up to the point of saturation, which is now nearly reached, the Caspian Sea being already much salter than the ocean, the Caspian Sea being already much salter than the ocean.
The rivers continuing to pour in water, of course of less The rivers continuing to pour in water, of course of less
purity than that which evaporates, the process goes on; and purity than that which evaporates, the process goes on; and
this consideration solves not only the question in regard to the salting of this particular lake, but of all lakes having no outlet, and also the question, so often asked: Where does the salt of the ocean come from? The ocean is, in fact, nothing but a huge lake without an outlet, into which all the rivers of the earth continue to pour their impure waters, while no thing but pure distilled water is taken out by evaporation. Even the ocean, therefore, must steadily increase in its salt ness, and only its immense size retards the change which will take several thousand years to become appreciable to man

A Time Ball in New York City
An arrangement has been concluded between the Superintendent of the United States Naval Observatory at Wash ington and the Western Union Telegraph Company, for the purpose of disseminating the standard time, as determine daily by the Naval Observatory, 'to shipowners and masters, business men in general, railways, chronometer makers, and others, and to the public generally. In pursuance of this agreement, a time ball of large size is to be dropped daily from the tower of the Western Union Telegraph Company's main building at New York city; and arrangements will be made for controlling public clocks in New York and other places. and also for distributing the noon signal of the United States Naval Observatory to various cities in the United States having more than 20,000 inhabitants. In New York, at 11 h .55 m ., a time ball will be hoisted halfway up the iron flagstaff on the tower of the Western Union building at the corner of Broadway and Dey street. This ball is 3 feet 6 inches in diameter, and can be seen by ail the shipping lying at the New York and Brooklyn docks and on the New Jersey shore, as well as by all vessels lying in the bay, even Jersey shore, as well as by all vessels lying in the bay, even
beyond quarantine. For long distances an ordinary ship's beyond quarantine. For long distances an ordinary ship's
glass will be needed. It can also be seen on Broadway from glass will be needed. It can also be seen on Broadway from
Tenth street nearly to the Battery and from suitable positions it can be seen by a large majority of the citizens of New York, Brooklyn, Hoboken, Jersey City, etc.
The ball will remain at half mast from 11 h .55 m . to 11 h . 58 m . At 11 h .58 m . it will be hoisted to its highest point, about half way up the main staff-that is, over 250 feet above the street. It will be dropped by an electric signal at exactly noon by New York time. The longitude of New York being assumed to be that determined by the United States Coast Survey for the City Hall. 12h. 0 m .0 s .00 New York time $=11 \mathrm{~h} .4^{47} \mathrm{~m} .49 \mathrm{~s} .53$ Washington time. 12 h .0 m .0 s .00 New York time $=4 \mathrm{~h} .56 \mathrm{~m} .1 \mathrm{~s} .65$ Greenwich time.

If, on account of high winds, etc., the ball fails to fall at 12 h .0 m .0 s ., it will be kept at the mast head till 12 h .5 m . and then dropped at 12 h . 5 m . 0 s . In such cases, a small red flag will be hoisted at 12 h .1 m . and kept flying till 12 h . 10 m The time of falling of the ball will record itself automati cally, by electricity, near the standard clock of the Western Union Company (which is regulated by signals from the Washington Observatory); and if by any cause it does not fall precisely at noon, its error will be known. In the even ing papers of the day, and in the papers of the next morning, a notice will be regularly inserted, stating whether the ball fell at the correct time, and if not, then its error fast or slow. In this way, even signals which high winds or other causes have prevented from being given precisely will still be available for the regulation of clocks and chronometers. This ball will therefore serve to regulate the clocks of New Ork city to standard New York time, and will also serve to correct chronometers of ships lying in the harbor.

\rightarrow-r in Germany

Business Stagnation in Germany.
Herr Krupp, of Essen, Germany, the great gun maker, has issued a memorandum to his workmen, dilating on the present stagnation of business, and the short hours necessitated by the restriction of the market. Herr Krupp exhorts his men to submit with patience to the passing slackness and reduced wages, and points to the conduct of the laboring classes in England, under like circumstances, as an example not to be followed. England has had its period of industrial activity and prosperity. "England has grown great and powerful by her industry. Then her working men have formed trades' unions, and struck work for the purpose of enforcing higher wages. The consequence has been that the work of England has, to a great extent, been carried abroad. That ought to be a warning to us."

