象usiness and zersonal.

The Charge for Insertion under this head is One Dollar a line for each insertion. If the Notice exceeds four

 The Charge for Insertion under this head is One Dollara line for each insertion. If the Notice exceedr four
lines, One Dollar and a Half ter line will be changed.

Amateur Photographic Apparatus, Chemicals, etc. Crooklyn, N. Y.
Desirable freproof rooms, with Hydraulic Power in
any quantity, at low rent, at Rock Falls, II. AP. Smith.
Wanted-The address of the proprietor and manufac-Wanted-The address of the proprietor and manufac-
tory of the County Fruit Gatherer. Reply to J. C.
Stribling, Pendleton,
Artesian Well.-Wanted offers to sink an Artesian Well
the Mcinity of New York city. Well-borers will please address J. C., Box 4090, New York.
Centennial Steamer.-A useful article for Housekeepers. State rights for sale. Address Centennial
Steamer Company, 97 9th St., Brooklyn, E. D., N. Y.
A machine works, or others desirous of manufacturing the best Steam Fire Engine and other Fire Apparatus,
can do well by addressing P. M. Kafer, Trenton, N. J. Patent Scroll and Band Saws. Best and cheapest in . Cordesman, E_{B} \&
Best Glass Oilers. Cody \& Ruthven, Cincinnati, 0.
Book Cover Protector Patent for sale, or to manufacture on royalty. Address M \& B., Box 2 , Sperry, Des
Moines Co., Iowa.

A pair of Commercial Printing Telegraph Instruments, \pm Cu., 55 R. R. Ave., Market St. Station, Newark, N. J. Wanted-An estimate on six Locomotive Boile
horse power. Address Box 2132 , N. Y. Post Office. orse power. Address Box 2132, N. Y. Post Office.
Wanted-Machines for Boring and Pressing on C Wheels. A. L. Ide, Springfield, II.
Penfleld Block Works, Lockport, N. Y. Our new A
steel Roller Bushing is twice as strong as the brass
Spy Glasses, Mathematical Instrumente, Steel Tape measures, etc. Send for catalogue.
$\$ 3,500$ buys a machine and model shop full of orders
List of tools and particulars sent on application to T. B. effery, 263 Canal St., Chicago, Ill
Lathes, Planers, Drills. List of bargains in Shearman's Reporter, free. Address $132 \mathrm{~N} .3 \mathrm{3d}$ St., Philadelphia, Pa.
Grasshopper Killer for sale.- State and County rights of Patent No. 187,855, Machine to kill Locust. Apply to Common Sense Chairs and Rockers. Solid comfort all around the house. Send stamp for illustrated price
list to \mathbf{F}. A. Sinclair, Mottville, N. Y. For sale by the rade.
Painters.-Send for new prices of Metallic Graining
Tools, for " wiping out." J. J. Callow, Cleveland o.
For Sale.-Combined Punch and Shears, and Engine Lathes, new and second-hand. Address Lambertville Hyatt \& Co.'s Varnishes and
Hity purity, and durability, are cheap by comparison than an
others extant. 246 Grand st., N. .Y. Factory, Newark
N. J. Send for circular and descriptive price list. Gas lighting by Electricity, applied to public and pri-
vate buildings. For the best system, address A. L. Bovate buildings. For the best system, address A. L. Bo
gart, 702 Broadway, N. Y.
Power \& Foot Presses, Ferracute Co., Bridgeton, N. J.
Superior Lace Leather, all sizes, cheap. Hooks and Couplings for fat and round Betts. Send for
C. W. Λ rny, 148 North 3 S St., Philadelphia, Pa.
F. C. Beach \& Co., makers of the Tom Thumb Tele-
raph and other electrical machines, have removed to 530 graph and other el
Water St., N. Y.
For Best Presses, Dies, and Fruit Can Tools, Bliss \&
Williams, cor. of Plymouth and Jay Sts., Brooklyn, N.Y. Lead Pipe, Sheet Lead, Bar Lead, and Gas Pipe. Send
for prices. Bailey, Farrell \& Co., Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand. Lathes and Machinery for Polishing and Buffing metals.
E. Lyon \& Co., 470 Grand St., N. \mathbf{Y}.

Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel - other kinds imitations and inferior. Caution.-Our name is stamped in full on all our best
Standard Belting, Packing, and Hose. Buy that only. The best is the cheapest. New York Belting and Pac The best is the cheapest. New York Belting
ing Company, 37 and 38 Park Row, New York.
Consumption Cured.-An old physician retired from activepractice, having had placed in his hands by an East
Indian missionary the formula of a simple vegetable emedy for the speedy and permanent cure for Consump ion, Bronchits, ous Debility and all nervous complaints, after having
thoroughly tested its wonderfnl curative powers in thousands of cases, feels it his duty to make it known to his suffering fellows. Actuated by this motive, and
conscientious desire to relieve human suffering, he wil send, free of charge to all who desire it, this recipe, with full directions for preparing and successfully using. this paper, D
delphia, Pa.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durability. Circulars free. Pittsburgh Steel Casting Co.., Pittsburgh, Pa.
Shingle Heading, and Stave Machine. See advertise-
nent of Trevor \& Co., Lockport, N. Y.
For Solid Wrought iron Beams, etc., see advertise-
ment. Address Union Iron Mills, Pittsburgh, Pa., for
Hand Fire Engines, Lift and Force Pumps for fre and all other purposes. Address Rumsey \& Co., Seneca
Falls, N. Y., U. S. A. The Zero Refrigerator was awarded a grand Centen-
nial medal Send for book. Lesley, 226 W . 23 S St., N. \mathbf{Y}. Etterich's Screw Cutting Tools are in great demand.
Catalogue free. Frasse \& Co., 62 Chatham St., N. Y. MillStone Dressing Diamonds. Simple, effective, and durable. J. Dickinson, 64 Nassau St., N. Y. See Boult's Paneling, Moulding, and Dovetailing Ma-
chine at Centennial, B. 8-55. Send for pamphlet and
sample of work. B. C. Mach's Co., Battle Creek, Mich.

\%hlest (4ymis

T. F. D., Jr., will find on p. 315, vol. 29 directions for tempering edge tools. Back numbers of
this journal are sold for 10 cents each. See publishers' this journal are sold for 10 cents each. See publishers
notice on the second page of this issue.-E. R. does not notice on the second page of this issue.-E. R. does not S. W. H. will fnd directions for coloring brickwork on pp. 235, 236, vol. 36.-T. P. P. will fnd something on changing the color of the hair on p. 220, vol. 35.-E.
will fnd a recipe for cologne on p. 75, vol. 31.-C. P. G. will fnd a full description of the Great Eastern steamship on p. 346, vol. 31--A. S. will fnd directions for
making crucibles on p. 330, vol. 32.-O. A. P. wlll fnd making crucibles on p. 330 , vol. $32-\mathrm{O}$. A. P. Whir
directions for recovering tin from tinned plate scrap on directions for recovering tin from tinned plate scrap on
p. 319 , vol. $31 .-\mathrm{F} .1$. J. will find a recipe for a goldplating solution on p. 116, vol. 33.-W. H. H. will find
recipe for a silver-plating solution on p. 299, vol. 31.-W C. will fnd a recipe for a stain to imitate black walnut
on p. 90 , vol. $32 .-$ L. G. L. will fnd on p. 379, vol. 31, a ood recipe for a paint for smoke stacks, boilers, etc.J. H. B. will ind on p. 130 , vol. 35 , directions for mak-
ing imitationmarble.-C. M. can drill glass by followning glass to wood is described on p. 143, vol ris fast F. M. will find a recipe for Vienna bread on p. 185, vol 33.-N. E. L. will fnd an article on sendine the time by elegraph on p. 358, vol. $30 .-$ M. G. will fnd directions or ridding fruit trees of insects on p. 200, vol, 36.-G. H. P. will fnd an answer to his query as to the surface
of a brake on p. 273, vol. 31.-W. R. W. can make his glass windows opaque by following the directions on p. 264, vol, 30.-E. H. will find something on parhelia and halos on pp. 132, 171, vol. 28.-C. W. B. will fnd a re-
cipe for a liquid dressing for shoes on p. 107, vol. 36 . For a recipe for writing fuid, see p. 92, vol. 33.-S. A. s.
will find directions for dyeing crimson on p. 235, vol. 36 . will fnd directions for dyeing crimson on p . 235 , vol. 36 .
J . A. will fnd directions for mending rubber boots on J. A. will find directions for mendingrubber boots 30 - H. J. M. will fnd directions for making tions for making rubber hand stamps on p. 156, vol. 31 -E. P. willf nd descriptions of emery wheels and their
ases on p. 22, vol. 29.-E. W. will find directions for riding a house of cockroaches on p. 43, vol. 31. As to bedbugs, see p. 378, vol. 24.-R. H. M. will fnd direc
tions for glazing earthenware on p. 353, vol. 35.-W. H tions for glazing earthenware on p. 353, vol. 35.-W. H.
T. can fasten rubber rollers to their spindles with glue. T. can fasten rubber rollers to their spindles with glue.
For wringing machines, marine glue would be best. See p. 43, vol.32.-L. S. B. will find something on endurance of life in an airtight place on p. 202, vol. 32. To make
oxygen, see p. 299, vol. 33.-L. C. will find a recipe fo cement for stopping leaks in boilers on p. 202, vol. 34. E. H. P. will fnd a recipe for invisible ink on p. 267 , vol 34.-J. A. T. can calculate the power of his engine by
the rules given on p. 33, vol. 33.-W. C. J. will find diwill find on p 298, vol 30 a recipe Pasten metals to glass.-J. A. McC. can blue his gun
barrels by the process described on p. 123 , vol 31 -J. barrels by the process described on p. 123, vol. 31.-J.
C. K. should trap his moles. See p. 223, vol. 26.-J. R. J. will find directions for making an æolian harp on p. 330 vol. 26.-A. M. N. will fnd directions for drilling holes
in glass on p. 218, vol. 31. Hydrofuoric acid will dis n glass on p. 218, vol. 31. Hydrofuoric acid will dis
solve glass. See p. 203, vol. 33.-C. W. H. will fnd on p. 171, vol. 36, a recipe for a cement that willfasten paproof glue on p. 43, vol. S. 32.-G. I. M. will find a full d
scnption of the East scnption of the East River bridge on p. 99, vol. 35.
(1) A. McG. asks: Why do frost crystals Porm on windows A. If ice water be introduced into a glass vessel in a warm room, it speedily determines the precipitation of the moisture from the surrounding air hich forms as beads of dew upon the exterior surface of the vessel. If instead of cold water a mixture of ture will be frozen as it forms into hoar-frost, which is and congelation is precisely analogous to that which takes place upon window panes in cold weather. All
(2) J. R. L. asks: How can I give shirt bosoms the polish and stiffness obtained by shirt manufacturers? A. Rub 1 oz. best potato starch up with a little cold water,
so as to reduce all the lumps; add a tablespoonful of best loaf sugar, an equal quantity of dextrin, a little
soluble indigo, and a lump of pure paraffin about the soluble indigo, and a lump of pure parafln about the
size of a nutmeg. Then add a pint of boiling water, less). The starch should be stroined through a line cloth before using.
(3) D. F. H. asks: What is used on the end of magnets to keep the wire in place? Will iron or brass
(4) J. A. H. asks: 1. In an electromagnet ade of 25 feet of No. 18 copper wire, of what length wires) be, to give the coreatest inductive effect to a sec ondary coilp A. Of $73 / 2$ or 8 inches length and $3 / 4$ inch diameter. 2. Which will give the most magnetic power,
single coil 1 foot in length, or 4 layers 3 inches long single coil 1 foot in length, or 4 layers 3 inches long,
nd should the iron cores be the same size in each case and should the iron cores be the same size in each case?
A. The single coil, with proper battery? 3. What is the rule regulating the proportionate lengtbs of helices to Aheir diameters and to the diameter of the iron cam
About 8 or 10 to 1 is a good proportion. 4. What rule regulates the size of the wire of which the helix is
composed? A. The wire should be of such size that, when filling the proposed space, its resistance abou quals that of the batter
(5) W. S. asks: 1. Please give a description of how a good vibrator is made, and how is it applied
on electrical apparatus? A. Connect one end of the coil of an electromagnet to the armature of the same; the other end, to one pole of a battery; and the opposite
pole of the battery to an adjustable spring against which pole of the battery to an adjustable spring against which
the armature presses when not attracted. The points of ontact of armature and spring should be made of platielectricity and magnetism? A. Read Davis' "Manua
of Magnetism," Pynchon's "Chemical Physics," or
Tyndalls "Lectures on Electricits," Tyndalls "Lectures on Electricity."
(6) G. M. F. asks: Will 60 feet silk-covered copper wire, $\frac{1}{16}$ of an inch in diameter, for the primary
coil, which is 6 inches long, and 1,200 feet of silk-covered copper wire, $\frac{2}{8}$ of an inch in diameter, for the secondary , give a severe shock? A. Yes
(7) H. F. G. says: 1. I am making a small horizontal steam engine; the cylinder is of brass, cast,
with a 1 inch bore and two inches stroke. How large nd heavy must I make the balance wheel? A. Make it 9 inches in diameter, to weigh 4 lbs . 2. How large must make a boiler of sheet copper, and how much pressure will it stand? How large must I make a boiler of sheet ron, and also what pressure will it stand?
should be 8 inches diameter and 15 inches high. Copper
hould be 3^{3} thick, iron $\frac{1}{6}$ thick, for a working pressure m 50 to 60 lbs. per square inch.
(8) H. P. asks: 1. Would steam at low pressure mingled with compressed air at a higher press-
ure moisten the air and increase the pressure? A. Yes What thickness shoul. I make my air tank to stand pressure of 150 lbs., the diameter being 19 inches? A About $\frac{5}{10}$, if it is wrought iron.
(9) S. A. H. says: 1. I bought a telegraph nother instrument using No. 18 wire-about 175 feet in coil. When working it alone, it works well; but when I attempt to work the two instruments together in a short line, I Ind only one of them will work, the one which
has the fne wire on it. What is the diffculty? A. The has the fne wire on it. What is the difflculty? A. The
resistance of the fine wire is too much for the circuit, both instruments should be wound with the same siz sition to be used on wire as an insulator in place of the silk covering generally used. A. Shellac and alcohol is sometimes used for the purpose. 3. Can you publish a
process for making hard rubber? A. See p. 123, vol. 32
(10) G. M. G. asks: Has an electromagne more attraction on an armature approaching directly upon it than it has on one approaching in an oblique direction toward the poles of the magnet? A. Yes.
(11) A. E. T. asks: Of what are the
(1) A. E. T. asks: Of what are the zinc phey made that are used in medical batteries, so that untilthey are worn out? I refer to the kind used in a cury is sometimes put in the very small amount of mer Please give me details of the process of tempering
Plemer Pease give me details of the proces
teel springs A. See pp. 27,363 , vol. 32 .
(12) J. D. J. asks: 1. Is there anything that will neutralize the attraction of a lodestone? A. Its at fraction can be neutralized bv placing an equal magnetic
for same polarity in justaposition with it. Has a lodestone ever been used as a light m
A. No
(13) D. W. L. asks: 1. Will a small ma neto-electric machine, such as is used for medical pur poses, be sufficient to charge a small magnet? A. No.
2. Has electricity in this form ever been used for teleIs raphir ${ }^{\prime}$ A. Yes.
Is the exhaust steam of
above 212° Fah. $?^{\text {A. Yes. }}$
(14) A. S. asks: Does it take more time to send one letter by telegraph over a continuous line of
10,000 miles than over a line of 1,000 miles A. Yes, on hundred times more.
(15) C. S. M. says: Some time ago I pur hased a second hand galvanic battery; and when I add very slightest current, and that only lasted a few min ates. How can I remedy it? A. We cannot tell you unless you state what the battery is composed of.
(16) J. F. D. asks: Can I run by foot power magneto-electric machine capable of heating a $1 / 2 \mathrm{inch}$
(17) W. R. B. says: In ma'ing vinegar, I seaked in vinegar. When I let a stream of corner foo in, the temperature rose to 110° Fah.; but when it fowed
out at the bottom, it was fat, like warm water. I have made strong vinegar in this way before, and with the ame apparatus. Can you tell me what is the difflculty A. Add a littlevinegar to the cider and let it ferment a
short time before running through the acetifer; or re turn the liquid to the same, and let it trickle slowly through it a second time, and even a third time, if neces (18) F. W. J. says: Can you give me a re cipe for a gold wash for watch chains, etc. $\%$ A. Clean the articles perfectly, and wash them in a strong neutral
bath of chloride of gold in warm water. Then dip for moment inte moderately strong solution of copperas ry, and polish. Or use an etherial solution of chlorid
gold, dry, and reduce by contact with hydrogen gat (coal gas will answer) in a tight apartment. Ordip i thegold solution first mentioned, and then in a hot soluon of caustic alkali.
(19) G. S. says: 1. I wish to make a collecton of marine animals, such as sponges, anemones, and um. Which is the best time to commence it, spring or is generally chosen for such collections. 2. Would suc nimals live in water mixed with common salt in th ame proportion as salt or sea water? A. Experience has shown that genuine sea water is best. 3. Do you
think it would improve the health of these animals to have the light of the sun filtered through yellow pape or glasss Professor Draper, of New York, says: "The
yellow ray of the sunlight is that portion which is the yellow ray of the sunlight is that portion which is the
peculiar stimulus of the chemistry of the leaves an plants." I doubt not but that it would have some in luence on the polypi, but I would like to have your (20) J. B. H. asks: How can I best make I have a boiler in two parts, and a space between th wo has to be stopped with a V-shaped piece of iron
The cement that I have used dries and crumbles out. A. Use a cement made as follows: Cast iron borings 101 lbs red lead 1 Jb ., alum $1 / 2 \mathrm{lb}$., lime 5 lbs ., sal ammoniac 2
ozs. Dissolve the alum and sal ammoniac in a small ozs. Dissolve the alum and sal ammoniac in a small
quantity of hot water, and mix in the other ingredients.
(21) J. H. H. asks: Can you give me a recipe for cement with which I can fasten thicknesses of
paper together, which, on application, will cause no enpaper together, which, on application, will cause no enlargement (expansion or contraction) or alteration in
shape or size? A. We do not know of such a prepara-
(22) J. C. C. asks: 1. How can I make stearic acid without an hydraulic press, or the use of costly chemicals? A. It is not practicable. 2. How can about 10 per cent of stearic acia to the wax. 3. How is paraffin wax made? A. The mode of obtaining paraffin differs according to its being an educt or product: an product of the dry distillation of brown coal, peat, and bituminous shale. It is usually obtained from petroleum, by distilling the residues after the separation of the lighter oils, with steam at a temperature of from
300° to 400°. It is separated from the liquid distillate by artifcial cold and the centrifugal machine, purifed by treatment with oil of vitriol and steam, and neutral zed with hime water. . tre is then rapidly redistillea, and
treated in the hydraulic press, as in the preparation of tearic acid.
(23) M. J. B. asks: What is an east and west line? Is it a parallel of latitude or a line running
tright angles to a meridian? A. It is a parallel of latiat right
tude.
(24) E. A. H. says: 1. What is the pressure water freezing in an airtight cylinder? A. A bout 30,000
ibs. per square inch. 2. What is the strength of cast iron nd sheet iron, of $3 / 8$ inch and $3 / 3$ thick respectively, to resist water pressure? A. Cast iron 18,000, and sheet
iron 35,000 per square inch. 3 . Which plan would be best for ing, a bar 5 feet in length one end not supported, or a 10 eetbarwith both ends supported? A. There might be
no difference, if the bars were suffciently rigid. Stee解
(25) J. B. O. asks: Is it possible to build an lectro-magnetic engine of one-half horse power9 A. It requires a combination of magnets to get continuous work. 3. Will a cast iron magnet answer as well as a wrought iron magnet? A. Wrought iron is best.
(26) G. G. says: A little while ago I made a imple telephone, to be used without the electrical cur-
rent. I tried a thin sheet of brass in place of a mem. brane as a cover to the mouthpiece for receiving and for transmitting the vibrations made by the voice to the connecting line. I found that the brass would not an-
swer. If a sheet of iron or other metal is used, what is wer. If a sheet of iron or other metal is used, what
the shape, and how is it held in position? A . The transmitting instrument consists of a simple electromagnet in front of which is a tightly stretched membrane of skin; just opposite the poles of the magnet, on the membrane, is a small permanent magnet which vibrates
with the former when set in motion by the air. The reeiving instrument is a tubular electromagnet formed of a single helix with an external soft iron case, into the top of which is loosely fitted a light iron plate which ng helix. 2. Does it require a circuit to transmit the electrical current? A. Yes. The helices of both elecromagnets are inc
nclude a battery.
(27) J. A. T. says: I have an engine $1 \frac{8}{4}$ by 4 nches. What power will it give with a horizontal boiler
8 inches $x 1216$ inches with tubes 116 inches in diame er? A. Possibly you may realize $1 / / 2$ a horse in dia
(28) J. A. C. asks: What is the easiest method by which a conducting surface can be imparted to cloth, leather, etc., for the purpose of electro-plating? I have tried plumbago, but it will not do for my purpose.
A. Try the following: Immerse the object in a solution A. Try the following: Immerse the object in a solution
of nitrate of silver in wood naphtha. When partially dried, treat with ammonia. After being thoroughly dried, treat with ammonia. After being thor of cury, when its surface will become completely meta lized in a few moments; transfer to bath immediately. Great care must be taken not to breathe the mercury
(29) D. C. W. asks: 1. Which solution in a Bunsen battery requires to be changed, and how often?
A. The nitric acid requires to be changed frst, but the frequency of change depends upon the work done. The best rule is to change wheneverthe battery becomes too
weak to do the work. 2. How can Imake an electrotype of an autograph? A. You must photo-engrave it frst, See p. 2f2, vol. 32.
(30) F. D. H. asks: If I connect one cell of a carion and one cell of a Leclanché battery, for
ither quantity or intensity, doI utilize the entire energy of both, or is there a waste owing to the elements being dissimilar? A. It is a bad plan to connect batteries difering in electro-motive force, for quantity; connected in series, the resulting electro-motive force is equal to the
sum of all the electro-motive forces of the different cells.
(31) C. E. J. says: Inclosed find sample of battery wire. The wires have been in use in an hotel for two years. About 6 months ago, a portion of the found the battery wire corroded and eaten off; since hen I have had the same trouble about a dozentioe and in every case was the battery wire eaten off, as in the sample. The floor is double, with cement in between. The wires run in a groove cut in the cement; the battery
wire is precisely the same as the room wires, and runs wire is precisely the same as the room wires, and runs
in the same channel. In most cases, the battery wire in the same channel. In most cases, the battery wire
would be in the middle of the other wires; but I צailed would be in the middle of the other wires; but I failed
to find that any of the other wires were affected. A. If
 probably causes the corrosion. Better use
ered wire, and be sure the covering is perfect.
(32) T. J. L. asks: Is there such a word in he nomenclature of telegraphy as "telehiro " or "tele-
(33) E. W. W. asks: What form of battery will be the best to work a set of alarm bells (four large vibrator on a circuit of about 500 feet length? The main requisites in the battery are to be strength of action
with permanence and requirement of the least possible
econds at time, four or five Leclanché cells will prob ably be found to give satisfaction.
(34) H. L. C. says: I wish to make some permanent U magnets 8 inches long, of cast steel $3 / 8$ inch
thick and 1 inch wide. If I make an electromagnet of inch round iron of the same size and shape as the steel, nd wind it with 150 fect of No. 14 cotton insulated cop sufficient to charge the steel magnets so that they will each support 8 or 10 lbs .9 A. Yes, if the plates are so
large that the battery resistance is very small. You had
(35) E. D. G. asks: Does the latest authorized surveyshow Gray's Peak tu be the highest altitude
in Colorado? If not, what is the greatest altitude? A. We believe that the latestinformation shows that there
(36) R. B. C. says: 1.1 am about to have a ike to know how much pitch to give it. I have a abundance of power, and would like to get the greatest possible speed? A. Four feet pitch. 2. I have a horsehoe boiler, and would like to know if it would be ad visable to heat the feedwater in the back breeding of
the boiler by means of pipes, in the form of return he boiler by means of pipes, in the form of return
bends. If so, where shall I locate the check valves, be tween the pump and pipes? A. If your boiler stean
well at present, there is no necessity for the change.
(37) W. L. asks: In what book can I find how to calculate the times of rising and setting of the
sun for each day in a year, for any degree of latitude? A There are many special mothods used by computers which are not given in ordinary treatises on compute but you will find a good discussion of the subject in Nor n's "Astronomy."
Which of
Which of two horses pulls more on the double tree o a wagon if one is a little ahead
the one that is a little ahead.
Why that is a little ahead. it is due to the fact that the barrel is not true or is foul,
(38) T. L. says: How many horse power oel, and also on an 18 feet whecl? A miner's inch of water is an amount that will run through one inch square aperture under a
five inch pressure or head. A. About six and five horse five inch pressure or
(39) J. H. H. says: 1. I propose making a feet long, with a steam space of $11 / 4$ inches, to be run by superheated steam. I understand that steam can be
superheated to 1200° Fah. The outside of the crlinder superheated to 1200° Fah. The outside of the cylinder
is to be covered with a non-conducting covering. With a cylinder of this constructlon, how many degrees of heat will be radiated to the interior of the cclinder? We expect to use between 25 and 40 lbs. of steam A. You
do not send sufficient data. 2 . Would an elliptical cyldo not send sufficient data. 2. Would an elliptical cyl-
inder be as good as a circular one? A. No. 3. How From $3 / 4$ to 1 inch
(40) S. asks: What is the rule by which shipbuilders calculate the carrying capacity of vessels,
and find the weight of a shipas she stands in the water? A. The rule is too long for insertion in these columns.
(41) E. M. asks: 1. How can I use and inake dipping acid for cleaning gas fixtures? A. Use
sulphuric acid diluted with about 5 parts of water. 2 . How can I put on the bronze powder used on zinc covmake lacquer used after bronzing? Can any kind clear tra
(42) J. K. says: 1. We have an upright tu3 feet, plates $3 / 8$ inch thick, single riveted, having 51 tubes each 6 feet long by 214 inches diameter. Fircbox or furnace is 30 inches by 23 inches high. Heads $3 / 2$ inch thick; and the boiler is made of best iron. The water
space around firebox is 2 inches. How many horse space around firebox is 2 inches. How many horse
power (at 20 feet heating surface per horse power) do you consider this boiler to give? A. About 71/2. 2. What pressure per square in
to A. From 80 to 1001 bs .
(43) A. P. H. says: We have two 60 flue boilers, 14 feet long and 60 inches diameter. They were But as soon as we started fire under them they began to leak in the scams over the fire on top; where the
did not strike them they were perfectly dry aid not strike them they were perfectly dry. two. We tried the calking over again several times, but with the same result. When we had run aboutfour began to leak. Why did the flues in one boiler leak and not those in the other? A. We judge from your account that the boilers have been badly built, badly managed, or both, the probability being that they are very poorly constructed.
(44) J. H. N. says: I need a 6 horse power steam engine to do my work. Can exhaust steam from the manner of heating now in uses if so, what in creased capacity of power would be required to warm an ordinary village residence A. With properly arranged heating apparatus, the increase of steam required will
not be more than 10 per cent. bic; these labels rolled up, resembling little pipes. What can I use to prevent this curling up? A. Mix some refined sugar with your gum solution.
I am using an incubator for hatching queen bees' and
hens' eggs. I need a temperature governor. What hens' eggs. I need a temperature governor. What
metal or substance in the form of a bar is most susceptible to and expands most by heated air? In liquid is conflned in a cylinder by a close-fitting piston, will it
exert considerable power or will it compress like air?

Mercury inclosed in a tube will answer very we.
(45) W. E. N. says: I have a small copper boiler 18 inches L gh and 12 inches in liameter, made of x inch copper. The heads are of $\frac{3}{10}$ inch copper. What size engine will it run? A. You can use an engine 11/2

(46) J. H. T. asks: 1. I have a 10 horse

 wer engine which ordinarily works well, but when at eavy work it will (while pumping water into boiler) overtow he exhaust pipe in smoke stack, when I havescarcely two gages of water. What is the cause of it? A. We presume, from your account, that the boiler has not sufficient steam room when the engine is working at
full capacity. 2. What is the best paint or varnish fo boilers? A. A black varnish made from petroleum i What that purpose, and nnswers very well.
Whatis the rule for finding the number of revolutions or the drivi of certain pulleys A . Divide the diameter ley, and multiply the quotient by the number of revolutions of the driving pulley.
(47) J. S. W. asks: What number of blades yacht, model and power being able to give the highest speed, and length being from 24 inches to 38 inches? A. Three.
(48) W. N. R. says: 1. Will you explain having been cut to the proper shape, the surface to which it is to be applied is coated uniformly with glue and the veneer is directly placed in position. The exte-
rior surface of the veneer is then sponged over with warm water to prevent its curling. 2. What is the mean If the surface to be veneered is a plain one, the caul simply a plain smooth board, covered with canvas, and clamped on over the veneer to insure its perfect contact
in every part with the glued surface until the glue has properly set. If the surface is uneven, the caul is made viously glued to give it the required shape.
Peat up a small quantity of pure cantic liment? A. powder with a sufficient quantity of white of egg to form a thick paste, and fill the angles of the aquarium with this immediately before it sets. When perfectly
(49) W. A. M. says: I have a quantity of nitric acid of 30° Baumé. How can I increase its density to 50° Baumé? A.Distilit with a quantity of :tronm il of vitriol in a large glass retort.
(50) W. I. R. asks: How much will eight pan of horses pull in one wagon, provided one span
will pull 20 cwt., all other things being in proportion A. Where the horses are accustomed to work together, 8 ,
spans will pull abouts times as much as 1 span. But if separate spans were hitched to the same wagon, cv though they might all pull well when working in single spans, it is doubtful if they would pull more than 5 or
times as much as a single span, and the aggregate pull might fall even lower. The same thing may be notice pushing, or lifting.
(51) R. L. H. says: 1. How large should a paddles, to realize 15 horse power in a current running at the rate of about 5 miles per hour? A. Make the wheel 15 feet in diameter, with floats at an angle of 15° to the radius, each float being 3 feet deep and 18 feet
long. 2 . How should the current wheel be geared to mill? a speed of about 350 revolutions to a a 24 inch corn nills A. Ordinary bevel gearing and cogwheels will
(52) W. B. P. asks: How is the ribbon for the type writers, and for the ordinary ribbon stamps, aniline dyes, alizarine, or alcoholic extract of madder, glycerin.
(53) C. C. F. asks: How is the so-called roes, worked out and tanned? 1 a ped in ladies known as tawing. It is too long for publication in detail here. The skins, having been soaked in water and craped on the fiesh side (the hair being loosened and removed by soaking in lime water and plucking), are
passed through singly, and then digested for about 10 minutes in a boiling bath composed of 12 lbs. alum, 2_{1}^{2} lbs. salt, in 12 gallons water: 15 lbs. wheat fiour, and the yolks of 50 eggs are then added to the warm alum The proportions here given are for 100 skins. The skins are then stretched in lofts to dry for a week, when they stacking, and ironed.
(54) W. D.-Referring to the reply given to W. D. (No. 16, p. 203, vol. 36), who asked about the use etc. Our Professor was in error in advising the use of galvanized iron pipes. Probsbly a better material would be pipes of wood. With some waters, the use of gal-
vanized pipes has proved disastrous, and the safer rule vanized pipes has proved disastrous, and the safer rule
is to banish them altogether. Perhaps we cannot do is to banish them altogether. Perhaps we cannot do
better than to repeat the inquiry and reply wegave on
this subject on October 16, 1875:
J. G. W. asks: Will galvanized iron tubing in a bored well be durable? Would the water from sucl a well be wholesome? A. The use of galvanized iron pipes for family water supply is not desirable. For a short pipe, if the water is pure, and the precaution is taken not to no bad effect would result. But there have been repeated examples of poisoning from the use of galvanized iron conducting pipes. In a case at Portsmouth, N. H., a family of four persons were thus poisoned, and
Dr. Jackson found four grains of oxide of zinc in the was piped with galvanized iron pipes, one of the youse members of the family died, and a post mortem examination revealed the presence of oxide of zinc in the
stomach and other organs. Death was dircetly attrib
ated to the use of the above pipes. They are made See also the letting the iron pipes in melted zinc.
of this issue.
(55) W. A. E.-The temperature of ignition of dry pine is about 800° Fah., of oak 900°. The tem-
perature of ignition of clarred wood, if perfectly dry, perature of ignition of charred wood, if perfectly dry s not serfoctly dry of a spark to produce ignition.
(56) C. G. D. says: I read the following:
equently receives four times as much light and heat as we do, and the average temperature of the earth being Fah., the average tempcrature of Venus would be
ourtimes 77°, or 308° Fah., etc. Now as the zero point is not at the true zero-the point of absolute cold-heat cannot be multiplied except by indicating it, as five or en times as much, never expressing the amount in de-
grees. This can be proved by comparing the results of the temperature of Venus by the two most common scales, the Fahrenheit and the centigrade. The result given by Fahrenheit is 308°; on the centigrade scale 25° orresponds to $77^{\circ} \mathrm{Fah} . ;$ so, by that scale, the temperature would be $100{ }^{\circ}$, or that of boiling water, which is 6 Fah. degrees lower than the first result, a considera ble difference. By means of freezing mixtures, an art as the zero point of a new scale (and it is unquestionably nearer the true zero than the zeros now in use), the
temperature of Venus would be 968° Fah., a much reater difference than ever. So, we see, the result v ries with each scale with a different zero; Réaumur an entigrade, starting from the freezing point of water, whatis the temperature of Venus, our temperature be ing 0° Fah.? or -10° Fah. ? A. Your reasoning is based on correct principles; and the absolute zero, which must be taken to obtain the same results when multiplying
temperatures on different scales, is fixed by theory at about -219\% 2° Reaumur, -275° centigrade, and -4612°
(57) N. L. R. asks: 1. How much water will I have to turn on an overshot wheel, 20 feet in diameter, to get six horse power? The water will flow on
the whecl from a trough. I will not have any head of water at all. A. About 230 cubic feet a minute. 2. Will it take less water if I bave a head of five cubic feet above the wheel, that is, just over the wheel? A. Yes. (58) J. A. B. asks: 1. Is 18 inches too long will an for an engine whose stroke is $43 / 2$ inches? A. It cylinder require to be under the ends or the center of the arc described by the end of the beam? A. Under
the ends of the arc. 3. What power can be obtained from two engines, $33 / 2$ by $43 / 5$ inches, making 300 revolutions, with steam at 120 lbs . in boiler? A. Between 8 and 9 horse powe
power? A. Yes.
How will an ice boat make 60 miles per hour, the wind having a velocity of 15 miles per hour only? A. This matter has been frequently referred to in recent
(59) E. B. K. asks: What pressure does column of mercury, of 1 inch area, give in ascending 1 nch in the tube? A. About $\frac{1}{1} \mathrm{lb}$.
Is there not an expeditious method of cutting firebricks not saws made for the purpose? a We are Are there if there are such tools, some of our readers will, we
(60) G. A. R. asks: Is a pine log lighter hen it is frozen than when it is thawed, or not? A. nder such conditions. Ifee is in the weight of timber ume for volume, but 1 lb . water when converted into ice will weigh neither more nor less than 1 lb .
(61) R. C. says: 1. I wish to make an incubator heated by horse manure. I filled a box three feet square with fresh nanure; it heatod in about a week, and in two weeks it was as cold as when I put it in
bos. How can I retain the heat for three weeks? Moisten the manure with a little molasses water, and in a colass tred with sawdust. 2 . Wh quicksiverplaced quicksilver, as a regulator of heat? A. If the tube is provided with a proportionately large reservoir or bulb at the lower extremity, it will answer well enough for the purpose, but it will be necessary to make a table for
it by comparing the indications with those of a good
(62) N. R. asks: What is the best preparaonfor restoring hair to its natural growth? A. Mak strong aqueous add about per cent of Liebigs extract of beef, this every day.
(63) W. C. M. says: Please give me a cheap process for clarifying vinegar, either before or af-
ter acetification has taken place? A. It is usually puri fied by distillation in large tinned iron vessels. This is apest method.
(64) G. S. says: 1. I have heard of a newly discovered light, besides the electric and the calcium, magic lantern. Is there something new in this line? A. A. The lime or calcium light, the magnesium light, and
the argand gas and ofl lamps, are the only sources of illumination that have thus far proved of any practical value for projection with the magic lantern. 2. Can the zortrope be used in connection with the magic lantern
or the wonder camera, so as to throw the motion of figares on the screen? A. Modifications of the instrument pou name have been used in the magic lantern. The which are rotated before the condenser with the interposition of a a imilar opaque disk, bearing the slits, which is simultaneously rotated in the contrary direc-
(65) A. B. G. says: I have a quantity of oxide of zinc. How can I convert it to the metallic state
again? A. Mix with an excess of powdered charcoal and a little molasses, pack into black lead crucibles, cover with a luting of fire clay, and heat strongly. Con-
(66) T. J. M. says: I have an engine $\frac{1}{2} \times 1$ inch bore, with 2 filwheels $5 \frac{1}{2}$ inches indiameter, weigh1inside, with two $14 \frac{1}{2}$ inches copper flues, Boiler heads are cast, $1 / 4$ inch thick, and shell is of $\frac{1}{12}$ inch iron, riveted. How can I steam it? A. We think you can use a Corms of lamps used for heating purposes are patented and we advise you to purchase one in preference to making it.
(67) R. A. J. says: 1. Our town is situated on a river. At the back of the town and about one mile from the river is a bluff, on which is a cemetery. I wish injure the water in the wells in that part of the town uns in a direction cemetery? The water in the wells
 mprobable that this will, in any way, affect the quality of the water. 2. How can I test for impurities in the water? A. Make a dilute solution of permunganate of potassa in water, ard add to a sample of the well water little of this solution, just enough to impart to it a pereptible tint. I the color thas imparted disappears, ven after an hour's standing, the water may be consid(68) P. A. T. asks: What size of boiler of the firebox locomotive kind and what size of engine do and $3 \frac{1}{2}$ feet depth of hold? The said boat is to be a high pressure sternwheel and the engine double. A. Make a boiler 4 feet in diameter and 12 feet long, cylinders 10 x 20 inches, with a steam pipe 3 inches in diameter. Feed pump 3×20 inches, pipes 1 inch. 2 . How many cords of wood ought said boat to be able to carry? A. Capacity (69) T. C. B. says: 1. I would like to build a nodel locomotive of the following dimensions: Cyliners $1 \frac{1}{6}$ inches in diameter, stroke $\frac{8}{8}$ inches, steam ports $\frac{1}{6} \frac{5}{5}$ inch, and exhaust ports $\frac{1}{4} x \frac{5}{4}$ inch, with a plain D
slide valve. Drivers are to be of 4 inches diameter, and our in number, coupled. Frontor swing truck is double with 4 wheels. Boiler is of 1 inch copper inch, and length, including smoke box, 15 inches. Firebox has a height of 4 inches, length of $4 \frac{1}{2}$ inches, and width of 4 inches. Pump has a bore of $\frac{1}{4}$ inch connected inch. Will these pror inch. Will these proportions do? A. We think your publish this letter for the guidance of othcrs. 2. What would be the best for fuel, charcoal or cannel coal, a
blower being conducted to stack? A. It will be best,
(70) C. S. says: 1. I wish to build a cider press. I intend to 4 feet in length. What should be the diameter of the crew to support a pressure of 100 tons? A. Make the screw large enough to have the area of the thread in the nut equal to 25 square inches at least. 2. What would be the friction, supposing the nut to be placed in the up-
per end of the screw, and the lower end of the screw to turn on a flat metal surface? The screwwill, of course, be well lubricated. A. Friction will probably not exceed 10 per cent of the force applied to the screw.
(71) J. F. says: 1. We have not got enough natural draught for our stationary boiler. We propose
putting on a fan blower. Would it do as well to lot it blow up through the stack as under the grates? Our exhaust goes into the stack, but our engine does not run continually, and we see that the exhaust has but very
little effect on the draught or fre. A. The arrangement little effect on the draught or fire. A. The arrangement of blower which you suggest will answer very well. 2. We have also a $\frac{y}{4}$ steam pipe running into the stack,
which, when steam is let through it, creates a terrible roaring fire. It uses a great deal of steam, butit is a long way ahead of the exhaust. Will not our exhaust create more draught if the nozzle was closed to the top of the stack? A. We do not think any gain will be realized by
(72) D. M. M. says: 1. I have an iron tank for supplying water to a steam boiler 4 feet long by 20 inches diameter. The shell is of $1 / 4$ inch boilerpiate, aud
the ends are cast fron having a rod center. Can I insert 40 two-inch tubes by drilling holes through the cast iron ends of sufficient size for the tubes without weakening the strength of the trink? The tank will it be better to have the ends replaced with boiler plate? A. It will be better to use wrought iron heads. 2. What is the comparative power for water and air to absorb heat, both being of the same temperature? A. The amount of heut that will raise the temperature of 1
(73) R. J. asks: 1. How can I dissolve rosin in large quantities in something that will evaporate and etc., are solvents for rosin, and will deposit the same upon evaporation. 2. How can I dissolve rubber? A. Use bisulphide of carbon mixed with 6 or 8 per cent of Vulcanized rubber maybe dissolved in the above mixture by heat, pressure, and agitation, in strong vesscls of boiler iron. The solution, however, is somewhlat difficult, and, owing to the volatility and inflammability of the solvents, not without danger when the operation
(74) T. J. C. asks: Will a circular saw with 16 teeth cut better and more easily in hard wood generally than one with 24 teeth, each saw being 54 inches in diameter? A. This depends upon the thickness of a 54 inch saw of No. 8 gauge, cutting 1 inch at ench revolution in hard wood, I should say that, if the alternate tooth or the points in place of bending each 24. All of the conditions should be given in order to permit a definite decision to be arrived at.-J. E. E, of
(75) C. D. R. asks. What is the reason that
where there is no water? A. The steam in the boiler
ordinarily reduces the temperature of the products of combustion to a point where they will do no damage to iron.
(76) E. C. asks: 1. Will a portable engine ated at 6 horse power do more work in a day than 6 $\begin{array}{lll}\text { horses? A. Yes. } & 2 \text {. Is an upright bo } \\ \text { a horizontal one? A. Ordinarily, yes. }\end{array}$
How many revolutions should the cylinder of a thrash ing machine make, the diameter being 13 and length 3 nches? A. This depends on the construction of the
(77) B. A. W. says: Given a propeller with 24 foot keel and $7 / 2$ feet beam, rather flat on the bot tom at midship, with an upright boiler, with two inch mbes and shell 2 feet by 4 feet; which is best, an engine $31 / 2 \times 6$ or $33 / 2 \times 5$ inches? or is there a better size than
ither? A. Use one 3×5 inches. 2 . What size pitch of wheel, and how many blades are necessary? A. Use a propeller of 3 blades 24 inches diameter of 3 eet pitch. 3. Where should the boiler be placed to alow a cabin to be built in front, projecting at the side on the guards 5 inches each side, the roof covering the whole boats A. You do not send sufficient data to enable us to determine the position of the boiler; bu probably it can be placed 12 or 14 feet from the bow 6 miles an hour.
(78) S. L. S. says: I have a forebay or pentock to a mill; it is 8 by 10 feet, and the water is 6 fe wheel, with a gate 17 by 18 inches. How many lbs pressure of water will thus be on the gate at the botto of the for $2 b a y$ A. About $21 / 2$ lbs. per square inch, a
(79) G. W. R. says: A man is using a hy raulic pipe, with a 22 inch pipe at the kead or penstock He takes out the 22 inch pipe at the head, and puts in a
36 inch pipe. Will the pipe throw the water further 36 inch pipe. Will the pipe throw the water furthe from the nozzle, and will the pipe take more water than beforeq A. Your question is rather incomplete; but, as ference in the discharge.
(80) A. W. F. asks: 1. How many lbs. of anthracite coal would an upright tubular boiler, measur grate surface and draft, consume? Boiler carries from 30 to 110 lbs . steam, and engine runs at 300 revolutions per minute. A. Such a boiler would probably burn from 40 50 lbs . per hour. 2. What should be the proportionat depth of a steam yacht to its length, and how high hould a boat of 30 feet long rise out of water at its boiv, ough? A. Draft, from to to $\frac{1}{2}$ length. The boat

$$
\text { uestion mignt rise from } 24 \text { to } 30 \text { inches at the bow }
$$

(81) L. M. C. asks: How can I
(81) L. M. C. asks: How can I prepare color, such as red, blue, green, etc., to mix with a glue n a frame and dry, will look clear and transparent, an be smooth and free from streaks on the flat surface? The anillne colors will give the best satisfaction. an obtain them with instructions from almostany drug gist. They are brilliant and economical. Some of the much space to give you the variousmethods for theire
(82) D. W. says: A very singular phe nomena recently occurred in a mill, run by an eight orse powersteamengine. The upperstone is stationary a a step. This step is movable so as to ginge, restin of feed. The spindle is of hardened steel, resting im mediately on a steel plate, $3 / 8$ of an inch in thickness and 2 inches square, resting on a cast foot, in a square bed secured against revolving. Above the belplate is a loos collar of cast iron resting in the step plate surroundin the spindle in a manner to secure stability of motion to per surface being flat, and the point of the spinde rest ng on this plate is slightly oval. A few days ago, while the mill was running at its usual velocity with a full head of steam, the stones stopped instantly, the belt sliding in the pulley until steam was shat off. The miller sup posed that something had got between the stones, and but only the ordinary amount of arain was found the stones. The lower stone was then lifted from it bed, and the spindle was found firmly attached to the ceel foot plate in the step. An attempt was made to rive this foot plate off, the corners projecting sufficien give a full blow wha heavy hand hammer, sach a blacksmiths usually use. The corners of this plate were ttachment to the spindle The spindle eqsect on the to a smith's forge, heated and cut off above the step plate as to leave a small portion of the spindle attached to the step plate. On close inspection, a small portion of the outer surface of the end of the spindle was found not attached to this step plate. Oil was found above the ep plate and collararound the spindle, in sufficien coild be found. And yet the spindle unasual frictio the step plate. This process of welding must have been instantaneous, as no abatement of speed was noticed by those standing about. All the above facts can b verifled by testimony. Can anyone explain this fact? A We prefer to throw this open for general discussion. I our correspondent can convenientlyforward the corrobo-
rative testimony of which he speaks, we would be glad to see it.
(83) W. H. says: 1 . Why is it that, in win tor spring, when it is warm enough to cause slush ice night some of the lightert of this slush will sink to the ottom of the stream and freeze to rocks, etc.? A. You is not sufficiently detailed to enable us to wer your question. 2. A pump used for pumping \mathbf{w} this slush freezing to the strainer of the suction pipe but it is only at night; and as soon as the sun rises we d nor have any trouble with it. A. Probably the troubl caused by the manner in which the straineris located atmospheric conditions than by the time of day.

(84) W. D. P. asks: If I were to put a piece of vulcanized rubber (such as combs are made of), 10 inches wide, 32 inches long, and $2 / 2$ inch thick, into a hydraulic press (the box of the press fitting the rubber), how much pressure would it stand without breaking or altering its shape? A. It would probably stand several tons; but we have no data on this subject. (85) A. L. E. asks: Do you know of any chemical compound or method by which the hair on the head can be turned permanently gray or white without injury to the scalpor skin? A. We do not know of anythingof this nature that we care to recommend. All such agents are more or less in jurious. (86) R. L. D. asks: How can I harden the shell of a hen's egg without impairing the egg? A. We do not know of any practicable method of accomplishing this. Minerals, etc.-Specimens have been received from the following correspondents, and examined, with the result stated: J. W. B.-They are small, well formed garnets.-C. C. -If the colors constituting the pattern of your carpet are not affected by the solvents, the green stain may be removed by means of a little warm alcohol and ammonia (aqua ammonia). Otherwise it is not advisable to attempt the removal of the stain.-W. H. H.-It is a sand consisting of iron pyrites. See p. 7, vol. 36.-W. L. W.-It is a small fragment of quartzose rock, containing bright specks of iron pyrites. See p. 7, vol. 36 . -E. P. C.-No. 1 contains iime, magnesia, alumina, silica, sesquioxide of iron, and iron pyrites. The cubes of No. 2 are crystals of sulphide of iron-pyrites. See p. 7, vol. 36.

It has been our custom for thirty years past to devot considerable space to the answering of questions by he Scientific American office hasbecome the factotum, or headquarters, to which everybody sends, who wants pecial information upon any particular subject. Solarge the number of our correspondents, so wide the range f their inquiries, sodesirous are we to meet their want and sapply correctinformation, that we are obliged experienced writers, who have the requisite knowledge or access to the latest and best sources of information. For ezample, questions relating to steam engines, boilers, boats, locomotives, railways, etc., are consideredand nswered by a professional engineer of distinguished ability and extensive practical experience. Inquiries ale and prominent practical electricians in the mot Astronomical queries by a practical astronomer. Chemi cal inquiries by one of our most eminent and exper enced professors of chemistry; and so on through al the various departments. In this way we are enabled oanswer the thousands of questions and furnish the arge mass of information which these correspondenc they pour in upon us from all parts of the world sent ders it impossible forus to publish all. The editor select rom the mass those that he thinks most likely to be of cneral interest to the readers of the Sciemtific Aymi $\Delta \mathrm{N}$. These, with the replies, are printed; the remain er go into the waste basket. Many of the rejected uestions are of a primitive or personal nature, whic hould be answered by mal; in fact, hundreds of cor ospondents desire a spectach repiy by post, but very fe postage stamp. We could in many cases send a bri eply by mail if the writer werc to inclose a small fee, ollar or more, according to the nature or importance of ne case. When we cannot furnish the inf
money is promptly returned to the sender.
J. C. R. asks: What is the greatest depth ever attained by a diving belli-G. G. asks: How can you a a stiff me inform a tear in it?-B. A. F. asks: Ca to have occurred in New England at the commencemen of this century? It was not occasioned by an eclipse o any other explainable cause.

COMMUNICATIONS RECEIVED

The Editor of the SCIENTIFIC AMERICAN acknowledges, ontributions upon the following subjects: On a Demand for a New Business. By H. D. R. On Patent Rights and Wrang By J. R. R On Diphtheria. By s. s. s. On the Bourdon Gauge. By A. B. W On Cartesian Physics. \quad By H. C On Trisecting an Angle. By H. C
so inquiries andanswers from the following
M. C.-M. A. F.-S.-J. B. - A. C. - W. M. K. -H. P.

HINTS TO CORRESPONDENTIS.
Correspondents whose inquiries fail to appear should hat, for ddress of the writer should always be given Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be publishe ere. All such questions, when initials only are given, our paper to print them all; but we generally take pleas ure in answering briefly by mail, if the writer's address is given.
Hundreds of inquiries analogons to the following ar ent: "Whose is the best generator, for the manufactur of vinegar? Whoare the largest steel mannfacturers in he United States? Whomakes cast cast-steel? Wh ells stamped tissue paper? Who makes machiues, ac lays narrow gage railroads, and what is the cost mile? Who sells electro-plating materials?" All such personal inquiries are printed, as will be observed in the column of " Business and Persunal,"" which is sp cially set apart for that purpose, subject to the charg mentioned at the head of that column. Almost any de sired in
tained.

ofFICIAL

INDEX OF INVENTIONS

Letters Patent of the United States wer

 Granted in the Week EndingMarch 13, 1877
and EACH BEARING THAT DATE
[Those marked (r) are reissued patents.]
A complete copy of any patent in the annexed list ncluding both the specifcations and drawings, will be urnished from this office for one dollar. In orderin ease state the number and date of the patent desire

```
Anmal rats, oleomargarin from, A. Sm
```

Animal fats, reducing A.
Animal trap. J. S. Crowell
Bale tie, J. M. . M. Martin.
Barrels, leveling and trussing, E. Holman et al
Basket, C. H. Ball....
Bee hive, J. R. Wheeler
Blackboard rubber, C. N. Baco
Boot sole fastening, L. Goddu
Boot sole fastenings, making,
Bottle stopper, W. H. Hicks.
Brake and rudder, J. Hutton
Brick kiln, E. W. Bingham..
Bridle und halter, W. Schmolze
Buckle attachment, F. Armstrong....
Cakemachine, D. M. Holm
calendar, w. W. Kitchen..
Car axle lubricator, B. G. Martin
ar coupling, C. G. Fly
Car coupling, G. G. W. Gombe
Car coupling, Hoffman \& \mathbf{P}
Carriage roof, T. Winans........
Chair and carriage, combined, J. F. Downing
Chair, folding, J. J. Weller.
Chair seat and back, P. Rath.....................
chairs, etc., seat and back ford
Churn, reciprocating, J. E. Marquis
Clock case, A. T. Robinson..
Clothes pin, Sanderson \& Linscott.
Clutch for jib travelers, R. T. Osgood
ooffn, F. B. James
Collar fastening, etc., J. Haney
Cooking apparatus, E.
Corn shelling machine, A. H. Shreffler..
Cotton press, , s. H. Gilman
Cow milker, W. A. Wilson
curry comb, C.E. H Holm
Curtain fixture, N. Campbell.
Cut off,
Cut off, A. Ruthel
Dam for storing tide power, W. H. Foster
Decorating cans, etc., Roussel et al (r) ...
Dental and barber's chair, G. W. Archer
Dredge boat anchor, F. Hinman.
Dredging, W. B. Hyde.
Drill, reamer, and tap, Peterson \& Dunnebake.
Ear muffer, C. Greenwood
Ear ring, L. A. Weed.
Elevator, B. G. Martin..
Envelope, J. E. Marshal
Envelope, L. H. Rogers...
Eyeglasses, J. S. Spencer
Facing for walls of houses, T....W
Fare register, W. H. Hornum (r)
Feed cooker, H. I. Aldrich
ence post, iron, S. H. St. Juhn
Fence, wire, W. H. H. Frye....
Fertilizers, sowing, D. F. Hull (r)

Fire escape, R. A. Copeland
Fire escape, J. Heuemann
Fire escape, J. Heuermann
Fire escape, J. H. Spencer.
Fire escape, W. W. Stead.
Frudid trap, A. H. Thor
Fruit crate, W. Wells.
Fruit crate, W. Wells..............................
Fur from hides se paratia
Gate, G. E. Cornell.....
Glass furnace, P. Arbogast
Globe, valve, W. B. Fowler
Globe, valve, W. B. Fowler...
Grain drill distributer, C. E. Pat
Grain drill feeder, C.W. Wilde
Grain separator, W. Edrls.
Grasshoppers, exterminating, T. K. Hansberry.
Grate bar for furnaces, J. H. Blanchard.
Grinding machine, F. Booker.
Harness pad, E. R. Cahoone.
Harrow and clod crusher, Kuhn \& Miller...
Harvester, C. M. Young........
Harvester and thrasher
Hat, C. E. Richards
Hay, etc. unlogding

Hinge, spring, J. Palm.
Hinge, spring, c. s. Van Wagone

Horses, detaching, L. F. Sleeper...........188,426,
Horseshoe nails, finishing. Dunn
Hose, making rubber, J. Murphy
Hot air furnace, W J.
Hydrant, S . W. Lewls
Keg cover fastener, Jones \& Walker
Key hole guard, E. W. Moffat
Knob latch, E. Yarker
Knob latch, reversible, H. Essex
Lamp, J. F. Dour.
Lamp burner, C. A. Ferro
Lamp burner, C. A. Ferro
Lamp, car, w. Westlake.
Lamp lighter, W. P. Wentworth
atch and bolt, J. A. Sherman...

Lightning rod, N. Van Loon
Mail baguttle, D. H. D. Lowell.
Mail bag,
Mail bag, J. C. Lowell.
Mail bag, E. Parker
Match box, J. A. Kratt..........
Match splint, G. Hargreaves (\mathbf{r}.
Measuring packaged faurics, v. A. Bond...
Middlings separator, s. L
Milk cooler, H. Clford
Millstone curb, W. L. Taggart........
Mosquito net and canopy, A. R. Ba
Motor, E. Pepple
Mowing machine, M. G. Hubbard.
Neck tie, R. Swenarton
Packing for piston rods, J. c. stead
Paper bag machine, S. L. King...................
Paper pulp distributer, I. Jennings.
Parlor skate I.
Parlor skate, L. H. Gano.
Pavement, stone, S. F. Gro
Photographic plate holder, C. I........
Pitman connection, etc., H. C. White.
Planing, pressure device, C. . Pater
Planing, pressure dev
Pliers, H. R. Russell..
Pliers, H. R. Russell......
Pliess, parallel, W. Quirk
Pliers, parallel, W. Quirk.
Plow clevis, C. Robinson.

Plow points, etc., sharpe
Pocket knife, F. Booker
Pocket knife, F. Bookel
Pomade, M. Culberton.
Power and hand windlass, F. E. . Sickels......
Preserving vegetables, etc., Merrell $\&$ So
Preserving vegetables, etc, Merrell \& Soule
Printer's rule, T. S. Bowman...................
Printing cash receipts, etc., Smith \& Moss..
Printing, inking, apparatus for, F. M
Printing rolls, making, J. Waldron..
Printing roins, making, J. Waldron
Printing textile fabrics, W. Ireland
Propeller for vesels F.
Propeller for vessels, F.
Pulley block, J. Strubel.
Pump, J. E. Smith.
Pump, A. J. Tyler.
Pump, N. \mathbf{W}. Wheeler
Pump for artestan well
Pump for artesian wells, W. Z. Blaksl
Register for car berths, C. E. Sargeant
Register for car berths, C. E.
Riveting machlne, J. F. Allen
Road engine, A. D. Martin..
Road engine, A. D. Martin............
Roll for beveling irons, W. H. McCun
Rooong tile machine, J. Greena walt
Salt vessel, R. Dunham.
Sand box for locomotive,
Sand box for locomoti ves, S. E. M. Mo
Sash balance, , Stambaugh \& Smith.
Sash lift and fastener, W. E. Spar
Scroll sawing machine, I. Arthur
Scroll sawing machine, I. Arthur....
Sewing machine, boot, S. Henshall.
Sewing presser foot, D .
Sewing presser foot, D. A. Sutherland (r)..
Shade holder, translucent, G. H. Chinnock
Shade roller, F. C. D. McKay............
Shawl pin and button hook, J. Barnes
Shears for cutting metal, J. M. Barnet
Shears for cutting metal, J. M. Barnett
Shoe blacking brush, C. B. Goldsmith.
Shoe blacking brush, C.
Shoe brush, W. B. Seal
Shoe holder, H. Thomp
Sieve, Starnes \& Lipe.
Sled, boy's, S. Gilzinger..............
Snow guard for roofs, P. A. Dugan.
Spectatere, J. J. Johzzson
Spike extractor, J. A. Powell
Spool printing machine, E. Allen......
Stave jointing machine, L. R. Palmer

Steam trap, J. J. Royle...............
steel plates, etc., making, J. Yates.
Steel plates, etc., making, J. Yates.
Stove, air heating, J. B. Oldershaw
Stove, air heat Ing, J. B. Oldersh
Stove and heater, J. N. Hersh..
Stove, oill, o. Edwards
Stove, oil, D. Shield
Stove, oil, D. Shields..........
Stove pipe damper, Selden et
Straw cutter, E. B. Carr....
Straw cutter, E. B. Carr....
Stua and button, L. Towne,
Stump extractor, G. H. Clar
Stump
Stump extractor, G. Ortel........
Table leaf support, C. H. Rohde...............
Table, sideboard, and safe, E. Ro
Teeth, artifcial, F. T. Mercer....
Temper screw for wells, K. Kugle
Temper screw for wellıs, K. Kugler.
Theaters, from fre, protecting, L.
Theaters, from fre, protectin
Thill coupling, J. F. Hill....
Thill coupling, F. F. Wheele
Thill coupling, J. F. Whi.............
Thread cutting, F. Wheeler....
Tobacco cutter, B. Moo
Truss, J. A. Sherman.
Truss, J. A. Sherman............
Tubing, flexible, H. Wakeman
Tubing, metallic, J. B. Root..
Tubing, flexible, H. Wakeman.......
Tubing, metallic, J. B. Root.......
Turnstile, A. F. Swan.............
Umbrella tip cup, G. K. Johnson,
Veprer
Vapor burner. G. W. Clough.
Vapor burner, A. H. Watkins
Vegetable masher, E. S. Lesl1
Vapor burner, A. H. Watkins...
Vegetable masher, E. S. Leslle..
Vehicle wheel hub, C. Kundegr
Vehicle wheel hub, c. Kundegraber.
Ventilator, J. C. Bates (r)............
Ventilator, J. C. Bates (r),...
Wagon body, extensibe, F. O
Wagon, dumping, R. A. Reed
Wagon, dumping, R. A. Reed.
Wagon Jack, F. A. Boughner.
Washing machine, J. B. Lauffer.
Washing machine, s. . Ieigh..
Washing machine, W. W. Walle
Washing machine, W. W. Wa
Weather strip, C. B. Rager
Weather strip, C. B. Rag
Wedge, metal, J. Kelly..
Weage, metal, J. Kelly
Whip socket, G. F. Brinkerhoff............
Wind anchor for frama.
Windmill, E A. Dana.
Windmill, E. A. Dana...........
Window sash holder, J. Kelly....
Wire barbing machine, D. C. Sto
Wire barbing machine, D. C. Sto
Wrench, L. Coes.....
Wrench, W. D. Gold
Wrench, W. D. Gold.
Wrench, coach, R. Jones.............
Wringer and mangle, C. A. Mallory
DESIGNS PATENTED
9,848.-GLassware.-D. Barker, Pittsburg
9,849.-Stoves.-C. H. Castle, Quincy, Ill.

Conn.
9,851, ,9552.-CARPETS.-E. D. Daniels, Paris, France.
9,853.-CARPET-T. J. Stearns, Boston, Mass.
$9,854 .-$ KNIFE HANDLE, ETC.-J. Seymour, Syracuse, N. Y.
9,854--KNIFR HANDLE, ETC.-J. Seymour, Syracuse, N.
9 9.85.-TRIMING.-A. Sturm, New York icty.
$9,856 .-$ TowEL Border, ETC.-T. Webb, Randallstow
,856.-Towe
Ireland.
[A copy of any of the above patents may be had by
emitting one dollar to MUNN \& Co., 37 Park Row, Nem
emitting one dollar to MUNN \& Co., 37 Park Row, Net
York city.]

