	"Mount Unton College brings through in

 almost nominal rates. Sortudents, 1,000 ancommosaten can earn by teaching winter al expenses or Conese Year
of Spring, Sommer and Fau Terms, without losing time.
Tro For Catalogue, address Pres. Hartshorn, LL.D., Alli
ance, Ohlo.

Consiucss and ectsoual.

The Charge for Sreertion under this head is One Dollar al line for each ineertion If the Notice erceeds four a line for each ineertion. If the Nootice erceede fourar lines, One Dollar and a Half per live ovill be charged.

 Diamond Saws. J. Dickinson, 64 Nassaun St., N. Y.
Transit and Clock wanted-Box 913, springfeld, \mathbf{o}.
For Sale-Shoop rights to make and use a device for For Sale-shop rights to make and ase a device for
paokkg bottleed goods in sawdust, short shavings. rice
husks, etc. Send to R. T. Pennck, St. Sosesph, Mo. Hor husks, et.
Wanted-A Hand Hoisting Machine for Grain and Provision store. Send drculare and pricest to J. H. Mor-

An Enlif

An English gentleman, of many years' experience,
who will return to Europe in a fev weeks, desires to negotlate with Δ merican manutacturers for the sale of
their goods in England, France, and Germany. Address Mes Littlejomn, EBq., P.O. Box 200s, Neem Yors eity
Wanted-New or Second-hand Iron Planer, 4 to 7 feet
bed. Send casht priceand desecripton to the Galen Agribed. Send cash priceand deseription to the Galen Agri-
ceutural and Manufacturting Con.. Look Boxat, Cyde, N.
$\$ 3,000$.-Wanted a partner with this amount in a Ma-
 A. \mathbf{D}., $3 ; 3$ Morrls avenue, Newark, N. J.

Send for James W. Wueen \& Co.'s Catalogue of Draw ing Instrnments and Materlals; also catalogue of Micro
scopea, Field
Glases,

Power \& Foot Presses, Ferracute Co., Bridgcton, N. J. Superior Lace Leather, all sizes, cheap. Hooks and Couplings for fat and round Belts. Send for cat
F. C. Beach \& Co., makers of the Tom Thumb Tele graph and other e,
Water St., N. \mathbf{x}.
For Best Presses, Dies, and Fruit Can Tools, Slise \& Water, Gas, and Steam Pipe Wrangt Iron. Send for
prices, Ralle
Hydraulic Presses and Jacks, new and second hand. Lathesend Mechinery for Pollshing and Baffng metals.
E.L Loon, 47 G rand St., N.
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel -other Etnds imitations and inferior Emery Wheel - Other Hnds imitations and inferior.
Cauntion.- Our name ts stamped in full on all our best Standard Belting, Paoking, and Hose. Buy that only, ing Company, 87 and 88 Park Row, New York.
Steel Castings from one lb. to five thousand lbs. In-
valuable for strength and durablity. Circulare free. Valuable for strength and durablilty.
Plttsburgh Steel Casting Con., $^{\text {Pittaburgh, }}$,
Sbingle Heading, and Stave Machine. See advertise-
ment Sold Wroght iron Beams, etc, see advertise-
For Solid
ment. Address Union Iron Mmls, Pittsburgh, Pa., for ment. Adarese
tithograph, etc.
Hyatt \& Co.'s Varnishes and Japans, asto price, color,
purity, and durablilty are cheap by comparison than any others extant. 246 Grand st., N. Y. Factory, Newar
Chester Steel Castings Co. make castings twice as
strong as malleable fron castings, at about the same strong as malleable fron castings, at abo
price. See their advertisement on page 189.
Hand Fire Enfines. Lift and Force Pumps for fire
and allother purposes. Address Rumsey $\&$ Co., Seneca Falls, N., U. S. A. .
The Zero Refrigerator was awarded a grand Centen-
. nial medal. Send for book. Lesley, 226 w. 23 St., N. Y.
See Boult's Paneling, Moulding, and Dovetailing Ms obine at Centenial, B. \&-s. Send for pamphlet and
sample of work. B. ©. Mach'y Co., Batte Creek, Mich.

Matcex (4urins

H. B., Jr., will find a good recipe for aquarium cement on $p .202$, vol. 28 -C. R. is informed
that the apparent spontaneous cracking of alass tumblers is by no means an uncommon occurrence.- P. P. B. B. . .ill
find directions for brazing band saws on p. 19, And directions for brazing band sams on p. 194, vol. 31 .clothing on p. 410, vol. 32. For polisbing castings, see
p. 57, vol. 34. - F. B. S. does not send data enough as to P. 57, vol. 34. -F. B. S. does not send data enough as to
his engine. He
Hill ind a formul for acertaining the horse power on p. 33, vol. 33. For a rule for calculating
the dimensions of a flyweel see
 For a recipe for mucilage, see p. 27 , vol. 24 . -R. P. . C. is
informed that the only non conductor of magnetism is a suffcient interval of space.-E. G. will find an explanation of horse power on p. 33, vol. $33 .-\mathrm{A} . \mathrm{J}$. will ind
something
 will find directions for making shoe polish on p. 107, vol
36. To season timberof all linds, follow the direction on p. 58, yol. 32.-F. C. will find a formula forthe lifting power of coal gas on p. 65 , vol $32 .-$-. H. H. . w. .ill fnd di-
rections for removing inkstains on p. 410 , vol. 32 . Brase castings an be polished by followiug the directions on
 Fill fnd a description of making gas with a hydrocarbon
 Serfurnerr.-U.D. M. is informed that oxychloride of zinc may be used to cement silica together, but we do
not think he will succeed very well with the material of
the process described on p .251, vol. 28. To mend rub-
ber boots, follow the instructions given on p . 203 , vol 30 . -A . L. F. will find on p. 119, vol. 28, a recipe for a co-
ment for mendingleather shoes.-C. A. D. will find a re cipe for red fire on p. 171, vol, 36.-J. D. will find diree tions for freproofing clothing on p. 282, vol. 32.-A. D A. will find directions for mounting chromos on p. 91, to the U. S. Coast Survey, should sign his letters with his name and address.-E. C. S. will find on p. 319, vol. 35, a recipe for a cement wash for woodwork. -A. B. C
will find formulæ for the pasege of water through pipe on p. 48, vol. 29.-W.L. B., A. J. W., W.G. L., E. K.,
C. F. W., J. G., N. T., W. P. B., and others, who ask us to recommend books on industrial and scientift
subjects, should address the booksellers who advertise our columns, all of whom are trastworthy firms, for
(1) T. A. D. asks: 1. What kind, diameter, and focus should a lens be for a pholographic camera to take photographs 44/ inches by $31 / 2$ inches, princi-
pally landscape views? A. An achromatic of about $1 /$ inch diameter and 5 or 6 inches focus. 2. At about wha distanceshould the lens be placedfrom the photographic plate? A. Where the image will be sharpest on a ground
glass, placed where the photographic plate is to be. 3 .
If stops or diaphragme nd where should the be placed? A. Tf the instrumen is a double combination, the diaphragm should be placed midway between the lenses. If a single lens,
place it in front. A piece of cardboard with a round place it in front. A piece of cardboard with a round
hole in the center is all that iswanted. The smaller the diaphragm, the sharper the picture will be, and the
nger the necessary exposure
(2) F. I. E. says: I have several photographic lenses; and wishing to form some kind of instrument on nd pictures may be projected an screen without much are arranged, and what kind of light is best? A. Your 14 portrait lens is just what is wanted for the objective. Then, in addition to this, you need two condensing ight, the same as in a magic lantern with the "Wonde
(3) A. B. C. asks: Can stereoscope lenses or the lenses of a emall spyglass, be used in constructing the home-made magic lantern? A. The usual stereo-
scopic lenses cannot be used, because they are ground scopic lenses cannot be used, because they are ground
thicker on one side than the other. The lens of a small spyglass would do if not of too long focus. It will make the picture tranall unless the lantern is placed at some dis tance from the screen. A lens of about 6 inches focu
is the best; and in small rooms, even shorter focus preferable.
(4) E. J. B.asks: Will a photographic camera, with three lenses and four inches focus, do as an
objective for a magic lantern? Will the "Wonder'" camera as described in Science Record for 1875 do ould the object glass of an opera glass be used for the
purpose? A. If made for a portrait camera to be used without a diathe opera glass objectives may be used, either singly or in combination. If one will make the picture on the
screen as large as you wish, it will give you more light screen as large as you
than the two together.
(5) J. L. K. says: I would like to make a 1 inch hole in a window pane, and have tried several
ways, but broke the glass every time. How can it be ways, but broke the glass every time. How can it be
done? A. Bore a hole in the center by means of a hard teel drill moistened with turpentine. Cut the circl of copper wire centered in the hole just bored, and by means of cuts radiating from the center to the circum-
ference divide the circle into numerous small sectors. Then, with a small piece of metal, tap the glass on th posterior side gently, following each cut throughout it piece of putty over the area of the circle on the fasten a of the glass; and, while holding the putty, tap the glass on the other side firmly in the center of the clrcle. Too much pressure on the diamond will cause it to scratch (6) E. B. asks: 1. How shall I treat hickA. The trouble is due to a diseased state of the timber which reduces its substance to a mass of dry dust, by
the decomposition of its flbers. It is caused by the growth of a species of fungus in those parts of the
timber which have not been properly dried or Onber which have not been properly dried or seasoned of corrosive sublimate forced into the pores ofthe wood by means of an air pump. 2. When shall I cut its A.
It is best to cut the timber in the late fall or early
(7) E. T. says: In speaking of leaky roofs, you say that the best job would be to put on a new tin
roof in small sheets. Which kind of tin is most durale, the leaded or dark lead-colored tin or the brigh light-colored tin? A. Use the best charcoal tin,
(8) J. H. W. says: We have had an explosion in our foundry that we are not able to explain. The
shop is a frame building 50 feet square. We had not made a heat for 24 days; and when we made one and poceeded to drop the bottom as usual, the instant the ing some 250 panes of glass. It tore a door that was canding open off its hinges, and made a report that
heard at a distance, shaking the windows in house squares away. Our shop is quite open, and two doors
were standing open at the time. The prop that the cupola man used in dropping the bottom was some 10 feet lhough it had been struck by lightning. There was we thought, sufficient sand on it to prevent the iro coming in contact with it. Are such explosions of com-
monoccurrence in foundries? A. We imagine that explosions of such violence are not usual, although those of similar kind are not uncommon, when heated iron comes in contact wlth moisture. Possibly some of our
readers may have knowledge of explosions quite as vio-

lent as the on descriptions.

(9) J. M. L. says: I wish to build an air give me the proportion existing between area of stack at
bottom and top and height, and the ares of the faes from furnacess and height, and the aress of me we sufficient to make the cross section of the stack equal to the combined cross sections of the flues. You can decrease the cross section
towards the top if desirable, but there will probably be towards the top if desirable, but there will probably be
no advantage in doing so. Build the chimney at least40 or advantage in doing so. Build the chimney at least40
or 50 feet in height, and as much higher, up to 100 feet,
(10) J. J. says: 1. I wish to make a pair of sleigh runners. I have been told that the rim of a to make them out of. But I do not know how to straighten them. Could not I get two pieces of oak, of the same thickness and width of a rim of a wheel, and bend them? A. When the wood is softened, secure
it by clamps to a former. Perhaps it cannotbe bent into it by clamps to a former. Perhaps it cannotbe bent into
shape all at once, but must be heated several times. . For a small 1 horse cutter, how far apart should the runners be at the bottom, and how far at the top? A.
Distance between runners, 30 to 36 inches at top, and rom 2 to 4 inches more at bottom.
(11) W. S. says: 1 . I am building a ditcherfor rain tile. It is to be drawn by a rope passing a suffslipping, thefreeend being wound on a reel. The capstan is to be 18 inches in diameter, and the levers 12 feet From center of capstan to where the horses are hitched.
What kind and size of rope will be best if two are used, and also if our horses are used? A. You can se hemp rope 114 inches in diameter for 2 horses, and 2
nches in break, how can I mend it? A. By splicing.
(12) E. L. L. asks: Do the rubber covers tiblyp A. No.
(13) C. F. A. asks: 1. What size of boiler stroke? A. Make one 12 inches in diameter and 20 stroke? A. Make one 12 inches in diameter and 20
inches high. 2. Can you recommend to me a book on the construction of the marine engineq A. We do not know any work that covers the construction of the mod-
ern marine engine. You will find much that is nsefolin ern marine engine. You will
Bourne'sand Burgh's treatises
(14) G. F. asks: 1. What I wish to know how much power could I expect from an engine 2×5
inches, 60 lbs. pressure, 150 revolutions? A. From $1 / 2$ to 4 of a horse power. 2. What size of boiler would I reMake a cylinder boiler with about 11 square feet of Meating surface.
(15) W. H. K. asks: Which will bear the reater weight, applied laterally, a round or a square
rod of metal or wood, of the same circumference? A.
(16) J. N. A. asks: What has been the high sest coal? A A horse powerfor 1.5 lbs of coal 1 lb . of is among the best results; this corresponds to foot lbs. per pound of coal.
(17) C. P. P. says: What size of boiler would run to best advantage an engine $3 \times 1 / 1 /$ inches?
Of what should it be mader A. You can use a vertical boiler, made of wrought iron, 10 inches in diameter and 8 inches high.
(18) C. R. W. asks: Please tell me how to pond or lake 100 feet by 80 , in form an ellipse, 9 feet deep with banks sloped 1 /8 feet to 1 foot of depth? Add together the top area, the bottom area, and the area the depth.
(19) W. L. F. says: I am making an elec ro-magnetic machine for medical purposes. I made a hollow cylinder $3 / 4$ of an inch in diameter, containing a bundle of iron wire. Por the first coil, I wound about 50 feet copper wire (insulated No. 16) around this, and separate from it. I wound about 500 feet silk insulated wire, No. 2 . I connected the ends of the primary coil
with 1 cell of carbon battery, but could not get a secondarycurrent. Please tell me where the difficulty lies? A. Your arrangement will give you a secondary current more power, increase the length of your secondary wire and usemore battery
(20) A. S. asks: I have a battery with two zinc cylinder 16 inches in diameter. What must I put in it to make it work? A. Blue vitriol and water.
(21) L. G. W. says: In making a Camacho lectro-magnetic engine, can I construct the tubular
magnets, and what should be the size of and length of wire used in making magnets? A. It is not worth while to make the magnets less than an inch in length. Wind each tube separatelyand then place one over the other.
No. 23 silk covered wire will do. The turns on each tabe shald be in the same direction
(22) J. S. W. asks: 1. Which will give the longest spark, an induction coil made with 2,000 feet of No. 32 wire or with 2,000 feet of No. 368 A. One with
the 2,000 feet No. 36. 2 . Will 4,000 feet No. 32 give a onger spark than 3,000 feet No. 369 A. No, not with same primary. 3. Which is best for the primary coil, of the core and battery used. Make the resistance of primary a bout the same as that of the battery. 4. How long a spark ought 2,000 feet of No. 32 wire to give? A.
Up to a certain limit, about 1 meh spark per mile of sec-
(23) A. R. asks: 1. Does the Atlantic telerraph work upon the same principle as do telegraph is drawn from the cables. A. The batteries are not connected directly to the cable, but to one side of a con-
denserand to earth; the opposite side of condenser is
connected to the cable. 2. What is the strength of the current used? A. Ten or twelve cells is about the number used to charge the condenser. 3. What is the
strengthat the receiving station as compared with that at the sending station? A. About $99 \cdot 5$ per cent after 3 (14) contact with battery
(24) H. S. C. says: In youranswer to F. H., you say that an engine generally worlss more economic-
ally when running at its full capacity. This is undoubtedly true of single valve engines, as a single valve cannot cutof exhaust and impairing its effliciency in a greater or less
degree, according to the point of cut-off. But with an automatic cut-off, or even with a fixed one, I think it can be demonstrated theoretically, as it has been demonstrated practically, that there is great economy in having considerable surplus power in your engine. A. You have misunderstood our reply to F. H. The idea we inended to convey was, that under given conditions there
is a point at which an engine will work most economically. This is the point at which it should be run, a point probably far within its full capacity.
(25) I. H. D. asks: 1 . Why is a chamber used in a condenser for the exhaust steam to flow in? A.
With a view to economy of space and efficiency of action. 2. Could not the steam be condensed in an exhaust oipe, and this pipe be connected with the air pumps A. Yes. 3. How much pressure must be given to a jet of water in the combining tube of an injector, so that it will gain velocity enough to enter a boiler, without flow-
mg back into the overflow? A. It depends upon the promg back into the overnio A. It depends upon the pro portions of the parts. As usually made, the injector
will readily force water into the boiler from which it draws its supply of steam, and could be arranged so as
to force against much higher pressure than that under which it was working.
(26) G. F. asks: 1. How large an engine could I supply steam to from a plain cylinder boiler, 9 feet long and 14 inches in diameter, of $\frac{2}{4}$ inch iron? A. You can use an engine of from 2 to 3 horse power. 2.
Is a plain boiler safer than one with fluess A. Not neessarily.
(27) G. L. K. asks: 1. Can steam from a boiler with 60 lbs. force water into a cold boiler9 A.
Yes. 2. Is it possible to get a pressure in the cold boiler Yes. 2. Is it possible to get a pressure in the cold boiler
above the steam pressure in the steam boiler9 I have above the steam pressure in the steam boiler? I have
seen an injector thatis said tohave forced water into a boiler having 80 lbs. pressure, the injector being operated from a boiler with 20 los. pressure. A. Yes. The philosophy of the matter is that a great deal of steam is
used, and comparatively little water is forced into the used, and comparatively little water is forced into the
boiler. It is sometbing like a steam pump in which the boiler. It is sometbing like a steam pump in which the
water cylinder is only $\frac{1}{s}$ as large as the steam cyliuder, water cylinderis only $\frac{1}{8}$ as large as the steam cyliuder,
so that the water pressure can be 5 times the steam
(28) H. C. asks: 1. What pressure will a lo6 inches in diameter, double riveted, stands A. 40 lbs . 2. How large an engine will it run with frebox 8×8 inches and 8 inches high, and 22 half inch tubes 12
inches long. A. Make one 2×3 inches. 3. Which of these two engines, 5×6 or $4 ? \times 8$ inches, is best for a boat 25 feet long and of 6 feet beam, drawing 6inchesat them when running at the same power, we think the first is preferable on some accounts.
(29) O. A., Jr., says: 1. I have a steam engine with a plain slide valve. The cylinder is 7 inches
bore by 9 inches stroke. Steam ports are $\frac{1}{3}$ by $5 \frac{1}{8}$ inches, exbaust port is 1 inch by $5 \frac{1}{2}$ inches. Valve travels $1 \frac{1}{1}$ cutting off at about $\frac{2}{4}$ stroke. Engine rune shout 240 revolutions per minute with 70 lbs. steam. Can I get more power out of the engine by changing those pro-
portions? A. We do not think, from your account, that portions? A. We do not think, from your account, that
there is any need of a change. 2. Which kind of a returnflue boiler is the most economical in fuel and water: the boiler that will hold $11 / 2$ barrel of water or the boiler that will hold $41 / 2$ barrels, the heating surface being the same in both boilers, and each being of 10 horse
power? A. We imagine the difference, if any, would be
(30) G. W. A. says: We use 60 lbs. steam on a 12×20 inches engine, running three burrs. If we keep just 60 lbs ., it is pretty hard work; and it seems is the cause of this? A. Generally, an increase of
 that although it takes a little more fuel to make 1 lb . of
team at the higher pressure, there are fewer 1 lbs , used to do the same work, and the high pressure is the most (31) J. R. B. says: I propose running a boat by a screw. She is to be 16 feet long and of sharp Dow; of how large a diameter should the screw be? A.
Make one 18 to 22 inches in diameter and of $21 / 2$ to 3 feet Make one 18 to 22 inches in diameter and of 2% to 3 feet
pitch, with a length of blade of 5 or 6 inches. Run it at 300 or 400 revolutions per minute.
(32) C. W. H. says: A boat is $\mathbf{1 0 0}$ rods from a stationary stump. A man in the boat is pulling
50 lbs . on a rope attached to the stump to pull the boat 50 lbs on a rope attached to the stump to pull the boat
to the stump; and two men are in two separate boats 100 rods apart. Each man is pulling 50 lbs. on opposite ends of a rope between the boats to pull the boats together. The two boatsare of equal weigat, and all other stump sooner, later, or at the same time as the two boats come together If not at the same time, how much the two boats would approach each other twico as fast as the single boat approaches the stump-for the reason that the rope is hauled in twice as fast in the first inend; and in the second instance only one man is hauling in rope, at one end, at the same rate as is employed by
(33) J. J. T. says: I wish to build a locomotive engine with vertical boiler 2 feet high. The cyl-
inders are to be $2 \frac{1}{2}$ inches bore by 5 inches stroke. What diameter will the boiler be, and how many 1 inch tubes should I use to get the most power? How much willsuch a boiler, with all attachments and full of wa-
ter, weigh? How much power will it develop, if well
built, with pressure of 100 Ibs. to the inch9. A. The
data eent arerather incomplete, but you will find rules by which you can calculate the answers to your ques tions on p . 225 , vol. 33 .
(34) S. D. C. asks: What is the complete formula for fanding the radius of the earth at any place,
when the force of gravity at that place, and at the equa when the force of gravity at that place, and at the equas-
tor, and the equatorial radius, aregivenя A. La Place's

 stand the premit
they are correct
(35) W. S. says: 1 I am building a model boiler for it capable of 65 lbs , pressure. What should be the eize and the number of fluess A. You can make
fuues 1 inch in diameter, or leegs flues 1 inch in diameter, or less. .2. What would be the
beestaped to run it at, in order to to bestspeed to run it at, in order to get the
A. From 400 to 850 revolutions per minute.
(36) J. N. W. asks: How much suction power has a fan 2 feet in diameter, with four winge, 8 by 14 inches, revolving 2,000 times in a minutes The induction orifce is 1×24 inches. How many lbs. press-
ure can Iproduce at the orifice:
A. If you wish more ure can I produce at the orificep A. A. If you wish mor-
presesure than 1 lb, per square inch, it will be advisabl to use some other form of hlower.
(37) J. F. \& G. W. M. says: There are two tanks for water located 900 feet apart. Each holds above level of ground and the tank itself: is 14 feet high, making225 feet from top of tank to level of ground. A
pipe runs from this tank down into the ground, to suffcient depth to prevent freexing and thence elong on a
level, goo feet, to the other tank. The botom of the level, 900 reet, to the other tank. The bottom or the
last-named tank is 3 feet above top of the firstnamed last-named tank is 3 feet above top of the frrat named
tankk, or 28 feet from level of ground. What size or pipe must into the frre tank in 12 hours? What size of pipe will it take to do the same in24 hourrs? A. To discharge the
second tank into the frrst in 12 hours will require a pipe second tank into the frrst in 12 hours will require a pipe
of 2 inches diameter, and in 24 . ours $11 /$ inchee diame. of 2 inches diameter, and in 24 . hours 11 in inches diame-
ter. The bends in thé pipe should be easy, and no con. ter. The bends tin the pipe ebould be easy, and no con
traction of size, by valves or otherwise, should be al lowed.
(38) W. J. M. asks: Do steam heating pipes consume the oxygen of the air, or is a degree oof heat greater than that of pipes heated by steam necessary
beforethe consumption of oxygen beging that in an offlce, if doors or ventilators be closed for a rew mantes only, the air becomes very oppressive and
stupetying while the temperature is yet not very high stupefying, while the temperature is yet not very high
and not as high as could be borne without any discomfort in a well ventilated room? Would a ventilating shaftr, constructed Bo ast to draw from a reister in ine
floor, be of any benefft, or would the air, at the height of a man's hand, remain undisturbed and oppressive? supporting animal lit because of the limited quantity of oxygen it then contains in a given volume. The breathing of persons engaged in a sedentary employ-
ment is slow, and a dense air would afford greater aliment to the blood in their case. There is no reason to gen of the air to a greater extent than other heating surfaces. But there is, without doubt, a minute quantity of moisture driven from the pipes by the internal pressure, which ooon renders the air humid, and this has the effect or making breathing more difflcult. It is easily inferred from teise tast supplying rresh air brings no remedy, unless the strong dense air thus admitted is
preserved in this state, without being rarefled by the heated pipes. By gradually accustoming youreelf to lower temperature, some relief may be found, or by adopting the plan of the open freplace, you may be
able the more effectuaily to preserve the air of your room in its natural istate, neither too dry nor too humi for easy respiration.
(39) A. B. asks: What are gold and silver

 of to silver and hot copper. The eilve
taing if allog, which is copper only.
(40) J. McT. says, in reply to M. G. P., wha asks if mererschaum pipes, after they have been
naged a time, are not subjected to some proceess to bring
out out the color: I have seen meerschaum and imitation Fil the pipe and smoke down about one third, or to the height to which you wish to color. Leave the remainder of the tobacco in the pipe, and do not empty it
or disturb it for several weeks, or until the dexired colo or disturb it for several weeks, or until the desired color
is obtained. When is obtained. When smoking, put
top, and molo to the same level.
(41) E. McD. asks: 1 . Whatquantity of oil of vitriol should be used to the gallon of water, for sprinklingguano for artifcial manureq
strong acid with about 30 parts of water. Dilute the
2. I itne cessary to distribute the dilute liquide. throughout the the latter, how deep should the layer be? A. Spread the guano into a layer about 3 inches in depth, and sprinkle uien put together again. 3. What quantity of the dilute
liquid would be required for 100 bushels? A. This deliquid would be required for 100 bushels? A. This de-
pends upon the amount of ammonia or its volatile salts which are contained in the guano. If it contains 8 per cent, it
about 2 gall dry steam do as a dryerg A. Heated air would be more suitable. 5. Would it be advisable to make the deposit perfectly dry, or to allow a amall percentage of meisture
to remain ure; and it is betternot. . . If the natural state of the deposit is 50 per cent water and 6 per cent ammonie centage of ammonias Yes. 7. Arter the deposit is dried, could it not be put up in bags and shipped without fear of deter oration? A. If not exposed to the
weather or very moist air, it will not absorb moisture after drying to any extent if tightly packed in strong
(42) M. B. says: Given two lamps, one with ber of threads in each, and everything else equal,
there any difference in the amount of lighty ir so
which givest the most? A. There will be a difference in ravor or the round wick if properly adjusted; but it will
(43) H. C. asks: Is there a way of softenIng rams' horns so as to be able to mould themp A.
There is no practicable method whereby this masbe ac complished.
(44) E. E. C. asks: What acids are most destructiveto steel dies? A. Nitric, muriatic, and sul.
phuric acids attack and dissolve the metal most rapidly phuric acids attack and dissolve the metal most rapidly.
Nitric, or a mistore of nitrric and muriatic acids (aqua Nitric, or a mistare of nitric ald
(45) T. H. S. says: 1. I am using a liquid made of 1 lb . sal soda and $3 / \mathrm{lb}$. lime to. 1 gallon or
water, which, when boiled, comes outas a liquid I wee 2 or 3 spoonosful for washing of a boiler of ciothes of the capacity of 8 or 10 gallons, with plenty of water. Will the liquid be injurious to the fabrices? A.
Under the conditions, the washing fluid will not injure Under the condition, the washing fuiud will not injure he fabric to any extent. The fluid maybe made stronger ys boiling with excess of lime and carbonate of soda
(sal soda). 2 . I use chloride of lime in a liquid state for (ali aoda). 2. I use chloride of lime in a iquid atate ing water for an hour or more. Will thechloride water be injurious to the cloth? Please give a formula to make the chloride water of the proper strength. A. Pase the coth first through a very dilute bath or sulphuric acide
and and immediately throngh a bath of bleaching powder
(chloride or hypochlorite of lime), made by dissolving (chloride or hypochlorite of lime) made by disoolving
the powder in 24 parto ofcold water, and hang in a close he e powder in 24 parte offocot water, and hang in a close
room with as much exposure to to right sunlight as possible. When properly bleached, wash well in water and
(46) C. H. B. asks: How can a sword blade (46) C. H. B. asks: How can a sword blade
frosted?
A: Clean and polish the metal, flow it sickly with dilute nitric acid; and, when
point is reached, wash well in running water
(47) V. S. A. asks: 1. What will soften brushes atter they are ued in varnish or French dryer?
A. Steep the brushes for 24 hours in then, if necessary, purity by washing them with soap and warm water. 2. How can I preserve photograph prootar A. Wash them well in cold running water, dry,
pod keep in a dark place.
O_{r}, atter washing, Ax them y immersing for a few minutes in a atrong solution of yposulphite of soda in water and wash or soak
pious supply of cold water for 10 to 12 hours.
(48) A. P. asks: Can you furnish me a recipe to make a solution for setting the color of crayon rawings8 A. Use a dilute aqueous solution of gam loves. (49) A. R. asks: What can I use to repair a onf A. Warm the fractured edges of the glase uni
ormy, and join with fused guta percha. The edge should, be pressed Almly together and allowed to rema
in the clamp or an hoorr, or until perfectly cool.
(50) C. asks: Will you give a chemical anIysis of ox bloodp A. In 100 parts of ox blood cor puscles there are: Water $88 \cdot 8$, solids $31 \cdot 2$. The solids
re: Hemmatin (with iron) 1675 , globulin and cell membrane 28m22, fat 0.231 , extractive matter 0.260 , mineral substances (without irou) 0.812. The minerals are: Chlo
ine $0 \cdot 1686$, sulphuric acid $0 \cdot 0068$, phosphoric acid $0 \cdot 11841$
 potasium 0.3338, sodium 0.1052, oxygen 0.0067 , calcice
phosphate 0.0114, , magnesic phosphate 0.0073 . Theese lood corpuacles are suspended in a liquid containing
100 parts: Water 90229 fibrin 0.405 , albumen 7 7884, 172 , extractive matter $0 \cdot 394$, mineral lubstances 8.55 . (51) C. F. M. asks: Is there anything tha aterprow hide a ine finish an a strong hot deco ion of sumac, alum, and logwood, and dress with misture of beeswax, soap, oil, and ivory-black.
(52). P. S. K. W. asks: How may paper be prepared so that lingeed oil will not soak into it and that the paper will remain flexiblep A. Pass the paper rap.
dily through strong sulphuric acid and wash quickly dily through strong sulphuric acid and wash quickil
with a copious supply of water. After drying, pasi hrough an aqueoous solution of dextrin, and then be
ween smooth rollers heated to 5000 Rah, The nom ween smooth rollers heated to 600° Fab. The
(53) C. B. W. asks: 1. Is it true, as a gen eral thing, that dress yoods, wall papers, etc., in which
green color predominates, are green color predominates, are polisonouss A A. No.
Scheele's
green (arsenite of copper), becanse of its In designs on wall papers, but not so frequently on dress goods. 2. Is it necessary to use poisonous matters to
make a green color? A. No. Fabrics which have bee nake a green color? A. No. Fabrics which have been
yed with some ot theaniline colors have, at times, pro uced poisonouseffects, especially where they have Deen ermitted to remam for any lengthor time in direct con-
tact with the moist cuticle; but not otherwise. 3 . Whence came the ideat cuticie; but not otherwise. , Cases of poisoning from Paris or Schweinfurt green, renigris, and iike compounds containing copper or aron numerous that ant similarly colored pltgents, dyee, c., have gradualiy come to de considered with more
(54) J. A. W. asks: Is there an acid or cemical which will corrode paper pon
vill not corrode gum arabic? A. No.
(55) G. W. S. asks: How can I make a loaf of bread which, after a year or so, I can lay my hand on and squeeze it down, and will rise up again the same as when fresh bakedf A. If the bread is notintende
or food, zuch a loaf may be made from flour in the or inary way, but with the addition of a little sulphate of copper (a very minute quantity only), glycerin, and atrong aqueous solution of alilicylic acid.
(56) W. W. asks: What is the best cover vennin-proof, and cheap? A. Try the following: Tak nycoarsefabric, steep it for a few hours in a atron aqueousso ution or alum, dry, an
face with a thin covering of tar.
(57) G. R. asks: 1. Will a soft metal, like metal like cast or wrought iron of equal weight and the same shapes A. The loss of heat does not depend so much upon the hardness of the metal as upon its con-
ductivity and the condition of its surface. If the suractivity and the condition of its surface., If the sir-
faces of the metal be bright and polished, it retains its heat much longer than if it be dark and rough; or, in radiation. The ees rapialy will it partucivity of the netal, the longer it will retain its heat, other conditions being the same. The conductivity of silver being 100 , that or copper is $73 \cdot 6$, zinc $19 \cdot 9$, tin $14 \cdot 5$, steel $12 \cdot 0$, iron
119, lead $8 \cdot 5$. The time required to cool a large mass of 119, lead 85.5 . The time required Lot metal is proportionately great compared with that same number of thermometric degrees. 2. Will glase (58) A as (58) C. A. B. says: I have eight or ten asthen very good and would clean paper very nicely tis now hard, and slides over the paper without cleaning it. Can it be restored, go that it may clean paper as
well as ever9 A. No. The hardening is due to oxddation. avality cannot be eatored
(59) O. H. N. asks: Is there any way of leasing sulphur off horseshoes? When I weld the to calk on, the sulphur gets under the toe calk, and I can-
(60) H. \& M. say: We wish to test the qual y of different lots of coal oil sent from refineries. Could you give us a mode of doing thisp A. Inexpenive instruments for this purpose are sold by dealers in that is necessary for ordinary purposes is to determine is accomplished by means of an instrument resembling
aydrometer, and the latter by heating a small quannity a hydrometer, and the latter by heating a small quantity
of the oil in which the bulb of a thermometer is im. mersed to indicate the temperature, and a small ignited aper, held close to the surface of the oil, ignites thesame when the temperature has risen sufficiently.
(61) M. N. asks: Is there any metal or comnd and could be moulded hollow? A. Steel or bronze wo
answer the purpose, if we understand you aright.
(62) C. B. P. asks: How can I platinize the silver plate of a Smee batterys A. Dip the plate in a strong solution of chloride of platinum, and expose it or a short lime to the action of a a stream or hydrogen or
coal gas. 2 . How can I prepare eulphur for making caste coal gas. 2. How can I prepare enulphur for making casts
of coins, etc.9 A. Fuse the sulphur and heat it to the point of sublimation, and while in this condition throw cold water.
(63) A. J. S. says: I have a lot of emery Wheels that have been almostcovered with japan dryer. A. Remove all you can by mechanical means, and then treas the parts with strong oil of vitriol (salpharic acid)
for a few minutes then wash well but quickly, in a rora few minutes; then wash will, but quickly, in a
gream of water.
Repeat this treatment if necessary,
 mitted to remain for any length of time in contact with he stone, as it will injure it.
(64) C. W. C. asks: How can I keep lemons Por 6 months or mores A. Packing them in aalt and
seeping in a cool place is one of the best methods; but even this will not al ways sumfce.
(65) C. H. J. says: Some specimens of lime nens taken out during the spring and summer wheiwere allowed to eeason, answered admirably, but thoe aken from the quarry during or just previous to a cold snap cracked by the action of frost. Can you suggeat
means by which these stones may be tested, other than means by which these stones may be tested, other than by subjecting them to extreme colar A. The cause or the crackling of the stone may have been the molecular
energy of freezing water contained within cavities in he rock; but it is more probable that the rupture wa due to the relaxation of strain to which the blocks had been subjected while in the quarry. Spliting up of
blocks from this cause isbyno meansinfrequent insome block from this canseisbyno meansinfrequent in some
quarries. f the breaking is attributable to the action of frost,
tion for testing the stone. If it it due to the anequal
(66) M. asks: Can you give me a recipe for making concentrated starch?
any preparation by this name.
(67) G. S. says: I have some specimens of copper ore that are covered with verdigris. What shall dilute sulphuric or hydrochloric cacid will remove it,
(68) C. V. W. says: Some of your corre
 spondents ask for $\begin{aligned} & \text { a } \\ & \text { method of find }\end{aligned}$ method of anding
the radius of a acircle when the chord and versed sine are
given. I give them a very simple form-
ula based upon the well koown propergled triangle. Where

$a=1 / 2$ chord, $b=$ height or versed sine, and x and $x=$ $a^{2}+(x-b)^{2}=x^{2}=\frac{a^{2}+b^{2}}{2 b}=x$ or $\frac{1 / 2 \text { chord }}{2} \frac{\text { height }}{2}$ height

(69) J. H. M. says: I am running saws of 8 Inches diameter, and gmaller. I wish to know at what
to run them in order to make the smoothest work? A. Nine thoosand feet per minute, that is nearly two miles per minute, for the rim or a circular saw to travel, mas in liameter. 3 feet around the rim, 3,000 revolutions; 24 inches in diameter, or 6 feet around the rim 1,500 revo lutions; 3 feet in diameter, or 9 feet around the rim, 1,000 revolutions; 4 feet in diameter, or 12 feet around the rim, 750 revolutions; 5 feet in diameter, or 15 feet
around the rim, 600 revolutions. Of course it is under-

Chis reckoning on account of the circumference being and some other sams, either riveted to a cast iron collar very thick at the center and thin at the rim, may be
(70) D. B. says; I notice an arlicle stating at Dr. slemens had succeeded in producing permadent maggeets capable of suspending 20 times their own ten. Can thi beor 4 Yes so for we tow tung artilicial magneta have been made to sustain one hundred times their own weight.
(71) C. W. C. says: If a telegraph wire pasees overa building, or in close proximity to it, does it it has any infuence, it acts as a protector
(72) J. W. T. asks: Is there any electric attery that will heat and keep a $3 /$ inch wire red hot or nearly sop A. The question is verry indefinite, as every-
ling depends upon the length and material of which the wire is composed. Probably a Bonsen cell could be made sumfciently large toheata short length of platinum
(73) V. W. S. asks: If a dwelling is sur rounded by trees, from 10 to 25 feet higher than the ridge or the chimnes tops, and within one or two rods
dietance from the house are not these trees some prodistance from the house, are not these trees some pro-
tection against lightning? And if not, would not conductors in the trees answer a better purpose than is se cured by the usual mode of attachment to the building? A. Properly constructed rods on the building are much better in every respect.
(74) T. B. A. says: What size of wire do I want to make an induction coil, to be used to heat plati-
num wires A. Use a Grove or Bunsen battery. Mither is
(75) A. A. W. says: I have a book that gives a rule for finding the eafe working preasare of any
boiler, but I cannot work it satisfactorily. The rule is: Multiply the thickmese of iron by 0.56 oro 70 , according as the boiller is single or double riveted, multiply this
product by 10,000 (asef load), then divide this last product by the intemal radius less the thickmeese of iron. uct by the interral radius less the thickress of iron.
The quotient will be the safe working pressure in lbs. per square inch. A. Calling C a coefflient 056 or 0.70 , a
 inch; R, internal radius of boiler in inches; L, safe load
inlbs. per square mch. Working presesure $=\frac{C \times T \times L}{}$
(76) J. P. asks: How can I make old copper and brass coins stick toa board without using tacke8 or asphalt and gutta percha. Apply hot. Clean the coin with a little dillute nitric acid or oil of vitriol.
(77) J. Z. R. says: I inclose a small piece will be the best? A. As the carpet already contains so many darkceolors, it would beimposisible to dye it any
color butblack, without Afret having bleached it; and chis, in the present instance, is impracticable. My kitchen ceiling blisters and scales off. It has been Whitewashed sometimes with lime and sometimes with
whiting. What shall I do with itt A. This is very probably due to dampness, in which case the best plan is to clean and paint the walls.
I want to make a photo background. What is the best
color to user A. Any of the anilline colora may be used forthis purpose; you can purchase them, already pre pared and with instructions for uase, of any druggist. Any oil paint may be rendered flexible, when dry, by
rubbing it up with a little soap and glycerin over a (78)
(78) A. S. C. asks: 1. What amount of carof these soaps, that we have examined, contained about three per cent of the crude phenol in combination as a soda salt. 2. How is it mixedp A. In the coarerer varl-
eties of these soaps, the phenol is added directly to the ye during the latter part of the eaponification; but in hese casee the acid is very incompletely distributed through the body of the soap. A complate and uniform
disemination of the phenol may be obtained by dissolving soap and carbolate in hot spirits of wine or wood aphtha, and evaporating the solution to dryness.
(79) B. F. W. says: Joshua Rose says, in relation to sawing staves for cylinder or pipe patterns: It will save time to resaw the pieces to give them the table." bevel, which may be done by canting the saw table." A better practice is to cant the table before
sawing at all, and then the staves will be of the right shape, with a saving of nearly two thirds of the sawing nd considerable timber.
(80) C. H. says: We have in our possession old-fashioned range; and whenever we draw hot wathe water has the appearaace or milk, but arter ave been advised not to uee the water. A. This is is ue to the precipitation of the lime contained in the water. Lime is leses soluble in hot than in cold water. It is not
generallyadvisable to use water from the hot faceet for ulinary purposes, as it may contain poisonous copper nd lead salta.
(81) J. A. K. says: 1. I use oxalic acid for preparing pale leather boot work (ha castuonfe sometimes becomes a brownish color. Do you krow of any kind moistening the leather Arst with oxalic acid, as usual, and then with a strong solution of chloride of lime (hypochlorite of lime) in cold water. 2. Do you know of anything to put in ink to g.
ald
alohalc eolution or wax.
(82) J. W. P. asks: What will remove stains of tannic acid from linen ond other fabricas A.
Wagh well with a little soda, moisten with very dilute Wash well with a little eoda, moisten with very dilute sulphuric acid, and then with a strong solution of
bleaching powder (chloride of lime) and expoee for an
(83) X. Y. Z. asks: Can the skins of birds tanned whinte feathers on t discoloring the feathers.
(84) E. W. W. asks: How can holes be readiy pierced, or small holes enlarged. in rubber corks
for the fiting of glase tubing9 A. Force the stopper into the neck of a flask or large glase tube which it wil just thent, and we a wil sharpened cork borer wit
 glass rod and proceed at petore
fist there any table pubinitied of relative chemical ar imides by which one may get at the amount of force
necesary to pounds? B. We know of no such table
(35) W. A. H. says: I have a relay of the box pattern, containing a magnet of about 40 ohms.
There is a certain peculiarity I I notice, which I would like to have you explain. I notice that whenever th current is broken by opening of the key, a peculia
jump is heard, a kind of kick or hammering. At frot thought the magnet wae loosc; bet after making it 1 tight as possiole, it acted in the same manner. A. The noise isoccasioned by a change in the molecular condi-
tlon of the fron core when magnetized and demagnet
(88) S. I. asks: 1. What length and size of insulated wire isrequired to wind the magnets of a re lay, such as is usect on ordinary telegraph lines? A
About 1,1000 feet of No. 32. 2. What would be the proper dimeniens? A. The core cas be $114 /$ inch lont
(87) H. L. J. says. Makers of telegraph apparatus une a kind of lacquer or varnish on their brass avoid muffing the sound. What is it, and how is it prepared A. Shellac and alcohol are the principal in gredient, colored by gamboge, saffron, turmeric, etc.
About2 2 gallons alcohol to 1 lb. shellac is the propor tion.
(88) G. W. H. says: 1 I am making an in duction coil to throw 11 y, inches spark, to light gas.
what diameter and length shall I turn my bobbin? Use about 2 miles of No. 36 wire for the secondary.
$\begin{array}{llll}\text { What size of wires shalle I use? } & \text { A. Make the core }\end{array}$ inch or an inch in diameter and a bout 8 inches long. 3 Ihave some tinfoil 5 inches wide to make a condense
with; how much in length will it takes A. One hun dredfeetof the foil will probably be enough.
(89) C. C. S. asks: Can I conduct the smoke and exhaustrom 44 or 6 horsepower farmengine throug to a stack 100 or 125 feet distant? A. This is frequently done.
(90) A. V. V. says: Two boilers, one 8 feet Indiameter and the other6, each containing the same number of flues and each having a steam gauge indicat
ing apparently the same number of ing apparently the same number of llos. of steam; which
boiler has the most steam in it? A. If the largerboiler has the most steam room, it contains, of course, the reatest weight of steam.
(91) W. H. L. asks: Why is it objectionable to raise the eafety valve of a boiler in case of low water and danger of explosion? A. It is not desirable to do
anything that may cause the water to rise and come in ith overheated iron.
(92) R. M. asks: How can I raise a valve by change of temperature? A. There are numerous devices
of this kind in common use. By inserting a notice in or this kind in common use. By inserting a notice in
the "Business and Personal" column, you cin probably gain full information.
(93) A. B. says: Please give me the scientific defnition of the word "inertia?" A. Brande say "This term is used to denote the principle or law of the
material world, that all bodies are absolutely pasive or indififerent to a atate of rest or motion, and would continue for ever at rest, or perscevere in the same uniform and rectilinear motion, unless disturbed by the action of
some extrinsic force."
(94) A. B. S. asks: Will a pump draw water any easierby having the pipe to the well larger than the connection to the pump, and will an injector lift the
water any easier by having the suction pipe in the well :argert han thepipe to the boiler? A. By using a larger pipe, the friction is diminished.
(95) J. D. S. asks: What is the best manner of determining when a millstone is in windq A. Use a will show all the high spots.
(96) E. M. P. asks: What are the best methods of reversing motion? A force is used to accumulate or store up a certain amount of power, then that stored-up power is desired to produce or exert its force.
By
 Flywheels, springs, and weights are among the most ommonmeans employed.
(97) C. W. asks: What would be a safe steam pressure to carry in a cast iron cylindrical sbell
of 10 inches inside diameter and fin thick, whith heads 3 . thick? A. You can carry 2001bs. if the casting is sound; but cast ironboilers frequentiy have points of weaknes ittele value
(98) W. L. M. says: Astronomers tell us that it has been calculated, from the rapidity of the roanion of the earth, that, if the earth were suddenly in-
tercepted in its motion, sufficient heat would be gener atedto melt the earth instantaneously. What would be the generator of this heat? A. According to the modern theory or heat, a unit of heat and 772 foot lbs. of work heat.
(99) T. A. asks: Can a turbine or other water wheel be considered an hydraulic power? A. It can, in a general sense, just as much as a ateam engine
may be spoken of as steam power.
Strictly, the term applies to the power furnished by the motor.
(100) Y. M. asks: 1 . What is the meaning of the mass of a body, when the weight is divided by the gravity tof ind it? A. It is a measure of the quantity
of matter, and in order togive the same reenuto with the
same body at all places in the earth's surface 2. Wha
is a circularinch? A . It is the area of a circle havin diameter of 1 inch. 3 . What is a cylindrical inch A. It is the volume of a right cylinder wit
base, diameter of base 1 inch, altitude 1 inch.
(101) C. F. says: When the water in m boiler stands between the two gauges (about 3inche
bore top fues) and I start the engine, the water will nstantly risefrom 6 to 8 inches or nearly up to the dr back to its original position. We kmow it is not foaming, as we have blown off the boiler several times, an it is perfectly clean. We use soft water. A. The rise of the water is probably due to insufficient stcam room,
or posibly because the fire is forced too much. We judge, from your account, that no injurious action take eifective in causing the water to rise, but those given bove are the most probable.
(102) I. W. L. says: 1. I have been told that can make a battery for gold ana silver plating as fol tinch thick, anda piece of zinc of the eame size. At tach a copper wire to each in a glass. vessel $\frac{1}{5}$ f full with m
piece of buestone. The z inc is to be on the top. These wires are to go to the bath. Is this right? A. The plate should be much larger to give good results, and the cop. A. Make a solution by dissolving cyanide of gold in cy anide of potassium, about t oz. of gold per gallon Connect the article to beplated to the zinc of your bat tery. 3. How long should the árticles be in the bath? A Until the deposit is of the desired thickress.
(103) W. S. W. says, in answer to M. P. who asks for watch oil: Put $10 z$. pure olive oil in a tom
bler, add 2 ozs. of 96 per cent alcohol, stirring well; se it away in a dark place for 24 hours or more, well co it away in a dark place for 24 hours or more, well cov
cred, then pourinto a clean bottle containing 10 ozs. dis tilled or clean rain water. Shake violently for 5 minute with salt and ice Youwill find a good article of fin limpid watch oil, perfectly fluid, at top. Draw off with a siphon.
(104) L. G. says: A string or cord being at tached to a piston rod directly, the engine being of one horse power, what weight must I put on the cord to tes the strength of the engine? A. This depends upon th speed of the piston. The measure of a horse power io
the work of lifting 1 lb . 33,000 feet high in a minute, o 33,000 foot pounds per minute; so that if you divid quotient will be the required weight.
(105) H. E. W. asks: 1. Why do nearly al anufacturers of electric annunciators and ind of No. 28, and finer? Why not use No. 20 to 269 A In many cases, Nos. 20 or 26 wire would be preferable but with finer wire the battery does not require so muc attention as might be necessary if coarser wire wer used 2. Will cotton covered answer as well as sil is better th. Any kind of insulation will answer. Sil is better than cotton, as ordinarily put on, as it takes up
less room. 3. What size of cores, and how many feet of wire on each core will give the bestresults? A. Core are usually made about $14 / 4$ incheslongand $3 / 8$ inch thic for annunciators; 250 feet of wire will answer for both cores. 4. Willan electro-magnet ever lose its power o
become useless? A. Not with proper care, except that become useless? A. Not with
everything wears out with age.

Minerals, etc.-Specimens have been re eived from the following correspondents, and examined, with the result stated:
G. M. P.-No. 1 is hauerite, sulphide of manganese No. 2 is idocrace, a silicate of lime, alumina, and iron A. C.-S is a clay ironstone, containing mnch sulphide
of iron (pyrites). Gis graphite mixed with much clay D appearstocontain s maplite mixed with mich clay in a granite matrix. Your letters were insufficiently mped to the amount of 24 cents.
R. K. says: A friend tells me that a single double, a triple, and quadruple thread, either right o nary stocks and dies. Can this possibly be trueq-ard w. asks: Is there any rule for dividing a circle into 3 , 4, or more equal parts by parallel lines?-G. E. C. asks:
How can I bendthe sides of a guitar? Should they be teame a triangle by a straight line passing through any give oint within the triangle?

COMMUNICATIONS RECEIVED

The Editorofthe Scientific Amrrican acknowledges, with much pleasure, the receipt of original papers and
On Friction of Slide Valves. By F. G
On Force. By
On Cleopatra Problem. By By. B. P

J. P. B.-T. H. C.-W. C. Y.-R. F.-E. P.
 J. P. B.-T. B. C.-W. C. Y.-R. C. W.-J.B. B. - J.K.-T.H. G.

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appear should repeat them. If not then published, they may conclude
that, for good reasons, the Editor declines them. The dat, for good reasons, the Editor declines Inquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initials only are given, are thrown into the waste basket, as it would fill half of our paper to print them all; but we generally take pleasure in an
is given.
Hundreds of inquiries analogous to the following are sent: "Who sells blue glass lamp chimneys? Who sells machines for stitching magazines, etc., with wire? Who
sells working models of steam engines' chain9 Who makes the best medical electric apparatus?",
All such personal inquiries are printed, as will be ob-
served, in the column of "Business and Persoual," which
is specially set apart for that porpose, subject to the
ccarge mentioned at the head of that column. Almost
any desired information can in this way be expeditiousany desired
ly obtained.

official

INDEX OF INVENTIONS

por witor

Letters Patent of the United States were

February 13, 1877,

and each bearing that date.

[Those marked (r) are reisesued patents.]
A complete copy of any patent in the annexed us furnished from this' office for one dollar. In ordering lease state the number and date of the patent desired,
nd remit to Munn \& Co., 37 Park Row, New York city.
addressing machine, J. H. Williston
dvertising device, w.
Air and steam dlower, B. Hershey Bag holder, B. J. C. Howe
Bale hook, H. Hauschlld
Bale hook, H. Hausch1
Barbed wire, twisting, E. P. Peacock
Bed, air, Macintosh \& Boggett..... Bed bottom, spring, A. W. Kendrick
Beer cooler, L. M. Davis................
Bessemer steel, making, Hunt \& Wen
Binder, temporary, G. W. Fmerson Binder, temporary, G. W. Emer
Blacking box, S. W. Valentine Bolt heading machine, G. R.
Book support, J. \& R. Lamb
 Brick kiln, E. W. Bingham
Brick kiln, w. S . Colwell. Brick machine, T. J.
Broom, T. R. Evans

Buckle, F. W. Schafer....... Butter mould, F. B. Hirst
Button, S W. Sher

Can, sheet metal, G. H. Cinnock..
Can, sheet metal, J. S. Field......
Capstan, reverse power, T. W. Hyd

ar wheel chill, w. Wilmingto
Carbureting air, apparatus for, A. C. Rand
Carpet sweeper, W. S. Hall
Carriage eseat.turn over, C. W. Patte
auterizing apparatus, C. Paquelln
Chuck, J. H. Westoott
Cider press, R. Knapp... Quinn
ircuit closer, electric, Rousseau \& Smith
Cloth outting machine, M. L. Hodso
Clothes pin, W. N. Lockwood.
Coal scuttle, W. Richards
Coffee flter, M. \mathbf{O} 'Connor.
Cold, artifctal, R. P. Pictet Corn ararrow, E. Martin....
Corn stalk cutter, W. Gans. Cors stalk cutter, W. Gans.
Corsp, W.
Cradle, c. O. Sobinski.
Crank, nompensating, R. D. Milne
Croquet stand
Croquet stand, A. Errlebach
Cultivator, R. B. Robbins.
Cultivator, hand, J. W. Dowle
Curtain flxture, H. Seehausen............
Deodorizing closets, A. Hanel.
Door sill, A. Saur...........
Draft attachment, Otto \& Sim
Drafting scales, J. Lyman.
Drawers, G. W. Walgrove.....
Dress protector, D. R. Harder
Drop light, C. Henry...
ERg beater, M. C. Russell................
Engine, rotar, P. D. M. Carmicha
Engine rotary R. W. Skirrow
Engines, mounting portable, R. M. Bec
Envelope, J. J. Hayden.
Excarating
Excavating apparatus, A. W. Johnson.
Fats, prooess of treating, A. Springer..
Feathering paddle wheel, w. Webster.
Feathering paddle whe
Fence, J. W. Webster.
Fence post, Wing \& T
File, W. T. Nicholison
Fire arms, etc., sight for, c..........
Fire kindler, S. W. Mather.
Fire shield, L. W. Wright.
Flour and meal sifter, C. o. Peck
Flue cleaner, G. W. Clough.......................
Fork forgreen corn, etc., table, F. M. Dixon
Fruit drier, R. B. Blowe
Fruit jar, J. A. Nichols.
Fruit jar, J. A. Nichols.................
Furnace for brickkills,
Furnace bridge
Furniture top, J. T. Bailey
Gas burner, s. C. Salisbury
Gas burner, self-lighting, R. R. Moffatt.........
Gelatin capsules, cutting
Glass door block, W . Beck
Grain binder, C. B. Within
Grain drier, J. Guardiola
rinding awl blanks, J. G. Dimon
Harrow, D. W. Baird
Harrow cultivator, C. La Dow.
Harrow, revolving
Harrow, revolving, O. P. Fishe
Harvester, E. D. Stewart
Harvester rake, J. H. Myers
Hay press, P. K. Dederick..
Heater, friction, W. Wells.
Heating onrs, C. C. Converse (\mathbf{r}
Hoe, J. R. Hach.....................
Hoisting machine, H. snowden

