

The Charye for Shertion under tuis head it one Dodhar

 Second-hand Achromatic Telescope, 2% or 3 inch obJective, wanted by Wm. Erwin, Groves, Fayette Co.,Ind. Diamond Saws. J. Dickinson, 64 Nassau St., N. Y.
Transit and Clock wanted-Box 913, Springfleld, O.
Transit and Clock wanted-Box 913, Springfeld, 0 .
For Sale-Shop rights to make and use a device for For Sale-Shop rights to make and use a device for
packing bottled goods in sawdust, short shavings. rice
husks, etc. Send to R. T. Penick, St. Joseph, Mo., for husks, et
circular.
Wanted-A Hadd Hoisting Machine for Grain and Provision store. Send circulars and pricees to J. H. Mor
gan, Ogdensburg, N.

an, Ogaensburg, N. Y

An English gentleman, of many years' experience,
who will return to Europe in a few weeks, desires to negotlate with American manufacturers for the sale of
their goods in England, France, and Germany. Address , France, and Germany. Addres York city
Wanted-New or Second-hand Iron Planer, 4 to 7 fee
bed. Send cash priceand description to the Galen bed. Send cash priceand description to the Galen Agri-
cultural and Manufacturting Co.. Look Box2t, Oyde, N. Y.
$\$ 3,000$.-Wanted a partner with this amount in a Ma chine Shop, the inventory of which is estimated at least
at $\$ 5,000$, for manufacture of patented articles. Address at 85,000 , for manufacture of patented a
A. D., 363 Morris avenue, Newark, N. J.
Send for James W. Queen \& Co.'s Catalogue of Drawing Instruments and Materlals; also catalogue of Micro scopes, Field Glasses, Telescopes, and other
struments. 924 Chestnut St., Phlladelphia, Pa.
Power \& Foot Presses, Ferracute Co., Bridgt ton, N. J. Superior Lace Leather, all sizes, cheap. Hooks and Couplings for fat and round Belts. Send for
F. C. Beach \& Co., makers of the Tom Thumb Telegraph and other el
Water St., N. $\mathbf{~}$.
For Best Presses, Dies, and Fruit Can Tools, Bliss \& Water, Gas, and Steam Pipe, Wrought Iron. Send for
prices. Balley, Farrell $\&$ Co, Pittsburgh, Pa.
Hydraulic Presses and Jacks, new and second hand Lathesand Machinery for Pollshing and Baffing metals.
E. Lyon, 470 Grand St., N.
Solid Emery Vulcanite Wheels-The Solid Original
Emery Wheel - other wnds imitations and inferior. Emery Wheel - other kinds imitations and inferior.
Caution.-Our name is stamped in full on all our best Standard Belting, Packing, and Hose. Buy that only ing Company, 37 and 38 Park Row, New York.
Steel Castings from one lib. to five thousand lbs. In-
valuable for strength and durablity. Circularg free. valuable for strength and durablity.
Pittsburgh Steel Casting Co., Pittsburgh, Sbingle Heading, and Stave Machine.
For Solid Wrought iron Beams, etc., see advertise
ment. Address Union Iron Mms, Pittsburgh, Pa-, fo ment. Addrees
Hyatt \& Co.'s Varnishes and Japans, as to price, color
purity, and durabulity, are cheap by comparison than an pthers extant. 246 Grand stap by comparison than an
ons
J.

Chester Steel Castings Co. make castings twice as strong as malleable iron castings, at abo
Hand Fire Engines, Lift and Force Pumps for fire and allother purposes. The Zero Refrigerator was awarded a grand Centen-
nial medal. Send for book. Lesley, 226 w. 23 S St., N. Y. See Boult's Paneling, Moulding, and Dovetailing Ms chine at Centennial, B. 8-55. Send for pamphlet and
sample of work. B. C. Mach'y Co., Battle Creek, Mich

(4)

H. B., Jr., will find a good recipe for aquarium cement on p. 202, vol. 28.-C. R. is informe
that the apparent spontaneous cracking of alass tumbler is by no means an uncommon occurrence.- P. B. B. wil C. H. B. willifnd directions for removing inkstains from clothing on p. 410, vol. 32. For polishing castings, se p. 57, vol. 34.-F. B. S. does not send data enough as to
his engine. He will find a formula for ascertaining th the dimensions of a flywheel, see p. 251, vol calcuatin N. will find a recipe for prepared glue on p. 43, vol. 32 . For a recipe for mucilage, see p. 27, vol. 34.-R. P. C. is
informed that the only non-conductor of magnetism is a sufficient interval of space.-E. G. will find an expla nation of horse power on p. 33, vol. 33.-A. J. will find
something on tempering chisels, etc, on p. 220 , vol 31 something on tempering chisels, etc., on p. 220 , vol. 32
$-H$. L. H. should address a pump manufacturer. $-\mathbf{H}$. \mathbf{H} will find directions for making shoe polish on p. 107, vol 36. To season timberof all kinds, follow the direction on p . 58, vol. 32.-F. C. will find a formula for the lifting power of coal gas on p. 65, vol 32--C. H. B. will find di-
rections for removing inkstains on p. 410, vol. 32. Brae castings can be polished by following the directions o p. 57, vol. 34. Steel can be etched by the process de-
scribed ou p. 250, vol. 27.-F. J. s. should send us a
sample of the efflorescence on the ash heap.-D. W. will find a description of making gas with a hydrocarbon flaid on p. 65 , vol. $32 .-$ R. W. K. will find answers to his
 zinc may be used to cement silica together; but we do
not think he will succeed very well with the material o ber boots, follow the instructions given on p. 203 , vol 30 , -A. L. F. will find on p. 119, vol. 28, a recipe for a coment for mending leather shoes,-C. A.D. will find a re-
cipe for red fire on p. 171, vol. 36.-J. D. will find direc tipe for red fre on p. 171, vol. 36.-J. D. will find direc-
tions for fireproofing clothing on p. 282, vol. 32.-A. D A. will find directions for mounting chromos on p. 91 to the U. This alsoanswers T. S. R.-G.K., who asks his name and address.-EE. C. S. will find on p. 319 , vol 35, a recipe for a cement wash for woodwork.-A. B. C will find formulæ for the pass8ge of water through pipes
on p. 48, vol. 29.-W. L. B., A. J. W., W. G. L., E. K., C. F. W., J. G., N. T., W. P. B., and others, who ask
us to recommend books on industrial and scientific ubjects, should address the booksellers who advertise
(1) T. A. D. asks: 1. What kind, diame er, and focus should a lens be for a pholographic camera to take photographs 41/8 inches by $33 / 2$ inches, princi-
pally landscape views8 A. An achromatic of about $1 /$ nch diameter and 5 or 6 inches focus. 2. At about what istanceshould the lens be placedfrom the photographic plate? A. Where the image will be sharpest on a ground
glass, placed where the photographic plate is to be. 3 .
If stops or diaphragme nd where should they be plats A. Tf the instrume is a double combination, the diaphragm should be placed midway between the lenses. If a single lens, place it in front. A piece of cardboard with a round diaphragm, the sharper the picture will be, and the exposure
(2) F. I. E. says: I have several photographic enses; and wishing to form some kind of instrument on nouble or expense, I would like to know how thout muct are arranged, and what kind of light is best? A. Your 14 portrait lens is just what is wanted for the objective. Then, in addition to this, you need two condensing light, the same as in a magic lantern with the "Wonder"
tachment.
(3) A. B. C. asks: Can stereoscope lenses, or the lenses of a emall spyglass, be used in constructing
the home-made magic lantern? A. The usual stereothe home-made magic lantern? A. The usual stereo-
scopic lenses cannot be used, because they are ground scopic lenses cannot be used, because they are ground
thicker on one side than the other. The lens of a small spyglass would do if not of too long focus. It will make the pictureemall unless the lantern is placed at some dis is the best; and in small rooms, even shorter focus i
(4) E. J. B. asks: Will a photographic cam era, with three lenses and four inches focus, do as an
objective for a magic lantern? Will the "Wonder" camera as described in Science Record for 1875 do Could the object glass of an opera glass be used for the
purposeq A . If the photographic combination was made for a portrait camera to be used without a dia-
pbragm, then it will answer the purpose very well. Also the opera glass objectives may be used, either singly or in combination. If one will make the picture on the screen as large as you wish, it will give you more ligh
(5) J. L. K. says: I would like to make a 1 inch hole in a window pane, and have tried several
ways, but broke the glass every time. How can it be ways, but broke the glass every time. How can it with a good glaziers diamond guided by the circlatil of copper wire centered in the hole just bored, and by means of cuta radiating from the center to the circumference divide the circle into numerous small sectors. Then, with a small piece of metal, tap the glass on the
posterior side gently, following each cut throughout its axtent. When this has been properly done, fasten a of the glass; and, while holding the putty, tap the glass on the other side firmly in the center of the clrcle. Too much pressure on the diamond will cause it to scratc without cutting the glass.
(6) E. B. asks: 1. How shall I treat hickory to prevent its becoming powder-post, as we term it
A. The trouble is due to a diseased state of the timber, which reduces its substance to a mass of dry dust, by the decomposition of its fibers. It is caused by the growth of a species of fungus in those parts of the
timber which have not been properly dried or seasoned. Oneof the best preve. by means of an air pump. 2. When shall I cut its A.
It is best to cut the timber in the late fall or early
(7) E. T. says: In speaking of leaky roofs, you say that the best job would be to put on a new tin
roof in small sheets. Which kind of tin is most durale, the leaded or dark lead-colored tin or the brigh ght-colored tin? A. Use the best charcoal tin,
(8) J. H. W. says: We have had an explosion in our foundry that we are not able to explain. The
hop is a frame building 50 feet square. We had not made a heat for 24 days; and when we made one and proceeded to drop the bottom as usual, the instant the
doors dropped we had a tremendous explosion, break ing some 250 panes of glass. It tore a door that wa heard at a distance, shaking the windows in house squares away. Our shop is quite open, and tho doors
were standing open at the time. The prop that the cupola man used in dropping the bottom was some 10 feet lhough it had been struck by lightning. There was we thought sufficient sand the time; but we frew, as coming in contact with it. Are such explosions of com-
monoccurrence in foundries? A. We imagine that ex plosions of such violence are not usual, although those of similar kind are not uncommon, when heated iron comes in contact wlth moisture. Possibly some of our
readers may have knowledge of explosions quite as vio-

ent as the on

(9) J. M. L. says: I wish to build an air give me the proportion existing between area of stack at from furnacess and height, and the aress of the fill be sufficient to make the cross section of the stack equal to the combined cross sections of the flues. You can decrease the cross section
towards the top if desirable, but there will probably be towards the top if desirable, but there will probably be
no advantage in doing so. Build the chimney at least40 or 50 feet in height, and as much higher, up to 100 feet,
(10) J. J. says: 1. I wish to make a pair of
(10) J. J. says: 1. I wish to make a pair of
sleigh runners. I have been told that the rim of a wagon wheel steamed and straightened out is very good to make them out of. But I do not know how to straighten them. Could not I get two pieces of oak, of and bend them? A. When the wood is softened, secure it by clamps to a former. Perhaps it cannot be bent into shape all at once, but must be heated several times.
2. For a small 1 horse cutter, how far apart should the runners be at the bottom, and how far at the top? A. Distance between runners, 30 to 36 inchesat top, and
(11) W. S. says: 1. I am building a ditcherfor rain tile. It is to be drawn by a rope passing a suffcient number of times around a capstan to prevent its slipping, thefree end being wound on a reel. The capstan is to be 18 inches in diameter, and the levers 12 feet from center of capstan to where the horses are hitched.
What kind and size of rope will be best if two horses are used, and also if our horses are used? A. You can ase hemp rope $11 / 4$ inches in diameter for 2 horses, and
nches in diameter for 4 horses.
2. If wirerope should break, how can I mend it? A. By splicing.
(12) E. L. L. asks: Do the rubber covers tibly A. No.
(13) C. F. A. asks: 1. What size of boiler stroke? A. Make one 12 inches in diameter and 20
1, inches high. A. Can you recommend to me a book on
2. Cones the construction of the marine engine? A. We do not know any work that covers the construction of the mod-
ern marine engine. You will fnd much that is usefolin ern marine engine. You will
Bourne'sand Burgh's treatises
(14) G. F. asks: 1. What I wish to know now much power could I expect from an engine 2×5
inches, 60 lbs. pressure, 150 revolutions? A. From $1 / 2$ to 4 of a horse power. 2. What size of boiler would I reMaire if it were a plain cylinder, set in brickworks A.

(15) W. H. K. asks: Which will bear the greater weight, applied laterally, a round or a sqnare
rod of metal or wood, of the same circumference? A.
(16) J. N. A. asks: What has been the high st result in foot lbs., by any steam engine, per 1 lb . 0 is among the best results; this corresponds to foot lbs. per pound of coal.
(17) C. P. P. says: What size of boiler would run to best advantage an engine $3 \times 11 / 2$ inches?
Of what should it be made? A. You can use a vertical boiler, made of wrought iron, 10 inches in diameter and 8 inches high.
(18) C. R. W. asks: Please tell me how to calculate the number of yards of excavation in digging deep with banks sloped 11/8 feet to 1 foot of depth? A f Add together the top area, the bottom area, and the area the depth.
(19) W. L. F. says: I am making an elec ro-magnetic machine for medical purposes. I made spoollow wood about 5 inches long, the core of which is bundle of iron wire. Por the first coil, I wound about 50 feet copper wire (insulated No. 16) around this, and separate from it. I wound about 500 feet silk insulated with 1 cell of carbon battery, but could not get a secndarycurrent. Please tell me where the difficulty lies? A. Your arrangement will give you a secondary current more power, increase the length of your secondary wire and usemore battery
(20) A. S. asks: I have a battery with two zinc cylinder 16 inches in diameter. What must I put in it to make it work? A. Blue vitriol and water.
(21) L. G. W. says: In making a Camacho lectro-magnetic engine, can I construct the tubular
aggnets, and what should be the size of and length of wire used in making magnets? A. It is not worth while to make the magnets less than an inch in length. Wind each tube separatelyand then place one over the other.
No. 23 silk covered wire will do. The turns on each tabe should be in the same directio
(22) J. S. W. asks: 1. Which will give the longest spark, an induction coil made with 2,000 feet of No. 32 wire or with 2,000 feet of No. 36 A. One with he 2,000 feet No. 36. 2. Will 4,000 feet No. 32 give a onger spark than 3,000 feet No. 369 A. No, not with
ame primary. 3. Which is best for the primary coill No. 16 or No. 18 wire? A. That depends upon the size of the core and battery used. Make the resistance of primary a bout the same as that of the battery. 4. How long a spark ought 2,000 feet of No. 32 wire to give? A.
Up to a certain limit, about 1 inch spark per mile of sec.
(23) A. R. asks: 1. Does the Atlantic tele raph work upon the same principle as do telegraph ines in general? It has been stated that the electricity is drawn from the cables. A. The batteries are not denserand to earth; the opposite side of condenser is
connected to the cable. 2. What is the strength of the
current used? A. Ten or twelve cells is about the numcurrent used? A. Ten or twelve cells is about the num-
ber used to charge the condenser. 3. What is the ser used to charge the condenser.
strength the . What is the
at at the sending station? A. Ab
seconds contact with battery.
(24) H. S. C. says: In youranswer to F. H., you say that an engine generally works more economic-
ally when running at its full capacity. This is undoubtedly true of single valve engines, as a single valve eannot cutof and 3 stroke without choking the exhaust and impairing its effliciency in a greater or less
degree, according to the point of cut-off. But with an automatic cut-off, or even with a fixed one, I think it can be demonstrated theoretically, as it has been demonstrated practically, that there is great economy in having considerable surplus power in your engine. A. You have misunderstood our reply to F. H. The idea we intended to convey was, that under given conditions there
is a point at which an engine will work most economically. This 18 the point at which it should be run, a point probably far within its full capacity.
(25) I. H. D. asks: 1 . Why is a chamber used in a condenser for the exhaust steam to flow in? A.
With a view to economy of space and efliciency of action. 2. Could not the steam be condensed in an exhaust oipe, and this pipe be connected with the air pump? A.
Yes. 3. How much pressure must Yes. 3. How much pressure must be given to a jet of
water in the combining tube of an injector, so that it water in the combining tube of an injector, so that it anl gain velocity enough to enter a boiler, without flow-
mg back into the overflow? A. It depends upon the proportions of the parts. As usually made, the injector portions of the parts. As usually made, the injector
will readily force water into the boiler from which it draws its supply of steam, and could be arranged so as
to force against much higher pressure than that under which it was working.
(26) G. F. asks: 1. How large an engine could I supply steam to from a plain cylinder boiler, 9 feet long and 14 inches in diameter, of $\frac{1}{3}$ inch iron? A.
You can use an engine of from 2 to 3 horse power. 2. You can use an engine of from 2 to 3 horse power. 2.
Is a plain boiler safer than one with fluess A. Not neessarily.
(27) G. L. K. asks: 1. Can steam from a boiler with 60 lbs. force water into a cold boiler9 A.
Yes. 2. Is it possible to get a pressure in the cold boiler Yes. 2. Is it possible to get a pressure in the cold boiler
above the steam pressure in the steam boiler? I have above the steam pressure in the steam boiler? I have
seen an injector thatis said tohave forced water into a boiler having 80 lbs. pressure, the injector being operated from a boiler with 20 los. pressure. A. Yes. The philosophy of the matter is that a great deal of steam is
used, and comparatively little water is forced into the used, and comparatively little water is forced into the
boiler. It is sometbing like a steam pump in which the boiler. It is sometbing like a steam pump in which the
water cylinder is only $\frac{1}{8}$ as large as the steam cyliuder, o that the water pressure can be 5 times the steam
(28) H. C. asks: 1. What pressure will a lo6 inches in diameter, double riveted, stand? A. 40 lbs . 2. How large an engine will it run with frebox 8×8 inches and 8 inches high, and 22 half inch tubes 12
inches long. A. Make one 2×3 inches. 3. Which of these two engines, 5×6 or $4!\times 8$ inches, is best for a boat 25 feet long and of 6 feet beam, drawing 6inchesat
bow and 24 inches at stern? A. If you wish to compare them when running at the same power, we think the first is preferable on some accounts.
(29) O. A., Jr., says: 1. I have a steam engine with a plain slide valve. The cylinder is 7 inches
bore by 9 inches stroke. Steam ports are $\frac{1}{3}$ by $5 \frac{1}{8}$ inches, exbaust port is 1 inch by $5_{\frac{1}{2}}^{2}$ inches. Valve travels $1 \frac{1}{1}$
inch; lead of valve is about $\frac{1}{1 \pi}$ inch, lap about $\frac{1}{16}$ inch, cutting off at about $\frac{3}{2}$ stroke. Engine runs about 240 revolutions per minute with 70 lbs , steam. Can I get more power out of the engine by changing those pro-
portions? A. We do not think, from your account, that arm any need of a change. 2. Which kind of a re the boiler that will hold $11 / 2$ barrel of water or the boiler that will hold $4 \frac{1}{2}$ barrels, the heating surface being the same in both boilers, and each being of 10 horse
power! A. We imagine the difference, if any, would be
(30) G. W. A. says: We use 60 lbs . steam on a 12×20 inches engine, running three burrs. If we keep just 60 lbs., it is pretty hard work; and it seems is the cause of this? A. Generally, an increase of pressar decreases the steam used per horse power, so that although it takes a little more fuel to make 1 lb . of
team at the higher pressure, there are fewer 1 lbs , used to do the same work, and the high pressure is the most (31) J. R. B. says: I propose running a oat by a screw. She is to be 16 feet long and of sharp Dow; of how large a diameter should the screw be? A.
Make one 18 to 22 inches in diameter and of $24 / 2$ to 3 feet Make one 18 to 22 inches in diameter and of 2 2/ to 3 feet
pitch, with a length of blade of 5 or 6 inches. Run it at 300 or 400 revolutions per minute.
(32) C. W. H. says: A boat is $\mathbf{1 0 0}$ rods from a stationary stump. A man in the boat is pulling
50 lbs , on a rope attached to the stump to pull the boat 50 lbs on a rope attached to the stump to pull the boat
to the stump; and two men are in two separate boats 100 rods apart. Esch man is pulling 50 lbs. on opposite ends of a rope between the boats to pull the boats together. The two boatsare of equal weight, and all other conditions are eqnal. Will the one boat arrive at the stump sooner, later, or at the same time as the two boats ome together If not at the same time, how much the two boats wis Asprosh each other twico as fast as the single boat approaches the stump-for the reason hat the rope is hauled in twice as fast in the first instance, as there are two menhauling it in, one at each in rope, at one end, at the same rate as is employed by
(33) J. J. T. says: I wish to build a locomotive engine with vertical boiler 2 feet high. The cyl-
inders are to be 2^{2} inches bore by 5 inches stroke. What diameter will the boiler be, and how many 1 inch willsuch should I use to get the most power? How much willsuch a boiler, with all attachments and full of wa-
ter, weighs How much power will it develop, if well

