Japanese Mushroom Culture.

The mushroom is gradually leaving its position as a luxury; and if the interest, which has been manifested in its cultivation in this country and in England of late years, continues, we may look to see the fungus as plentiful and as cheap in our markets as any other vegetable now in common use. Dried mushrooms, we learn, already constitute an im portant staple of Japanese and Chinese trade.
The best of the edible species of mushrooms of these coun tries are known as "matsu-take" and "shü-take." The difficulties attendant on preserving the former kind almost exclude them from the market for export; for not only do they decompose very rapidly, but even when successfully dried they are nearly tasteless, and thus useless in cookery. The shü-take species, however, have this peculiar excellence, that, though they are all but tasteless in their raw state, when they are dried they have an extremely fine flavor. The quantity that grows naturally on the decayed roots or cut stumps of the shü tree is not sufficient to meet the demand felt for them, consequently much skill has been brought to bear on their cultivation, notably by cutting off the trunks of the shii and othertrees and forcing the growth of the mushroom on them. The shï tree grows abundantly in warm places having a southeasterly aspect; it attains to a height of about eighteen or nineteen feet. It has a long narrow leaf, thin and stiff, the front surface of a deep green color, the back of a brownish tint and glazed. The tree is an evergreen, the fruit (acorn) small, with a rough cupule. The acorns are steamed and eaten. The wood of the tree is used in the making of boats' oars, also for fuel and charcoal. Another oak, the kashiwa, from which mushrooms are ob tained, is also plentiful in warm localities, and attains to a height of thirty or forty feet. The leaves are used in cookery, and the wood is in great demand for divining sticks, for which it is considered the best. The donguri, another species, is to be found all over the country; it grows to about eighteen or nineteen feet, has very thick branches and dense foliage; the leaf is slightly oval and slightly wrinkled. The fruit (acorn), after being pounded and steeped in water, is made into dumplings and eaten in this form. The wood is much used for boat-making and also for carts. Mushrooms are obtained from any of the above in the following manner About the beginning of autumn the trunk, about five or six inches in diameter, of any one of these trees, is selected and cut up into lengths of four or five feet; each piece is then split down lengthwise into four, and on the outer bark slight incisions are either made at once with a hatchet or the cut logs are left till the following spring, and then deep wounds seven or eight inches long are incised on them. Assuming the first course to have been pursued, the logs, after having received several slight incisions, are placed in a wood or grove where they can get the full benefit of the air and beat. In about three years they will be tolerably rotten in parts. After the more rotten parts are removed, they are placed against a rack in a slanting position, and about the middle of the ensuing spring the mushrooms will come forth in abundance. They are then gathered. The logs are, however, still kept, and are submitted to the following process: Every morning they are put in water, where they remain till afternoon, when they are taken out, laid lengthwise on the ground, and beaten with a mallet. They are then ranged on end in the same slanting position as before, and in two or three days mushrooms will again make their appearance in plenty.
In Yenshin the custom is to beat the logs so heavily that the wood swells, and this induces mushrooms of a more than ordinarily large growth. If the logs are beaten gently, a greater number of small-sized mushrooms grow up in succession. In places where there is a scarcity of water, rain water should be kept for steeping the logs in. There is yet another plan. The cut logs are at once buried in the earth, and in a year's time are dug out and beaten in the manner as above described. The mushrooms thus grown are stored in a barn on shelves ranged along three sides, with braziers lighted under. Afterwards they are placed in small boxes, the bottoms of which are lined either with straw or bamboo mats. These boxes are then ranged on the shelves and all approaches carefully closed. An even degree of warmth is thus diffused. The boxes ranged on the upper or lower tiers are constantly changed, so that the contents of each are thoroughly dried. Another mode of drying is to string the mushrooms on thin strips of bamboos, which are piled together near the brazier; the heat is well kept in by inverting a closely woven basket over them. Dried mushrooms are much esteemed in China, and they are also largely consumed by Japanese either as a dish by themselves or as a condiment with other dishes. Dried mushrooms retain their flavor for great length of time, and thus bear transport to any distance very well.

A New Use for Glycerin

Physicians and dentists who use small mirrors to explore the throat and teeth, astronomers employing large mirrors out of doors, all who have occasion to use spy glasses in foggy weather, and especially those near-sighted persons who cannot shave themselves without bringing their noses almost in contact with the looking glass, are doubtless aware that the luster of mirrors becomes soon dimmed by the breath, by dew, and generally by water in a vaporous state. The way to prevent this troublesome fog is simply to wipe the surface of the mirror before using with a rag moistened with glycerin. By this substance, watery vapor is completely taken up.

SPIKE MACHINERY.

We extract this week from Knight's "Mechanical Dic tionary $" *$ an interesting series of illustrations representing various forms of spikes and the mode of manufacturing the same.
are nails. above the tenpenny size. Twelvepenny spikes are $3 \frac{1}{4}$ inches long, and weigh 45 to the lb . ; the succeeding sizes are sixteenpenny, twentypenny, and thirtypenny, and then follow the railroad spikes, of large size and various patterns.

Fig. 1.

In producing new forms of spikes, inventors have chiefly adapted them to the securing of railway rails; and the com monest expedient for increasing the holding power is to serrate the edge of the spike, or to construct it so that its points will spread apart on its being driven home. In Fig. 1 we illustrate several forms of spikes.
a shows a rail composed of an upper rail and a grooved bedding-piece, secured by spikes of the ordinary kind. b is curved, to cause it to bear more strongly against the rail, and the head has a shoulder at the back, which comes in contact with the wood before the hooked forepart touches the flange of the rail, in order to lessen and equalize the strain on the head, and prevent its being broken off in driving. In c, the sides are corrugated, so that the wood may swell into the indentations, but not hold the spike too tightly to prevent its being drawn. In d a part of the shank has a winding surface, so as to cause the spike to twist, engaging the serrations in the wood. In e, the spike has winged point and spiral barbs upon two of its cdges. In f, the shank has a serrated wing on each side. g is a screw spike, having the under side of its head so beveled as to bear firmly on the flange of the rail. $\hbar i k l m$ are split spikes, having prongs which diverge when driven into the wood. no p are spikes having serrations on one side, and held firmly by keys; in the latter a projection on the spike enters a notch in the key to keep the key in place after being driven.
For the manufacture, the
SPIKE MACHINERY
represented in Figs. 2, 3, and 4 is used. In Fig. 2, the rod is fed between the rolls, $H H$, the upper one of which rotates in adjustable and the lower in fixed bearings, and is presented to the action of a pair of cutters carried upon two vertical posts, $a a^{\prime}$, which, by means of a cam, \boldsymbol{d}, and connections, do receive the rod, and closed to form the poin of the spike and cut it off. A cam, e, turning in a yoke, E,

Fig. 2.

imparts a traversing motion to the carriage, $B B$, and a cam, F, rocks the lever, c, which carries a die, b^{\prime}, between which and the stationary die, b, the body of the spike is formed. The die, b^{\prime}, is, by means of inclined parallel guides, $l l$ partially rotated, so as to close gradually on the body of the spike. While the spike is clamped between the dies, the header, G, having a slot, i, into which passes a pin, i^{\prime}, connecting it loosely with the bed, advances with the bed, and *Published in numbers by Messrs. Hurd \& Houghton, New York city.
is brought in contact with the end of the blank, which pro jects beyond the dies, at the same time turning on its pivot so that its pressure is first applied to one side of the head and is gradually brought to bear squarely upon it at the com pletion of its stroke.
In Fig. 3, a gage, K, is adjusted to determine the length
Fig. 3.

of the spike or bolt, which is first grasped between two mov ing dies, $C D$, that shape the body. A vertically moving die, U, operated by the lever, W, forms the point, and a second vertically moving die, f, operated by the lever, b, the head. The levers, $W b$, have pivoted arms, which are turned down, so as to be acted on by cams when spikes are to be made, but are lifted out of contact with the cams in making plain bolts.

A cutter, O, advanced by a cam and retracted by a cord nd weight, or a spring, severs the blanks.
In Fig. 4, the bed, D, is traversed by gearing from the
Fig. 4

roller, B, which also has gear connection with the cam roller, C. The bed is grooved to form the lower half of the spike, the upper half being formed by the cam roller, which has a transverse notch that shapes the head as the rod enters between it and the table, and the point is tapered as the spike emerges from between them. Small supporting rolls beneath steady the table and prevent it from tilting.

Slide Valve Friction

We published in our Supplement, No. 62, a communication on the subject of friction of plain slide valves, by Mr . John W. Hill, M.E., taken from the columns of the Engi neering and Mining Journal. The writer quotes from an ar ticle in the Scientific American of September 20, 1876, wherein was contained a brief calculation as to the loss due to friction of an unrelieved valve, wherein it was stated that under circumstances in nowise phenomenal, a total waste of 58 per cent. of the "power" of the engine would obtain This error is so obvious that it scarcely needs the care which the above writer has taken to refute it; and we can only re gret that our attention was not directed to the subject at an earlier date, in order that we might have more promptly made this correction. The loss referred to is clearly a very much less percentage of the power.
In any journal such as the Scientific American, where a large staff of contributors, selected on account of their superior attainments in the various branches of Science and Mechanics, is constantly employed, the editor is naturally apt to rely in some measure on the special knowledge of the writers; and for this reason their contributions are, as a rule, not subjected to close analysis, as experience proves the same rarely to reveal a material error. Mr. Joshua Rose, who is now in fault, is so able an expert in mechanical matters, and one usually so correct in his opinions, that the above inad vertence on
lent article.

A Concrete Wall.-The United States Government has built a concrete wall at Minneapolis, Minn., for the protection of St. Anthony's Falls. The wall, which cost $\$ 900,000$ is 1,875 feet long, 40 feet high, 7 feet wide at the base, and 4 feet at the top.

