Srientific Gmoxitam.

ESTABLISHED 1845

MUNN \& CO., Editors and Proprietors.
 published weekly at
 NO. B'Y PARK ROW, NEW YORK.

o. D. MUNN.

F. beacir.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, six months, postage included

The Scientific American Supplement is a distinct paper from the ScIENTIFICAMMERCAN. THESUPPLEMENT
is issued weenly; every number contains 16 octavo pages, with handsome
 Combined Rates. The SCIENTIFLC AMERICAN and SUPLEMENT
Will me sent for one year. postae fre. on receip of seven dollars. Both
papers to one address ur different addresses, as desired. The safest way to remit is by draft, pos
Address MUNN \& C 0. , 37 Park Row, N

VOL. XXXVI., No. 11. [New Series.] Thirty-second Year NEW YORK, SATURDAY, MARCH $17,1877$.

Contents. (Illustrated articles are marke	
heat (1).	Lead
ersto arraseon idents.	
Bud lishts, the White rive	
Boat, ,aimensions of a a 3 (3)	Oxygen and
	${ }_{\text {ctim }}$
t for vulcainite (6).	
enial me	Population, the Potatos, dried
city	Preateal miehais
crete wall, a, washing	(eamp, improved
Cotoonplant, new spe	
Drainiting 9, indat	Saliegic a
Dyeing rattan (3).	
Elements, em,	Stientiol
ne of the future.	Siphon, power of a side
Engines, single and double (10.	Snake harmers
s, coiorea (16)....	Sound and light, and
Friction onslide vaive	Steam, exapasion
Gelatin, decommosing	
Glass, staining (20)	Suphuric acid fr
Gly crin, new use fo	
Guas, new mote of shipping	
Stes, hat it	$\frac{\mathrm{V}}{}$

TABLE OF CONTENTS OF

THE SCIENTIFIC AMERICAN SUPPLEMENT,

NO: $\mathbf{6 B}$,

what it costs to feed insects.

There are about a thousand species of insects in this country which are injurious to our grain, forage, and field crops our garden vegetables, fruit crops, and forest and fruit trees. Among them a few are specially destructive. In 1875, it is said, as many as ten thousand settlers were driven out of Kansas by grasshoppers. In Missouri, according to State Entomo.ogist Riley, the damage done by these insects in
1874 exceeded $\$ 15,000,000$, and he estimates the losses in other parts of the West at twice as much more, in all, $\$ 45$, 000,000 for one year's support of these pests. During the same year, the destruction of growing crops by the chinch bug amounted to $\$ 19,000,000$ in Missouri alone. Just ten years before, in Illinois, the same insect occasioned a loss of over $\$ 73,000,000$ in a single season. The averase annual damage to the cotton crop of the country by the cotton army worm is estimated at $\$ 50,000,000$. The devastating potato
beetle is capable of deducting other millions from the beetle is capable of deducting other millions from the an-
nual profits of our agriculture, and the thousand other insect plagues are easily competent to swell the aggregate an nual board-bill of their kind to something like $\$ 200,000,000$, according to the estimates of Professor Packard, whose con clusions on a subject like this are well worthy of respect.
If thisenormous sum, or even half of it, could be saved, it would soon amount to enough to pay the national debt The question whether it can be saved, or any portion of it is certainly werth considering. Professor Packard is confi dent that, with care and forethought, based on the observa tion of facts by scientific men, from fifty to a hundred mil lion dollars of this annual loss could easily be prevented by a little co-operation between the several States and the Gen-
eral Government. He would have the former emulate the eral Government. He would have the former emulate the
practical good sense of Missouri and each appoint a salaried entomologist. Then these gentlemen, acting in connection with a United States Commissioner of Entomologists, migh issue weekly bulletins, perhaps in combination with the Weather Signai Bureau, reporting the condition of the insect world, forewarning farmers and gardeners from week to week of the insect enemies to be guarded against, and sug. gesting the preventive and remediable means that should be adopted. The cost would be comparatively slight; the pos sible good immense.
Take for illustration the grasshoppers, or, more properly locusts, of the West. They breed chiefly on the great plain beyond the Mississippi, from Minnesota to Texas. In sum mers of unusual drouth they multiply enormously, and the supply of food being short they are forced to migrate.
Professor Packard tells of a swarm of locusts, first observed at Boulder City, Colorado, which traveled six hun dred miles to devastate Eastern Kansas and Missouri. Its original home was somewhere in Wyoming, perhaps two or fly with the wind; and as the general direction of the wind in those parts during the summer season is pretty arell known, the movements of the locust armies can already be predicted with tolerable accuracy. But more knowledge is needed, particularly with regard to the meteorological features of the Western country, and the relation of locust migrations to wind and weather. In the pursuit of these investigations, Professor Packard justly urges that the meteorologists and entomologists must go hand in hand. The government has provided a well organized corps of weather observers, and the addition of a few competent entomologists would in crease the outlay but little, while the resultant good would in all probability, be very great. It would certainly be so if, as seems by no means unreasonable, the service should be able to master the conditions of "locust years," and be able
to tell with a good degree of certainty when locust invasions to tell with a good degree of certainty when locust in
are likely to occur, and how they may be prevented.
In his plea for such observations in the West, Professor Packard observes that " not only should the border States, especially Texas, Kansas, Nebraska, Minnesota, and Iowa employ entomologists, following the liberal policy of Missouri, which for eight years has had a State entomologist, whose reports have proved of incalculable practical value to the people of taat State: but the habits of the locust need first of all to be thoroughly studied in the Territories, particularly in those of Wyoming, Montana, Idaho, Dakota, Utah, New Mexico, Arizona, and in the new State of Colorado. A commission of entomologists should be appointed to make a thorough study of the locusts in the Territories mentioned. It would seem that the recommendation made at the recent meeting of Western Governors, at Omaha, th a commission be attached to the existing United States Geo logical and Geographical Survey of the Territories (Hayden's), is the most feasible and economical method of se curing the speediest and best results.'
This is but one feature of the work that might be done with profit toward forestalling the depredations of insects, regular and periodical: a work which must, sooner or later.
be undertaken, and which may ultimately prove as bene be undertaken, and which may ultimately prove as bene ficial to the country as the weather predictions have been.

PUBLISHERS' NOTICE.

New subscriptions to the Scientific American and the Scientific American Supplement will, for the present, be entered upon our books to commence with the year, and the back numbers will be sent to each new subscriber unless a request to the contrary accompanies the order.
Instead of a notice being printed on the wrapper, an nouncing that a subscription is about to end, the time of
expiration is now denoted in the printed address each week.

explosions on lightning rod points.

It is a well known fact that, if a metallic point communicating with the earth be presented to the conductor of an elcctric machine charged with positive electricity, the angle of the electroscope of the apparatus becomes small. The reason is that negative electricity escapes from the point as soon as developed, and serves to neutralize a quantity of the positive electricity of the conductor, no spark being produced. This phenomenon, as Professor Stroumbo, of the University of Athens, points out, is produced differently when the Holtz electric machine is used. If, while sparks are passing beiween the two balls of the apparatus, a third ball, having a metallic point attached to it, be taken in the hand and moved nearer one of the fixed balls, when the intervening distance becomes so small that the negative electricity of the point may escape the sparks.at once cease. Yet, if the point be removed, they begin passing again between the two balls. This experiment can be repeated indefinitely. Now if the distance between movable and fixed balls above mentioned, at which no sparks pass, be gradually augmented, at a certain stage sparks will reappear between point and fixed ball. The conclusion from this is that, if the negative electricity of the point has great intensity, sufficient to enable it to escape from the point and pass over the interval, there will be no spark between point and fixed ball; but if the negative electricity of the point has not intensity sufficient to cause it to escape as soon as developed (the attraction then diminishing inversely as the square of the distance), there will be an explosion on the point itself, and electric sparks will occur constantly between the point and fixed ball, just as between the two balls of the machine.
During storms, the atmosphere is charged with enormous quantities of electricity, which, however, in their action should follow the ame law as the smaller quantities produced in electric machines. If then a cloud, having positive electricity in determinate quantity, passes not too far away from the lightning od point, analogous effects will take place Then electricity developed by induction on the lightning rod will continue to escape at the point as soon as it gets there, and will go to neutralize the positive electricity of the cloud, neither thunder nor lightning being produced; but in case the same cloud were placed too far away, according to the exper ments above detailed, an explosion might fol low at the point of the rod, an intense heat would be developed, and the platinum point of the rod would be fused. This phenome \qquad non occurred at the Royal Palace of A thens, where the platinum point was found melted, as shown in our illustration, which represents the rod in its full size.

THE INDUSTRIES AND. RESOURCES OF NEW SOUTH

There is no people for whom we as Americans may cherish more genuine fellow-feeling than for the colonists of the British Australian possessions. Sprung from the same parent stock as ourselves, daring the hardships and privations incident to the settlement of a new and distant region as did our own ancestors, they have achieved results and an point to a progress which may justly claim to find its only parallel in our American advancement. No better proof could be asked to show that the energy and industry of the Anglo-Saxon are race characteristics, and that they will manifest themselves irrespective of the region which may chance to be their field of exertion
Not three generations ago, Australia was but a frontier of barbarism. Now the continent is fringed with infant State already able to exercise the powers of elaborate political sys tems. Within thirty years, the population has risen from 214,000 to $2,000,000$ souls, the trade from $\$ 30,000,000$ to $\$ 315,000,000$. There are nearly $5,000,000$ acres of land under cultivation, $70,000,000$ head of live stock on the pas tures, 2,000 miles of railway and 26,000 miles of telegraph completed, and the revenue of the several governments ag regates $\$ 350,000,000$.
The mother colony of those which thus far have been es ablished upon the Australian continent is New South Wales and for a most valuable exposition of the resources, industries, and requirements of that political division we are indebted to Mr. George H. Reid, of Sydney, a copy of whose essay is now before us. The great need of the colonies-the need which overtops all others-is for men. The chief articles of her ex port trade are raw materials; and that these exist in abund ance there is no question. But enterprise is paralyzed when hands fail; and therefore New South Wales now asks all na tions, not for their custom nor for their money, but for their surplus population. The underpaid agricultural laborers of England, the great throngs of working men of the United States who, when the panic of 1873 checked enterprise here were thrown out of employment-any one, in fact, blessed with good health and sturdy muscles, the new colony will gladly welcome, and provide with steady and remunerative ork.
Mr. Reid's essay is primarily designed to exhibit in some detail the inducements which the colony offers to immigrants, and of these we summarize below those regarding which a workman would naturally first ask to be informed The area of the colony is 323,437 square miles, that is about a large as the New England States, New York, Pennsylvania, New Jersey, Delaware, Ohio, Indiana, Illinois, and about a

