Susimess aud wersunal, The Charse for Insertion under this head is One Dol-
lar a Line for each insertion. If the Notice exx-
ceeds Four Lines, One Dollor and a Holf per Line ceeds Four Lines, One Dollar and a Half per Line
will be charsed.
Agricultural Implements and Industrial Machin-
ergfor Exportand Domestic Use. R.H.Allen \& Co., N.Y. Woodworth Planer, made by Witherby, Rugg
$\&$ Richardson; Combined Planer and Matcher, cheap for cash. A Partner Wanted to take out foreign Patents on a Door Lock, recently patented in the
M. C. Hawkins, Edinboro', Erie Co., Pa
Amateur Seroll Saws, the best.-Address, with
stamp, Trump Bro's, Wilmington, Del. M. Shaw, Manufacturer of Insulated Wire for
galvantc and telegrapher galvantc and telegraphpurposes, \&c., 259 W.27th St., N.Y.
Sun Dial Makers,address W.E.Colton,Marion,Va For Sale, together or separately-Two 11 in. hy-
draultc Presses ; Tubular Boller, new, bullt by Fletcher $\&$ Harrison; Steam Engine, 25 h.p., built by Woodruff $\&$
Beach; three sets Hydraulic Pumps. Robert Dillon, 30
Burling Silp, New York. Burling silp, New York
Manufacturers of Campaign Goods and light
Noveltites, wrill find it to thetr interest to send samples
and Circulars to W . K. Lanphear, Baltimore Md Makers of Tobacco Paper (see p. P3, vol. 35), send
address to C. H. C., Box 773, New York City. Metallic Letters and Figures to put on patterns
of castings, all sizes. H. W. Knight, Seneca Falls, N.Y. Baxter's Adjustable Wrench for first class Me-
chanics, 62 cents each. Sent by mail on recelpt of price. Greene, Tweed \& Co., 18 Park Place, New York,
Linen Hose, Rubber lined and unlined,for factories or fire engines, at lowest rates. Greene, Tweed
$\&$ Co., 18 Park Place, New York. Makers of Ice and Refrigerating Machines, send
Circulars to Alden Fruit Company, 426 Montgomery St., San Francisco, Cal.
Drops for Sale-Very Cheap-One each $250 \& 400$
1b. Peck Drops-perfect order, with lifters, \&c., suitable F. C. Beach \& Co., makers of the Tom Thumb
Telegraph and other electrical machines, have removed to 520 Water Street, New York.
Bone Mill wanted. W.J.Sanderson,Syracuse,N.Y. For Sale-2d h'd Woodworking Machinery, Pat.
Scroll Saw, made by Cordesman, Egan \mathbb{E} C©.; 3 -sided Moulding Machine; also Band Saw, Fay \& Co., makers.
Steptoe, McFarlan \& Co., 214 W. Second St., Cin., 0 . Pat'd Graining Stencils-J. J. Callow,Clevel'd, o. Lathe Dogs, Expanding Mandrels, Steel Clamps,
\&c..for Machinists.. Manufactured by C. W. LeCount,
So. Norwalk, Ct. Send for reduced Price List. For Sale, Cheap-2 Gardner's Centering. \& Squar-
ng Attachments for Lathes. Jackson $\&$ Tyler, Balt., Md. Dynamo-Electric Machines for electro-plating
and other purposes. Send for illustrated circular. W. and other purposes. Send for illustrated
Hochhausen, 122 William St., New York.
"Abbe" Bolt Forging Machines and Palmer
Power Hammers a specialty. Send for reduced price
lsta. S. C. Forsaith \& Co, Manchester, N, H. 4s0 new \& 2 hand Machines, a tlow prices, fully
described in printed llsts. Send stamp, stating just what described in printed llsts. Send stamp, stating Just what
you want. S. C. Forsaith \& Co., Manchester, N. H. Driving Belts made to order, to accomplish work
required. Send full particulars for prices to C. W. Arny, required. Send full parttculars for prity
148 North Third St., Philadelpha, Pa.
Celebrated John Sott Scroll and Jig. Saws made
to order, of Jeessup's superior cast steel, by I. Roberts,
108 Hester Street, New Yort 108 Hester Street, New York. Send for circular.
Scientific American-The early Volumes for
Sale-very cheap-etther bound or tn Scientifle American-The early Volumes for
Sale-very cheap-elther bound or in numbers. Address
A. F. R., Box 773 , New York City. Hydrant Hose, Pipes, and Couplings. Send for
prices to Balley, Farrell \& Co., Pittsburgh, Pa. Machine-cut brass gear wheels, for models, \&c.
List free. D. Gllbert \& Son. 212 Chester St., Phlla., Pa. "Dead Stroke" Power Hammers-recently greatly improved, Increasing cost over 10 per cent. Prices re-
duced over 20 per cent. Hull \& Belden Co., Danbury, Ct. Power \& Foot Presses \& all Fruit-can Tools. Fer-
racute Wks., Bridgeton, N.J. $\&$ C. 27 , Mchy. Hall, Cent'1. Shingles and Heading Sawing Machine. See ad-
vertisement of Trevor \& Co., Lockport, N. Y. Solid Emery Vulcanite Wheels-The Solid Orrg-
tnal Emery Wheel-other kinds imitations and inferior. Caution - Our name is stamped in full on all our best
Standard Belting, Packlag, and Hose. Buy that only.
The be st is the cheapest. New York Belting and Packing Company, 37 and 38 Park Row, New York. See Boult's Paneling, Moulding, and Dovetailing
Machine at Centennial, B. 8-55. Send for pamphlet and sample of work. B. C. Mach'y Co., Ba For Sale-Axle Lathe, the very best make. Send
for photographs, \&c., to steptoe, McFarlan \& Co., 214
w. 2d Street, Cincinati, Steel Castings, from one lb. to five thousand lbs.
In valuable for strength and durabilty. Cfrculars free. Pittsburgh Steel Casting Co., Pittsburgh, Pa
For best Presses, Dies, and Fruit Can Tools, Bliss For Solid Wrought-iron Beams, etc., see adver-
tisement. Address Union Iron Mills Pittspurgh, Pa., for lithograph, \&c.
Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings order. Job work solicited.
For Solid Emery Wheels and Machinery, send to
tne Union Stone Co., Boston, Masse, for circular. Hydraulic Presses and Jacks, new and second
nand. Lathes and Machnery for Polshhng and Buffing
Metals. E. Lyon, 470 Grand Street, New York. Spinning Rings of a Supgrior Quality.-Whitins-
ville Splining Ring Co., Whitingville, Mass. Diamond Tools-J. Dickinson, 64 Nassau St., N. Y. Temples and Oilcans. Draper, Hopedale, Mass.

\%atictex MurvissJ. J. will find a recipe for artificial meer-
schaum on p. 307, vol. $34 .-$ L. M. G. will find a forschaum on p. 307, vol. 34.-L. M. G. will find a for-
mula for the proportions of a safety valve on p. mula for the proportions of a safety valve on p.
363, vol. 29.-G. F. S. Will find a formula for the 363, vol. 29.-G. F. S. Willind a formula for the
fiow of water through pipes on p. 48, vol. $29 .-\mathrm{B}$.
will find dircetions for preparing canvas for will fnd dircetions for preparing canvas for
painting on p. 267, vol. 25.-C. and w. H. I. will fid a recipe for a silver-plating solution, for use
without a battery, on p. 408, vol. 32.-G. F. B. can
good glue.- B. L. F. can dissolve glass with hy-
drofiuoric acid. See p. 264, vol. $30 .-$ E. A. S. will find directions for bronzing castings on p. 283, vol.
31. G, W. \mathbf{C}. will find a recipe for Babbitt metal on p. 122, vol. 28.-P. M. S. can solve his cone pulley problem by the formula given on p. 180, vol.
26. - F. E. B. will find directions for scouring brass on p. 54, vol. 32.-B. C. B. will find an explanation
of the effect of the effect of the moon on the tides on p. 84 ,
vol. 28. The belief that the moon affects the con dition of meat is a vulgar superstition.-A. M. is
informed that gas retort carbon can be cut witt an ordinary saw. - Y. R. will find directions fo soldering of all kinds on p. 251, vol. 28.-G. E. B.
will find directions for preparing canvas for will fing direections for preparing, canvas for
painting on p. 267, vol. 25.-A. P. R., Jr., will find directions for stereotyping by the paper proces on p. 363, vol. 30.-W. T. S. should make a rubbe stamp for marking cloth. See p . 156 , vol. $31 .-\mathrm{N}$
N. will find directions for getting rid of flesh worms, etc., on p. 233, vol. 31.-F. A. F. will find directions for promoting the growth of the beard
on p. 363, vol. $31 .-$ J. S. will find a recipe for the on p. 363, vol. 31--J. S. will find a recipe for the
hop yeast cake on p. 234, vol. 30 .-G. C. MeC.is re ferred to the Naval Academy for answers to his
 tions for extracting impurities on p. 89, vol. 26.-
J. S. P. will find directions for galvanizing iro J.S. P. will find directions for galvanizing iron
wire on p. 416 , vol. 31.-W. H. w. will find a re cipe for a fusible alloy on p. 27, vol. 30-F. W. F will find directionsfor removing paint from cloth-
ing on p. 75, vol. 30 . $-\mathbf{P}$. will find on p. 232, vol. 31, ing on p. 7, vol. 30. P. will find on p. 232, vol. 31,
a good recipe for gun cotton. As to nitro-glyeer in, see p. 341, vol. 34.-H. E. G. can make white
ink for writ ink for writing on colored paper by following the
directions on p. 75, vol. 31. S . N. C. will find directions for tempering taps, etc., un p. 75, vol. 28. For tempering millpicks, see p. 314, vol. 27.-A
R. H. will find a description of an egrehatching R. H. Will find a description of an egq. hatching
apparatus on p .273, vol. 33.-A. H. will find directionsfor making marine glue on p. 42, vol. 32.E. N. will find a good recipe for whitewash for
outdoor use on p. 133, vol. 34.-W. M. M. will find outdoor use on p. 133 , vol. 34.- W. M. M. will find
a recipe for a stove cement on p. 183, vol. 34 .
(1) R. A. R. asks : What is the variation of the magnetic needle at this point, about latitude
32° and longitude 91° ? A. The best way is to de termine it experimentally," See Loomis' " Trigooometry and Logarithms.
(2) B. B. says: Where can I find tabulated
variation of magnetic needle courses from the true meridian, for the last century, in Central New Jersey ? A. We understand that the most complete statement of the results of A merican published by Dr. Bache, in American Journal of Sciences, (2) XXIV., p. 1, where all the earlier ob-
servations are collated, with the more extended servations are collated, with the more
result of the coast survey, with maps.
(3) L. P. D. says: 1 . What size of box will it require to enclose the steel band or spring by which Mr. Leveaux has succeeded in getting a
draft of 3,00 lbs.? draft of 3,000 lbs.? A. The boxes used by Mr.
Leveaux are each 14 inches in diameter. is meant by a draft of 3,000 lbs.? A. The draft of the spring is the force in libs. which it exerts in
unwinding. Mr. Leveaux proposes to wind uphis springs with steam engines. By using several
springs, he expects to be able to propel as large a springs, he expect
(4) L. H. P. says: 1. I am making an elec tric engine, as described on p. 301 of the ScIENTI-
IIC AMERICAN SCPPLEMENT, by Mr. Sawyer. The FIC American Scpplement, by Mr. Sawyer. The
magnet is made of $1 \times \% /$ inch Uister iron. How many feet and what size of wire will I need to wind onudred feet of No. 20. 2. Does it make any dif-
hund ference which way I wind it? A. No, provided
the connections are made in such a way that the upper ends of the magnet are of opposite polari ty. 3. What kind of battery is the best? A. On cell of Grove if the large wire is used, or two of
Daniell's battery yif the small wire is preferred Daniell's battery if the small wire is preferred
See any schoolbook on natural philosophy. 4. Areall the parts to be insulated from the table on which it rests? Would a stand made of plate
glass be the best? glass be the best ? A. Convolutions of wire
should be insulated from each other; this is best effected by using silk or cotton covered wire. wooden base will answer. 5. Would light brass springs answer in place of mercury cups? A.
Yes.
(5) C. N. M. says: You state that Dr. Joult's powerful magnets were wound in the di-
rection of their length. Please explain how this ron in the direetion of its longest dimension, from end to end, instead of around it laterally, as is (6) R. \& Co. ask: What is the difference in themethod of galvanizing wrought and gray or
castiron? A. The iron is cleaned by diluted acid castiron? A. The iron is cleaned by diluted acid
and friction, is heated and plunged into a bath of and friction, is heated and plunged into a bath of
melted zinc covered with sal a mmoniac, and is with zino until the surface becomes and zinc, $, 2,292$, mercury, 202, and about 1 of sodium or potassium ; this melts at 680° Fah. The cleansed iron is ipped in this and removed as soon as it
reaches the temperature of the alloy. Wrought and cast iron may both be treated in this manner (7) A. W. T. says: If 1 cubic foot of gas,
at 100 lbs. to the square inch pressure,beliberated into a receiver capable of holding 3 eubic feet, would the pressure of the gas be 50 lbs. to the
square inch? In other words, does the elastic pressure of a certain weight or quantity of gas
vary uniformly as its volume? A. This law is as you state it, if the temperature of the gas is kept constant.
(8) J. V.
(8) J. V. R. says: I Ihave made an induction coil mostly from instructions gained from the
SIIENTIICAMERICAN; it is capable of throwing SCIENTFICAMERICAN; it is capable of throwing a
spark 8 inches. From reading No. 17 of your
SUPLIEMENT, I
strengthen the spark from instructions therein
contained, and failed. 1 made the attachments yourecommend in your article this week; but it
would not work. What was the cause of the fail are? A. Your previous question was not fully understood. We think a better plan is to attach
the secondary wires to the inside and outside the secondary wires to the inside and outsid
castings of a Leyden jar of considerable capacity. This will increase the volume of the spark
but it is not likely to lengthen it much. The plan is used in studies with the spectroscope.
(9) C. B., of Holaa Hauai, Sandwich Is poas, asks: Can you give me a plan by which, in equal and the plow in its proper place, and yet 3
of the animals will travel on the unplowed lan of the animals will travel on the unplowed land
nd one in the furrow? A. Some of the farmer and one in the furrow? A. Some of the farmers
who take our paper can perhaps answer this cor respondent. If so, we would be glad to hear
from them.
(10) A. B. J. says: In your paper of March 5, 1876, you give a recipe for a new nickel-plating solution, which you say gives beautiful result
This recipe seems to be indefinite, and I would b very much obliged for a lucid explanation of it There are two solutions mentioned. The first of these is easily understood, but I cannot under-
stand how to make the second solution, as I stand how to make the second solution, as I do
not see how $1 / 2 \mathrm{oz}$. nickel can be dissolved in 2 ozs. cyanide of potassium in 1 lb . of water. And ny manter the solutions are mixed, is there to b half ounce of metal for the second solution is. dissolved in aqua regia, the same as for the first. The acid is then driven off by heat and the pasty
mass redissolved in a solution of cyanide of po mass redissolved in a solution of cyanide of po
tassium and water (2 ozz. cyanide to 1 lb . water) o more water need be added
(11) W. A. W. asks: I wish to evaporate liquids by steam heat. How much pipe surface
will it take to evaporate 1 cubic foot of water per wil it take o evaporate 1 cubic foot of water pes
hour after the temperature of the water has hour after the temperature of the water has
been raised to the boiling point, the steam pressnch? A. We think that from 10 to 12 square feet will be sufficient.
(12) J. F. A. says: I heard a man say that uction pipe was only just covered with wate than it would if it were at the bottom of a grea depth of water. I differ with him, and I can prove
that it will not, if the suction pipe and discharge pipes are of the proper area for the cylinder. Take, for example, a quantity of water 20 feet in
depth, with the surface of the water 15 feet above the vacuuum in the pump. I claim that the water will find its way into that vacuum at ever
stroke, if there wereno atmospheric pressure act ing on the water, showing that a pump will wor as easily with the bottom of the pipe at the bot-
tom of the water, as it would if it was only just iom of the water, as it would if it was only just
covered with it. A. We think there would be a light difference in favor of the arrangement pro posed by your disputant, principally because, the water passing through a shorter length of pipe,
(13) J. W. P. asks: Does a propeller wheel submerged, doits work of propelling the boat during its entire revolution, or only for half of it
A.Throughout the whole revolution. Its action is somewhat like that of a serew advancing into
(14) W. H. B. asks: 1. What is commonly understood by the expression "press equally in
all directions," when using it in speaking of the action of steam or other fluids? Is it so much n? A. Yes. 2. If so, in what does the evidenee
onssist of the ruth of it? A. It is most simply proved by experiment. 3. When we say that a man
can raise so much weight, do we mean to say that can raise so much weight, do we mean to say that arm of a lever (or its equivalent) will bal ance the weight raised ? A. Yes. 4. Does weight
alone give water its
Yewnward pressure? Yes. 5. What natural law does water follow in
seeking its level? A. It moves under the action of force until this force is balanced. 6. Is what is
termed the hydrostatic paradox easily explained by known natural law? A. Yes. 7. What is the aw? A. That the pressure of a column of wate the same base and altitude as the given column. (15) M. M. says: Please find sample of crust that forms in my boiler. Can you tell me
what will prevent it? I use well water, and it tastes strongly of sulphur. A. It is a lime de
posit. We doubt whether you can entirely pre vent the formation if you continue to use the present feed water; but the use of a good heater will be advantageous.
(16) M. M. asks: Would borax make rood addition to a dentine? A. No.
Ho wis precipitate of lime made? Precipitate any soluble salt of lime by addition of an alkaline
(17) D. B. T. asks: What force would be necessary to support a body in mid air, so that would neither fall nor rise, but be supported in equilibrium? A. A force equal in intensity
the weight of the body.
(18) E. H. :ays: There is a cast iron cannon n our town made in 1822 , which will shoot a 9 ibs. ball. It used to sound well, and make a loud re-
port; but for the last year or two, it seems to have lost its ring or clear loud report. It sounds dead merly. A. If you have correctly stated the par ticulars, we do not feel able to explain the mat er. In general, we should imagine that in such gun had deteriorated. Possibly, however, there may be other reasons; and perhaps some of our
(19) C. A. asks: What pressure of steam per square inch will be necessary in a double A. Aboutl25 lbs. per square inch, by gage.
(20) J. R. P. asks : . What is the strength of a good Manilla rope 1 inch in diameter, and
Iso of one $11 /$ inches in diameter? A. One incl also of one $11 / 4$ inches in diameter? A. One inch
rope, about 3,000 lbs; $14 / 4$ inch, about 4,500 lbs. 2 ope, about $3,000 \mathrm{lbs}$. . $11 / 4$ inch, about $4,500 \mathrm{lbs}$.
What is a four fall tackle block? A. We believe he term has no precise definition, but commonl
 raised with an inch rope in a good tackle block,
ay with 3 pulleys in one and 2 in the other, and ow much with rope 114 inches diameter in ike block? A. It will depend somewhat on th rigidity of the cordage and friction of sheaves
nut the maximum safe weights will be about 7,50 for the 1 inch rope, and 11,00 lbs. for the $11 /$ (21) C. M. says: These have been lately
nany storms and tornadoes in this and in foreign ountries. Does our present mode of telegraph ountries. Does our present mode of telegraph
ing help to create these storms? A. No. On the contrary, so far as the telegraph lines have any
effect, it is to lessen the violence of electric storms y carrying the fuid to the earth and thus tendin
(22) J. L. W. says: We have a siphon of
inch pipe from a canal to a tank about 100 feet 2 inch pipe from a canal to a tank about 100 feet
distant. The top of thetankis a few inches above he water in the canal, and the pipe entersth the water in the canal, and the pipe entersth
tank near the bottom, which gives it a fall about 5 feet (the tank, being 6 feet deep) at the
start, and is intended to keep the water in the start, and is intended to beep the water in the tank on a level with the water in the canal. Some-
times it stops and has to be started again with times it stops and has to be started again with a pump. Will you explain the cause of this? A.
observe the hight in the tank when the siphon this level. There est point of the siphon, to let out the air that ac cumulates from time to time.
(23) A. D. B. asks: What substance can I use to make a watertight fiooring over a plank
fioor? The floor is of two inch yellow pine plank and very stiff; it is in the second story of a build-
ing, and so exposed to the air beneath, it is soaked ing. and so exposed to the air beneath, 1 is soake
with water two or three times a day. There is no with water two or three times a day. There is no
wheeling or rolling of heavy articles over it only persons walking. Would a concrete 2 inchprefer a slightly elastic floo ng. A. If there is not much wear upon it, why not take sheet lead
(24) P. asks: Is there any known way to purify the gas made by gasoline machines, so as
to obtain a steady light, equal or nearly so to coal to obtain a steady light, equal or nearly so to coal
gas? A. If the machines are properly construct d, they should give a good steady light fully equal to that of coal gas.
(25) E. T. D. asks: Would a battery mad of an iron cylinder 10 inches deep and 3 feet in 15 incherence, and a lead one 10 inches deep ana mon salt, give enough current to heat a small platinum wire to white heat? A. You had better use zine and copper instead of lead and iron.
Salt will answer to charge the batteries with. (26) O. R. M. asks: $1 . \mathrm{On}_{\mathrm{n}}$ what principle is forms are made, but they depend upon the alternate magn soft iron pieces placed within their influence. The moving piece orpartsare provided with attachments called commutators,by means of which the
battery connection is made and broken at th battery connection is made and broken at the
proper moment. 2. Is it possible to store electri city up in any manner so that an engine can be not in the sense you mean. Magnetic machine are made to run by steam power and give power ful currents, but it would be a great waste of
power to use them as motors. 3. Is it possible to construct an electric engine.of any large powe say 1 horse power? A. Yes. 4. Is the power of
theengine dependent only (within limits) on the strength of the current? A. The strength of the current is only one of the factors on which the power of the maehine depends. 5. In that case, could not a powerful engine be constructed
within a small space? A. Motors capable of running sewing machines can be made to occupy but become more considerable
(27) 0 . K. says: If of two pulleys, one be 20 inches in diameter, making 190 revolutions per
minute, the other being 6 inches in diameter, what is the rule for finding number of revolutions of feet per minute by the circumference of the pul ey in feet.
(28) J. J. says: 1. A great many people, your directions, would have many things to learn yet. In preparing the sand andgra vel, would not
two sereens, one above the other, do, first putting two screens, one above the other, do, irst puthig
the earth as it comes out of the bank, containing ravel, sand and loam on the upper screen that which remains after shaking being gravel, the on being shaken, would tass the finer dirt orsand Wough it, and that which remains being sand and nd gravel? A. There are sand beds where thes and purity, and it would be better if possible to reference to the gravel. If these beds arenot to be found within a convenient distance, the sand may be screened from a gravel bed as you sug
gest. 2. How fine should the screens be? A. For the sand $\frac{1}{18}$ of an inch, but what is left in front of the screen maybe taken for the gravel withou
further sifting. If not entirely free from loam
the sand, and also the gravel, should be washed.
3. Dr. Youmans says: "Beach sand will attract dampness." How is this? A. Because of the salt with which it is more or less impregnated. 4. In the absence of broken stone and the like, will
gravel and sand do? A. Yes, if the gravel is of gravel and sand do? A. Yes, if the gravel is of good size. 5. Will such a wall be damp? Iî so,
would it need furring, or should it be hollow would it need furring, or should it be hollow, as
recommended by Gilmore, in his work on "Mortar and Cements"? A. Yes, it would need to be pro tected on the inside in some way against the condensation of water from theair in winter. 6. How are the parts proportioned, by weight or measure? A. By measure. 7. Drs. Chase and Youmans recommend freshly burnt lime; you recommend cement. If lime, being cheaper, will
do, no one will use cement or water lime (which I think, is the same). Suppose we take $2 / 3$ freshly burnt lime and $1 / 3$ water lime, how will that do? A. Pure cement of the best quality should be used. We presume that this is what you mean by
"water lime." No common lime should be mixed with it if you want a permanent wall. 8. In using cement lime, are the proportions taken befor
slaking or after? A. Before. 9. How are sills, caps, and cornices made? A. These may be cast in molds.
(29) S. A. \& S. ask: What will prevent the egraph battery egraph battery jars? We use stone jars, which
become entirely coated on the outside in a short space of time. A. A good way to prevent the luid from creeping over the tops or the jars and the jars for half an inch
(30) R. S. asks: What is the solution used by sugar refiners in the centrifugals to give t
sugar the bright yellow straw color? or, we believe, is obtained during the bleachin process, and sometimes by the addition of small (31) W. R says: I In a Holtz inductio (31) W. R. Says: I. In a Holtz induction by a thick glass plate, held horizontally betwee two insulated plates, of what material is it best to nake the axle of the revolving plate? A. Wood nd glass are frequently used. Perhaps an ebon stituted for this horizontal glass plate, can as good electrical results be obtained? A. We beleve some experimenters give ebonite the preference. 3. If coatings of paper or foil be at-
tached to the sector plate, and these have pro jecting rows of pin points, and the edges that hold thesc pin points are opposite collecting combs of conductor, is it necessary to have win-
dows or holes cut in sector plate to relieve the bund electricity? A. In the improved Hoitz machine neither windows nor armatures are used. Two plates are mounted horizontally and both re-
volve, the direction of one being opposite that of the other. Four collecting arms are placed, a equal distance apart, around the plates, two above the upper and two below the under plate,
and the orderalternating, so that if the first is an upper arm the next is under, and so on. The first upper and under arms are connected metallically as are also the third and last. Sometimes also an extra arm is used, which brings an upper and uner arm together in one place. This arrangemen appears to improve the action of the machine. 4. To steady the revolving plate, should its edge o fastened on the small wooden pillars or posts that support the sector plate, these posts passing from horizontal supporting plates to sector? A Grooved pulleys are best, unless, as is often done with the old style machines, the fixed plate is per nounted on an axis passing through it.
(32) D. W. W. asks: What substance can I use to illuminate the dial of a watch sufficiently o show the hour in the dark? Will the small glass tube with phosphorus and oil do? A. We
do not consider it practicable nor advisable to attempt the application of the phosphor lamp in the way you mention.
(33) N.S. W. asks. Is the first six months furnished bound? If so, price? A. We furnich the first volume of Scientific American Supple MENT, stitched in paper covers, for $\$ 2.50$. In
boards, $\$ 3.50$. Probably few persons appreciate the grea t scope and remarkable cheapness of the Work we are carrying on under the title of our
SUPPLEMENT. Thefirst volume, lately completed, is illustrated by over 1,000 engravings and figures, covering all the most recent and interesting scientific information of the day. It includes the history and progress of the Great Exhibition. The contents of the Supplement are arranged in such compact form, and embrace such an enormou book form they would occupy 3,600 pares or volumes of 500 pages each. In the domain of Science, nothing comparable to the Scientific American and Supplement, in the matter of
economy of price, has heretofore baen given to economy of
the public.
(34) P. F. asks : How can I dissolve soda in cept in the fatty oils, containing free glycerin o acids, it is nearly insoluble. In any case, an ele
(3) W. E H increases solubility.
(35) W. E. H. says: A friend of mine recently bought me a piece of glass tubing of $\%$ inch foot in length. He stated that it formed part of a gage tube to show the hight of water in a mil flume, and that, getting dirty, the engineer in chargetook it down to clean it, which he accomplished by wiping with waste and emery flour on the end of a pine stick. The tube, which had been room temporarlly, when in a few hours it broke spontaneously into a dozen pieces. The fractures
are nearly all alike, running a short distance ting it off. I took the piece he gave me; and afte cleaning with water and drying it, I laid it on
bench with a piece of iron wire and another o brass wire laid loosely through the tube. In a few hours it broke into three pieces, and in the
course of the next night into half a dozen pieces all the fractures having the direction as stated above, and some of the pieces being interchange able on account of the striking similarity of the ends. To ascertain whether imperfect annealing inches long under the blowpipe and heated it so hot that it flattened by itsown weight, without any endency to fly to pieces. A. These tubes are
usually made of the hardest glass, and carefully annealed; but from the fact of your ability to soften the tube as you represent, it appears to have been otherwise in this particular case There may have been flaws in the glass, which were further aggravated by the careless use of mery or otherwise, butwe think it probable tha iar breakage which you have failed to discove or meution.
(36) J. I. asks: What is the best cheap sol A. Benzine.
(87) R. M. says: I take water by ziphon first laid $1 / 2$ inch lead pipe, through which th water flowed nicely for a year or more, when th pipe was burst by frost. After repairing it I could to improving it, I substituted a $3 / 4$ inch pipe fro the well, A, to the lowest part of the siphon, B the $1 / 2$ inch pipe from that point to the house be ing in good condition. I now find that, by fillin continue running for from $1 / 2$ an hour to 12 hours, when itstops. I sometimes imagine that it run only long enough to allow what water there may be in the pipe from upper part of siphon to th outlet to flow out. I wish to ascertain if you ca
suggest where the defect is, and give the remedy. The pipe is perfectly airtight. I have thought that by using a $1 /$ inch pipefrom woll to the hirb

est point of the siphon, \mathbf{X}, the difficulty might be
vercome. The water has to rise from botgt well to this point about 13 feet. I have a fall of feet from bottom of well to the highest point of discharge, E. I have experimented and thorough and now apply to you. Can you tell me what urther means I can try with it? A. The end o the pipe at the strainer in the well may be stopped in the end at the house. If this is not so, it would seem to imply that the pipe is not airtight; this point should be tested thoroughly. Sometimes ir bubbles from the water will collect at the highest point of the siphon, and trap it there, bu probability is that the pipe either leaks or is probability
stopped up.
Minerals, etc.-Specimens have been re ceived from the following correspondents, an yamined, with the results stated
E. C.-No. 1 is a piece of slate with chalcopyrite ulphide of copper, and protoxide of copper. N
J. C. M. says: I have seen a musical in strument in which the sound was produced by rant in the end of the instrument, the notes be inside of the instrument arranged? -J. G. W. asks: What is the construction of the Langstroth beehive?

COMMUNICATIONS RECEIVED.

The Editor of the SCIENTIFIC AMERICAN ac original papers and contributionsupon the follow ing subjects:
On Ornamental Machinery. By E. On a Theory of Electricity. By J. N. L.
On a New Electric Battery. By W. R. H Also inquiries and answers from the following : W. B. A.-G. B.-E. B.-A. L. F.-W. G.-C. H. C
C. H. B.-E. B.-G. W. B.-F. S. .-H. S.-G. H
R. R.-L. F.-A. T.-H. P.-W.S. V.-G.W. B.-

HINTS TO CORRESPONDENTS.
Correspondents whose inquiries fail to appea nay conclude the declines them. The address of the writer shoul always be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All such questions, when initial only are given, are thrown into the waste basket as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly y mail, if the writer's address is given. Hundreds of inquiries analogous to the following Who sells gutta percha? Who sells incubators?
the cheapest photographic apparatus?" All such personal inquiries are printed, as will be ob
served, in the column of "Business and Personal," which is specially set apart for,that pur pose, subject to the charge mentioned at th ead of that column. Almost any desired infor

OFFICIAL
INDEX OF INVENTIONS

etters Patent of the United States
 July 18, 1876,

and each bearing that date.
A complete eopy of any patent in the annexed list urnished from this oftice for one dollar. In ordering, please state the number and date of the patent desire d
andremit to Munn \&Co., 37 Park Row, New York city Alarm, electric burglar, H. A. Brooks............ 179,998

Auger, earth, o. Martin

Bale tie, R. De Gray...
Bale tie, buckle, J. M.
Bed bottom, spring, C. T. Segar......
Bee hive, Hetherington \& Van Deus Bee hive, Hetheri
Bell, w. S. Blake

Billia
Blac
Blacklng box holder, G. W. Taylor.
Boiler tube cleaner, w. Ha
Bolt trimmer, T. w. Elis..

Book support or desk, G. B. Boot heel die, G. Houghton

Brick machine, E. F. Andrews. Brenter Brid

Bridge, lattice pier, L. Scott.
Burner, gas, E. P. Gleason....

Car axle box, G. W. Miltimore
Car couplin, C. C. A. Fcuscr....
Car coupling, w. L. Nuckols.

Car, sleeping, R. H. Dennett........
Car wheels, casting, J. MeAllister
Corbureter Pollard
Carbureter, Pollard \& Barto
Card, playing, A. Dougher
Cara, playing, A. ougherty.
Carding machine, J. G Ryan.
Car
Carding machine, J. C Ryan........
Carpet beating machine, E. Spencer
Carpet lining, G. J. Bickucll.
 Cartridge-loading implement, W
Chain, ornamental, G. Trinks... Chair, A. Rice.
Chair and baby

Chair, folding, G. W. Harker.
Chairs, folding, S. A. Skinner........................ 1799, 1890,073, 180,074
Chairs, folding, J. E. Waketield..179,979,-981,-9
Chair, folding rocking, J. E.
Chair, nursery, E. S. French
Cheese hoop, S.
Churn, C. Seibel
Churn, H. D. Wiswell.
Clam, joiner's, G. A. Naumann.
Clock, electric, R. J. Sheehy.....
Clock, lockwork, J. W. Williams
Clothes line fastener, G. Almont
Clutch, friction, B. saudf ord
lutch, tubing, , Thornton....
Coffee mill, T. Johnson
Cotns, depositing, C. A. Sipe (r)
Columns, iron, Cooke \& York...
Cooker, steam, H. D. Dann.............
Cooking apparatus, J. M. Goldsmith
Cooler, milk, T. Roach.
Corset, B. S. Smith.....
Cotton, packing and baling. J. A. Drake..179,848,
Cowl, ventilating, Lamont \& Swett....................................
Cracker machines, J. Fox........
Cracker machines, J. Fox..
Cutlery, table, J. B. H. Leo
Dessert composition, L. Schepp.
redging apparatus, J. Grant.... Lucas.
Prill rock, G. Phillip
Dye, blue, G. Molt..
Egg box, A. H. Luc
Egg box, W. Weis...
Elbows, die for making, o. Knapp.
Electric machine, magneto, E. Westo
Engine, rotary, A. Allen...
Engine, valve gear, F. Douglas.
Engine, valve motion, G. Klug.
Engine, valve motion, G. Klug...
Engine, variable exhaust, punbar
Envelope, sample, c. E. Sawyer.....
Evener, four horse, P. W. Slaughter
Fare register, B. Davies.......
Fats, rendering, w. E. Andrew.
Faucet nozzle thimble, S. McKe
Faucct nozzle thimble, S. McKee...
Fire arm, revolving, B. F. Joslyn.
Fire extinguisher, Chapman \& Taple
Fire place, M. B. King..................
Fish-hatching apparatus, s. wilmot
Fluting machine, H. B. A
Fork, carving, G. L. Hart
Hart....
Fork, carving, G. L.
Fork, hay and manure,
Fountain, T. Turrettini
Frog pad, elastic, G. W. Philli
Fruit dryer, ©. E. Coleman.
Fruit dryer. S. W. Ho
Fruit dryer, H. Kelly
Furnace, A. L. Holley
Furnace, steam boiler, B. P. Beard
Garment strap, elastic, R,
Gas governor, L. Moritz.
Gas regur
Gas trap, seever, B. F. Underwood.
Glass, manufacture of, W. Fox
Glass, manufacture of, w. Fox............
Glassware, manufacture of, T. C. Pear

Gold ores, etc., purifyin
Grain dryer, K. Schroll.
Grinding machine, M. Gregg
Halter, J. Cronin....
Halter, J. Cronin...........
Harness pad, W. H. Bulkley.
Harness pad, M. V. Lomgswor
Harress, rosette, M. W. Cross...
Harding, Harris \& Bowne Harrow, riding, Harris, \& Bowne.
Harrow cotton planter, A, Bre
Harvester, R. Eickemeye......
Hatchway, self-closing, H. Rees.
Heat deftector, A. J. Donle.......
Heat deftector, A. J. Donle........
Heater and filter, S. A. Shoaff....
Hinge, stop, w. Wilson, Jr.....

Horses, attaching and detaching, A
Horseshoe machine, c. Brigs......
Hose attachment, ©. G. Trembley.
Hose coupling, J. W.
Inhaler, J. S. Letts..
Inhaler, R. L. Steen.

Key fastener, W. Neracher........
Kilns, grate for brick, B. Hall....
Lamp chimney cleaner, L. Dan precr.
Lamps, etc, attachment for, E. S. Chase Lamp cock attachment, A. Locker Leather, scouring, etc., F. A. Lo
Leather, spliting, H. F. Osborne.
Lock attachment, time, H. Gross. Lock, door, C. Guild.................
Lock for doors, etc., H. L. Arnold.
Lock for doors, etc., T. Hendrick Lock for doors, etc.,. T. Hendricks.....
Loom harness, knitting, w. A. Hodgkin
Loom jacquard, Wyman \& Gordon..... Lubricating attachment, c. Jones......
Marker, corn or land, w. M. Starliper..
Match safe, C. Frankish...................... Match safe, c.
Match safe, etc Mechanic'simplement, © Goodnow, J Millstones, dressing, w. Coplin.. Mitering machine, A. T. Nichols.
Motive power, A. Graner...... Motive power, A. Graner............
Muciage holder, J. v. Browne.....
Muzzles, animal, R. K. Blodgett.... Nursing bottle support, J.
Nut, L. A. Rebasz.........
Nut lock, F. Brallier.....
Nut lock, K. H. Loomis.... Nut lock, K. H. Loomis..............
Organ stop action, reed, J. s. Robinso
Organ, pueumatic action, J. Egan.....
Oven, coke, s. Diescher............. Oven, coke, S. Diescher.............
Pant composition, Sarret et al...
Paint composition, J. B. Slichter Paint composition, J. ©. Sich
Painting flower pots, J. Fitts
Pegging machine, A. C. Galla Pegging machine, A. C. Gallahue..........
Pianoforte tension device, J. . . EIliott..
Pipes, constructing and laying, A. O Nci Pipes, constructing and laying, A. O^{\prime} N
Pipes, coiled metallic, E. C. Hubbard.
Pistol, spring air, G. A. Walker
Plaiting machine, L. H. Olmsted........ Plaiting machine, L. H. Olmsted.
Plane, vench, w. Montgomery... Planters, corn, G. D. Haworth (r)..............234,
Planter, corn, W. W. Hubbard...............
Planter, corn, Moore \& Argerbright............
Planter, seed, F. J. Underwood.............. Plow and harrow, cultivator, J. Haynes
Poker, C. \& S. J. Adams.............. Printer, electric, R. J. sirm (r)
Printing press, J. L. Firm Privy vaults, etc., emptying, J. Bradiey.
Pump and funnel, H . A. Guignon..........
Pump bucket, w. Beachamp............
Pump bucket, chain, w. Peckham
Pump, oil and liguld, H. M. Parshall.
 Railway rails, roll for reworkin
Railway signal, Fish \& Miller. Rallway signal, J. E. McCarty ..
Lailway tie, G. W. Williamson.
Reaper and mower, A. J. Cook. Reaper and mower, A. J. Cook.........
Registering apparatus, J. C. \& O. Jen
Resin, etc., production of, A. Rock Ridge-forming machine, A. D. Martin
Roofng composition, C. M. Warren... Safe, burglar-proof, c. Diebold.
Safe, pigeon hole, H. F. Uftord. Saw buck. L. Hawkins....
Saw, scroll, P. G. Giroud
Seat, school, W. F. Spencer....
Separator, grain, W. H. Rickar Separator, grain, . H. Rickara..............
Sewing machine, short thread, o. s. Hall (r)
Sewing machine marker. A. Johnstone Sewing machine crate, A. J. Callahan. Shaftcoupling, G. E. Aider..
Sharpening machine, A. Reit Shoe, M. R. Bodkin..............
Shoe pegs, making, J. H. Oilivey
Shoe pegs, making, J. H. Olivey.......
Shoes, making wood, B. P. Ramsdell.
Slate frame, J. w. Shy. Slate frame, J. W. Sayre.................
Speaking tube catch, W. R. Ostrander....
Spindiles, clamp bobbin for, W. C. Burch
Sprinkler, lawn, G. H. Copping
Stable, F. M. Dixon.......
Stack cover, Tuck et al..
Ster
Steamer, J. B. Moffatt...........
Steamer, ced, w. Pierce.......
Stove, coal oill, Raschke \& Jones
Stove, coal oil, Raschke \& J
Stove, cooking, E. Bussey.
Straw cutter, J. Laughlin..
Syringe, J. S. Parsons.....
Table, folding, W. A. Roo
Teeth, fllling, R. Noble...
Teeth, flling, R. Noble.......
Telegraph, printing, R. J. S
Toy bell, C. A. Bailey.
ooy bell, C. A. Balley.....
Toy money box, w. Chrysl
Toy pistol, Mueller et al.
Toy trundle, G. W. Cole....
Trap, animal, , H. Morris
Tube expander, Rooney \& Newdasher.
Vype writers, key boara for, P. seming stam, T. Malcomson...
Ventilation, house, W. H. Fludder
Ventilation, house, W. H. Fludder
Wagoin bolster stubebaker \& Hinds
Wagon, milk, A. L. Fish...
Wagon seat, w. G. Savage
Wagon seat, W. G. Savage
Wash board, w. Todd
Water closet tank, etc., Peters \& Donald
Weather borrding, T. Reynolds.
Weighing bucket
Weighing bucket, P. Deland.
Whifletree, M. Bol
Weighing bucket, P. De
Whifferree, M. Bolanz..
Whiffetree, W. Kimble.
,
 179,898
1799999
179,930 180,008
179,915 179,915
1199996
180,014 180,065
179,844
1799966
179,987菿表

