off all else from the eye, the shadow appears without color; or, if the same shadow falls on a black surface, no shadow appears.
The theory advanced by Dr. Thomas Young, and accepted by Helmholtz and others, to explain these phenomena, asserts the existence of different susceptibilities to color rays in different portions of the retina, or among the different optic nerve filaments. Color spectra and color shadows are impressions of light; so that the part of the retina impressed by a particular color becomes, through fatigue, less sensiby a particular color becomes, through fatigue, less sensi-
tive to the same color, kind, or degree of light; and theretive to the same color, kind, or degree of light; and there-
fore an impression is, during the time of that fatigue, made upon our visual consciousness only by the opposite or comupon our visual consciousness only by the opposite or com-
plementary rays: these affecting those parts or elements of plementary rays: these affecting those parts or which are fresh not having been wearied by use. We become, in short, color blind to certain hues, while o capacity for perceiving other colors remains vigorous.
This theory has recently been reviwed by Professor
Henry Hartshorne, and the results of that author's invesHenry Hartshorne, and the results of that author's investigations are opposed thereto, while they have led him to suggest a new hypothesis. The more prominent experiments of Professor Hartshorne are easily repeated. It is
obvious that, for the retina to become fatigued, an appreciable length of time is necessary. To show that no interval of time elapses in which fatigue can occur, it is only necessary to make a few black lines on, for example, a piece of bright green paper. Cover these lines with a sheet of very thin writing paper, such as is used, on account of its light weight, for foreign correspondence. The black lines, seen through the thin paper, at once appear red, and appear so instantaneously on the placing of the covering sheet. Any
other colored paper than green may be used; the colored other colored paper than green may be used; the colored
lines will always show the complementary color. Professor lines will always show the complementary color. Professor
Hartshorne goes on to show that the same instantaneous color is seen in color shadows. Another experiment which he describes consists in looking at sunlight through panes of colored glass, and then turning the eyes toward a white wall. In each case a strong complementary (so-called negative) color spectrum was seen; but on closing the eyes an almos equally intense positive spectrum, having the same color a the stained glass looked through, appeared. On opening the eyes the complementary spectrum returned; on closing them, This seems obviously to be quite fatal to the supposition that retinal fatigue can account for any class of spectra such that retinal fatigue can account for any class of spectra such as has been considered; for if ordinary luminous impressions
produce temporary fatigue and loss of sensibility, stronger produce temporary fatigue and loss of sensibility, stronger
impressions ought to produce still greater fatigue and greater loss of sensibility : whereas the reverse is the fact
Professor Hartshorne's hypothesis is simply as follows : The eye becomes charged, saturated, with the particular colored light, and this, having a certain strength, is neutralized by the similar colored rays in light reflected from the white surface, so that only the complementary rays of that light affect the sight. The minute retinal nerve elements respond in vibration to the luminous ether waves of the color reflec-
ted to the eyes, and are excited to motion thereby; and by irradiation or communication of vibrations, all retinal elements which have the same period of vibration are made to partake in some degree of this movement. Then, when
turning from the colored object, white light, consisting of turning from the colored object, white light, consisting of all the color rays or waves together, impinges upon the eyes; those ether waves of the white light, which belong to the color first acting on the retinal nerve elements, interfere with and for the time relatively diminish or annul the special vibrations already produced in the retina; leaving the other waves of white light to take effect upon the retinal elements which respond to or "resonate" with them, so tha the complementary color only is seen.

A NEW THEORY OF HAY FEVER.

Hay fever, rose cold, peach cold, hay asthma, or autumnal catarrh-the names being indifferently applied to the same malady-is a disease which has so long baffled medical that it is incurable. Having the characteristics of a cold or asthma in some respects, it differs widely from them in others, and fails to succumb to timely remedies which, in the early stages of the ordinary catarrh or cold, induce perspiration and so break up the affection. As to the nature of to the present time, the dominant theory has been that sug gested by Helmholtz in 1869. The German physiologist stated that he had found in the nasal secretion "certain vibrio-like bodies" (infusoria), very delicate and small, and observable only through microscopes of high power. These he endeavored to eradicate by injections of quinine solution, and met with apparent success. Helmholtz, however, experimented only upon himself, and there is a failure of evidence throughout his investigation which may justly prevent the acceptance of its results without the corroboration o much more extended inquiry.
In 1872 Dr. Morrell Wyman, of Cambridge, Mass., published a treatise on the disease in which he recognized tw curring in May or June and corresponding to the hay asthma of England and the Continent, and a later form beginning of England and the Continent, and a later form beginning
in August and lasting several weeks into the fall, to which in August and lasting several weeks into the fall, to which Blackley, of Manchester, England, pursued a series of in genious researches to support a theory that hay fever is
caused mainly if not exclusively by the pollen of grass. caused mainly if not exclusively by the pollen of grass.
The studies of Helmholtz, Wyman, and Blackley we refer to because, in point of time, they are among the latest, an for the reason that they have each been regarded as impor-
tant steps toward the thorough comprehension of the malady A new work on the subject has now just left the press, in
which all previous theories are reviewed, and the results of probably the most extended investigation ever made into the causes and nature of the disease are placed before the public. The author is Dr. George M. Beard of this city, and the method in which the inquiry has been conducted, together with the facts elicited, will commend the work even to those who may not be disposed to accept the theories adduced. Following the example of Darwin and Galton, Dr. Beard prepared a series of fifty-five questions, which were designed to exhaust all sources of facts of which the majority of physicians and patients were capable of judging. From the answers, critically compared and statistically arranged, covering the circumstances of two hundred cases, the author reaches the following general conclusions:
Hay fever is essentially a neurosis, that is, a functional dis ease of the nervous system. In order to induce an attack there is necessary, first of all, a predisposition, frequently hereditary, to special and excessive sensibility of the nerves supplying the affected parts. All forms of the disease in all countries, whether occurring in the spring, summer, or autumn, are but manifestations of one disease, for which the subdivided into an early form, middle form or July cold, and the latter form or "autumnal catarrh." As the disease is not due to any single specific cause, animal or vegetable, as has been supposed, no specific will ever be found for it. The attacks may be prevented and relieved, and some remedie will act specifically on individuals; but no one remedy will ever be found to act in all cases. The leading indications in
the prevention and treatment of the disease are the avoidance of light, heat, worry, dust, vegetable and animal irritants, and other exciting causes, fortifying the system by tonics
before and during the attack, and relieving the symptoms by those sedatives and anodynes, locally or generally adminis tered, which are found by experience to be best adapted for each individual case.
These indications can be met by spending the season of the attack at sea, or in elevated mountainous regions, or in high latitudes at any elevation where the air is sufficiently cool, or at the sea shore, or, for those who cannot leave their homes, in quiet, cool, closed, and darkened rooms.
For those who, in spite of these precautions or from ina bility to take them, are attacked with the disease, ther eme dies should be quinine, arsenic, iron, and electricity, be fore and during the attack; local applications of quinine and camphor by the atomizer; and for palliatives, any one or several of the great variety of remedies th
shows to be most useful for each individual.

SHALL WE CHANGE OUR WEIGHTS AND MEASURES?

The reasons for and against making the metric weights and measures the only legal standards in this country ar pretty thoroughly canvassed in the majority and minority reports of the committee of the Franklin Institute, appoint ed to consider the question at the request of the Boston So ciety of Civil Engineers.
The majority report, submitted by Messrs. Coleman Sell ers and W. P. Tatham, urgently opposes the change, believ ing that the possible benefits to be reaped from it would not make up for the damages done during the transition; and that our government has already done all that can fairly be asked of it loy making the metric system legal.
In the first place the motive for change which originally gave rise to the French sy stem does not exist with us. There is among us nothing like the legal confusion of weights and measures which existed in France when the Bishop of Autun first proposed a reform. Our standards are few, and
have the same value in California as in Maine ; those which have the same value in California as in Maine; those which the metric system was designed to supersede were numer ous, widely various, and of narrowly local use. There were, for example, thirteen different lengths of the foot, all legal, in France; eighteen legal yards, twenty-one legal pounds, twenty-four legal bosseaux, thirteen legal tonneaux, and so mous, as between 12,203 cubic inches and 97,980 cubic inch es in the various tonneaux.
Then the opportunity presented to France was favorable was overturned and a new political system inaugurated. Beides, the people of France had always been used to having the government interfere with their private affairs. We
are not. The general government has not even undertaken enforce compliance with existing standards, which the constitution authorizes it to fix; and if enacted, a law abol ishing them and substituting the metric weights and meas
ures would probably remain a dead letter unless enforced by ures would probably remain a dead letter unless enforced by means which the people would not submit to.
The argument of the committee is broken at this point by digression in regard to the difficulties which the French experienced in bringing about the change: an interesting summary of the history of the origin and development of the metric system, but without any bearing on the presen question, since the system is now complete, if not perfect and many other countries have adopted it without any such difficulty or derangement of trade.
The objections to the meter as a standard are more cogent. It cannot be made universal. It was drawn from the circle
and the sphere, yet neither of these forms will submit to the decimal metrical system. "The measurement of time, of the degrees of the circle, of navigation, geography, and astronomy, successfully rejected it, although the prime idea of the Commission was to connect these subjects with ordimillionth part of the circumference of the earth) the unit
of lineal measure, and the second (the hundred thousandth part of the day) the unit of time, by means of the pendulum beating 100,000 seconds. The meter and the second were then the intermediate links in a long chain connecting Sci ence and practical life, having the solar system at one end and a quart measure on the orher. It is singular that the parts of this chain applicable to the calculations of Science were at once abandoned for their inconvenience, and the parts applicable to the uses of yard sticks, pound weights, and quart measures were imposed upon the people by com pulsory laws for nearly twenty years, without regard to the still greater inconvenience to them.'
In the end a compromise had to be made for the convenience of commerce, and arbitrary standards,susceptible of di visions into halves, quarters, thirds, and so on, were author ized, "in harmony with the daily wants and usages of practical life."

Another serious objection to the meter as a standard arises from the fact that it is as arbitrary as the foot. Theoretically, it is the ten millionth part of the earth's quadrant but the adopted length has been proved incorrect, so that the actual standard is not a definite fraction of the earth's cir cumference, but the arbitrary rod in the public archives As there remains not even a sentimental reason for accept. ing the meter as a standard, convenience alone should de termine the question of its adoption. On this point the committee hold that it is not nearly so satisfactory as the foot, while the confusion, labor, and expense of changing standards would be enormous. The meter is only decimally standards would be enormous. The meter is only decimally and hundredths, is also divided into inches, giving the even half, third, fourth, fifth, sixth, tenth, twelfth, and hundredth of the foot, and the half, third, fourth, fifth, sisth, eighth, tenth, twelfth, and sixteenth of the inch.
Again, if we change our standard for the sake of unifor mity with France, we must sever our uniformity with Great Britain, with which three fifths of our foreign commerce is transacted. And the change would entail a much greater expense than is usually imagined. All our land surveys have been made in acres, feet, and inches, and are so recorded in our public records with the titles to the land. " Hundreds of years would elapse before we could permit ourselves to forget these old measures." The industrial arts ourselves to forget these old measures.
have of late years acquired a far greater extent and precihave of late years acquired a far greater extent and preci-
sion than ever known before, with an infinite variety of sion than ever known before, with an infinite variety of
costly tools for working to exact measurements. To change our standards would necessitate a corresponding change in all these, entailing enormous loss. A new outfit for a well regulated machine shop, employing 250 workmen, for ex ample, would cost, it has been estimated, not less than $\$ 150$, 000 , or $\$ 600$ for each workman. "If new weights and measures are to be adopted, all the scale beams in the country must be regraduated and readjusted ; the thousands of tuns of brass weights, the myriads of gallon, quart, and pint measures, and of bushel, half-bushel, and peck measures, and every measuring rule and rod of every description throughout the land, must be thrown aside, and others, which the common mind cannot estimate, must be substitu ted." Further, " the great mass of English technical literature would become almost useless, and must be translated from a language which we, and the nation which we have the most to do with, understand perfectly, into a new tongue which is strange to most of our people." The change may reem easy enough to closet scholars who use weights and measures only in calculations; but to practical users of weights and measures, the producers and handlers of the material wealth of the country, the necessary cost of the change would vastly outweigh any possible theoretical benfit to be derived from it.
The report of the minority of the Committee, Mr. Robert Briggs, is less an argument than a vigorous protest against the positions taken by the majority, as untrue, irrational, or bsurd. Mr. Briggs agrees with the majority, however, in olding that "it is inexpedient to attempt at present to anti cipate by enactment the time when this great step in the progress of human civilization and unity (the adoption of the metric system) shall be taken by the national govern ment of the United States." But he does so "solely upon he grounds of the incomplete preparation and education of he people, and their want of appreciation of the immens advantages in the progress of the arts and the applications f the sciences which the metric system presents.
The opportunity was a favorable one for presenting a strong argument for the change, based on the practical experience of those European and South American States which have adopted the metric system ; and it is a pity that Mr. Briggs did not avail himself of it. Much better than any protest against the statements of the majority of the committee would have been an array of facts showing that he metric system had been adopted by countries, other than France, without the evil results predicted

Chloride of Silver Battery.

For the last year or two Mr. Warren De la Rue, in conjunction with Mr. Spottiswoode, has been making a series of interesting experiments with a gradually increasing series of elements, whose chief interest centers in the employment of chloride of silver as the electrolyte. Starting with thousand cells, he has increase the number to over five thousand, and has published some remarkable facts in con-
nection therewith. It is not impossible that, some day, chlonection therewith. It is not impossible that, some day, chlo-
ride of silver may play the part of light producer in addiide of silver may play the part of light producer in usual well known rôle. The experimentalists named estimate that 100,000 of these batteries would give a spark in air of nearly three yards.

