with a pattern printed in a white opaque ink with a pearly! the company; one could hardly witness it without an in luster. Colored wall papers are rarely used, except for halls and vestibules. This wall paper, like other Japanese papers, is made only in small sheets.
The imitation leather, or leather paper, is made of a special kind of paper, tozasenka-gami, of which several layers are employed to give the requisite strength. The inner layers are saturated with oil, ye-no-abura, from the fruit of the Celt is Wildenowiana, giving the material softness and fiexibility. The morocco-like surface is obtained by pressure from an engraved wooden block, and finally the whole is covered with.a varnish of lacquer.
'Herr Von Brandt, formerly German Minister to Japan, in a paper* read before the German Asiatic Society, gives a very minute and interesting account of the method of making crape paper, from which I condense the following descrip tion: The paper to be craped, ordinary Japanese paper,
with some colored design printed upon it, is dampened and with some colored design printed upon it, is dampened and
spread in a pile on a large slab of wood, in such a way that the edges of no two sheets shall be parallel. Alternating with these sheets are pieces of ordinary white paper, placed between the colored sides of two printed sheets, and sheets of takianaga paper. The whole pile is then tightly rolled on a smooth stick, and covered with a long band of dampened linen, rolled diagonally and tightly over the whole. The stick with its roll of paper and cloth is then pressed longi tudinally in a rude lever press. The arms of this press are provided with holes through of paper ane receives the stick may pass, so that the roll of paper alone receives the
pressure. The takianaga sheets are made of strong paper, pressure. The tatianaga sheets are made of strong paper, together with rice paste, which have been previously creased together with rice paste, which have been previously creased
in regular parallel corrugations by a similar process, and which serves to impart the desired regular creasing to the colored sheets when they are together compressed as de scribed. After the first compression, the paper is unrolled from the sticks, and the sheets are separated. The takiana ga paper is smoothed out, and the pile made up as before, but in such a way that the creasing may come at an angle to the former fold of each sheet. The process is thus repeated seven times, and the sheets finally dried. The paper thus treated resembles crape very closely both in texture and in elasticity.
"The Japanese paper, excellent as it is, does not supply all the wants of the pepple; and this account would be imperfect did I not allude to the manufacture of paper from rags, after foreign methods, which is now being conducted on large scale in several parts of Japan. In Tokio alone there
are three or more papermills, fitted with the most approved are three or more papermills, fitted with the most approved
American and English \dagger machinery, and capable of turning out large quantities of paper. The government consumes larre amounts of foreign writing paper; the newspapers use foreign printing paper; and the educational institutions require, in addition to these, drawing paper, book paper, ly that the rude and expensive process of making paper by hand, which I have described in these pages, is soon des tined to disappear before the power of machinery, which makes a better paper, at less cost, from inferior and less expensive material.-Henry S. Munroe, E.M., in American Chemist.

Cortespondette.

The Centennial Excursion by the Pennsyivania

To the Editor of the Scientific American
President Thomas A. Scott recently extended to the Cen tennial judges and many of the foreign commissioners an invitation for a trip over the Pennsylvania Railroad and some of its branches, so planning the same that it should combine, with a practical examination of the line and its auxiliaries and resources, all the features of a pleasure trip as well. By the courtesy of other roads the train ran into New York State to see Watkins Glen, Genesee Falls, and Niagara.
This excursion, occupying five days, was made by about 175 gentlemen, representing the various nationalities of the world, and was in every respect a most delightful affair The party was conveyed by special train, ample in its accom modations, and represented the convenience of modern travel, including the luxury of elegant lunches while running at fifty miles per hour. The company had provided accommodations along the route at the best hotels, and each evening brought a banquet to crown a pleasant day. While traversing the superb roadway of the main line, occasiona stops were made to allow an inspection of some of the fine iron bridges designed by Mr. Wilson, the engineer in charge of these structures. At Altoona the extensive shops of the company were visited; the various methods in the trans forming of raw materials into engines, cars, and the vari ous items pertaining to the outfit of a railway were exam ined with great interest. There was much careful note-ta king by the foreign visitors; and indeed a fair field for obser vation is presented here, as operations are on the largest scale, and the assemblage of mechanical appliances is some thing marvelous, from the giant derrick that picks up whole locomotive as if it were a baby, and moves it tender ly to any desired point, to the delicate scroll saw that cuts dainty designs in birdseye maple. The testing of axles was very interesting, as showing the extreme care exercised by
"Mie Aufertigung des Krepp papersir Thirimeng mi," Mitthiellungen
des + See EngIneering, vol. XXI. pp, 400,422
creased feeling of security.
One hundred axles are made from a given melting, and from that number, five are selected promiscuously, as fairly representing the quality of the metal. These are separately laid between heavy blocks which support the extreme ends, and a wedge-shaped iron, weighing $1,640 \mathrm{lbs}$., is dropped upon the middle, from hights varying from 25 to 40

If they break, the whole one hundred are returned to the furnace; if not, the ninety-five are used; only the five are remelted, these having, of course, been strained by the
severe test. Several were thus tried before the visitors, severe test. Several were thus tried before the visitors, and Pennsylvania Companies were also visited, and afford ed much valuable information as to the improved method of manipulating iron. On the grounds of the last named, steam hammer, striking blows of 200 tuns weight, was seen in operation.

in operation

At Williamsport, an opportunity was afforded to see on of the largest lumber mills of the country, a huge monste that drags up the helpless logs from the river and, with a
roar and a rush, turns them into a million and a quarter of marketable boards per week, feeding itself on the sawdus which is led automatically under the boiler. Rather mo notonous food, though it be "fine board," as some one remarked.

The visit to the oil regions was a very interesting feature of the trip, this industry being so peculiarly American. The sight of derricks innumerable, scattered over a strip of country 150 miles long, some working, others silent and abandoned, was suggestive of the singular history of this most singular traffic. It is now conducted upon a method ical and paying system. Thorough investigation was made of the processes by which the petroleum is pumped from depths of 1,400 feet to the tanks of the different owners whence, after being gaged, it is drawn by union pipe lines, as they are called, and sent through iron veins, nine mile or more, to the railway station, where, loaded into iron cars it is dispatched on its mission of lighting the world, and re ducing the price of gas. During the visit to this strange re gion, an incident, not in the programme, occurred; a tank containing a million gallons oil was struck by lightning and burnt, causing a scene very impressive, though not withou special pleasure to a gas director. The latest decision of Science is that petroleum is not a distillation from coal bu from immense masses of coraline deposit. Fossil coral is found overlying the spongy sandstone in which the oil oc curs.
The scenery through the diversified valleys of New York ad Pennsylvania was greatly admired; while the romance of Watkins Glen and the grandeur of Niagara each con ributed their peculiar enjoyment to the party, and the dis tinguished gentlemen returned to Philadelphia, enthusiastic over the trip. Colonel Scott was unable to accompany them, but was happily represented by his subordinates, who not only illustrate, in the highest sense, the rare abilities necessary to the best type of modern railway management butare thorough gentlemen, understanding how to exercis republican hospitality with a grace which called forth th admiration of the foreign and the pride of the native born guests. It is not too much to say that their courteous con sideration put hunger, thirst, and discomfort out of the question, and rendered the trip, from beginning to end, continual holiday
One very delightful fruit of the excursion was the evi dent fraternal feeling produced among the gentlemen of different nationalities, brought together under circum stances so favorable to the development of pleasant senti ment. Its expression was frequent and earnest ; and when after a superb dinner at the Cataract House, Niagara, they joined voices in singing with the band each others' nationa airs, it seemed as if one of the noblest results to go out from our Centennial observance was already in part real zed, the quickening of the sentiment of universal brother hood. Honor to Colonel Scott for conceiving and carryin out so delightful and so useful a scheme. G. S. D.

Aerotherapy

To the Editor of the Scientific American
In your issue of July 29, it is stated anomously, that erotherapy in medical treatment by compressed air is new I saw it in 1857 at Benn Rhydding, in Yorkshire,England, at reat hydropathic establishment, where there was an apart ery handsom fitpos many years at the Townsend House, the spacious and ele many years at the Townsend House, the spacious and eleshire, England.

Neal Dow.

Logwood Inks.

Logwood inks have been much employed for several years on account of their cheapness and the beauty of their tint; the greater part of the so-called copying inks are prepared at the present time from this coloring matter. Both the rasped logwood and the commercial extract are subject to falsifications; it is well, therefore, to make use of the whole logwood, and rasp or grind it as required; it is necessary, also, to consider the presence of an excess of moisture and of foreign substances, which may
The inks prepared from logwood are of four classes: 1. Inks with logwood and chrome; 2, inks with logwood and lum ; 3, inks with logwood and copper; 4, inks with log.

Runge, in 1848, discovered that a dilute solution of the coloring matter of logwood, to which had been added a smal quantity of neutral chromate of potassium, produces a deep blackliquid, which remains clear, does not deposit, and may be employed as an ink. Perfectly neutral litmus paper is not affected by it; it does not attack pens; it is very cheap, and so easily penetrates writing paper that it cannot be re moved by washing even with a sponge-in a word, it has all the properties of an excellentink. On exposure to the air in the inkstand, it sometimes decomposes very rapidly, its col oring matter being deposited in the form of large black flakes, which leave a colorless liquid above them. This gel atinization is a great defect in this ink, particularly as one does not know the precise conditions which determine it Different means have been proposed to prevent this action the best seems to be that of the addition of carbonate of so dium recommended by Böttger.
The author has used an ink prepared in this manner for upwards of two years, and has not observed any decompo sition, although this may to a considerable extent be due to the fact that the inkstand employed was one which allowed but little exposure to the air.
To prepare this ink, take extract of logwood, 15 parts water, 1,000 parts; crystallized carbonate of sodium, 4 parts neutral chromate of potassium, 1 part.
Dissolve the extract of logwood in 900 parts of water, al low it to deposit, decant, heat to ebullition, and add the car onate of soda; lastly, add, drop by drop, with constant stir ring, a solution of the neutral chromate in 100 parts of water. The ink thus obtained has a fine bluish black color it flows well from the pen and dries readily. The chrome ink powder of Platzer and the acid ink of Poncelet are imitations of the original ink of Runge.
An ink obtained from a decoction of logwood and chrome alum is not to be recommended; the characters written with it have little depth of color, and are of a somewhat greyish shade.
Decoctions of logwood to which alum has been added give a reddish or violet color, which darkens slowly, particularly with ink prepared from the wood and not the extract. Such inks prepared with alum alone are costly, because to obtain a sufficiently deep tint one is obliged to employ decoction or solutions of the extract in a very concentrated condition It is otherwise when a metallic salt is added along with the alum. Alum produces a reddish purple color in decoctions of logwood, while metallic salts produce in the oxidized so lution of the coloring matter a precipitate of a black or b lu ish black color. These inks are analogous to the so-called alizarine inks; the ink is colored by the tint produced by the alum. Under the influence of air there is produced between the metallic salts and the coloring matter a reaction which de termines the formation of a bluish black precipitate. To prevent as much as possible this action of the air upon the nk before it is applied to the paper, there is added, as in the case of alizarine inks, a trace of sulphuric acid, designed to issolve the precipitate which maybe produced. This acidity of the ink has several disadvantages; it attacks the pen ased for writing with it unless they are either of gold, plat num, or gutta percha. Sulphate of copper or sulphate of ron may be the metallic salt used in such inks-the former is preferable. One of the best formulas for this kind of ink is the following, given in proportions for a manufacturing scale: 20 parts, by weight, of extract of logwood are dissolved in 200 parts of water, and the solution clarified by subsidence and decantation. A yellowish brown liquid is thus obtained In another vessel, 10 parts of ammonia alum are dissolved in 20 parts of boiling water; the two solutions are mixed there being also added $\frac{1}{5}$ part of sulphuric acid, and finally $1 \frac{1}{2}$ parts of sulphate of copper. The ink should be exposed to the air for a few days to give a good color, after which it should be stored in well corked bottles
Böttger gives the following formula: 30 parts of extract of logwood are dissolved in 250 parts of water; 8 parts of crystallized carbonate of soda and 30 parts of glycerin of density 1.25 are added; and lastly, 1 part of yellow chromate of potassium and 8 parts of gum arabic, reduced to a powder and dissolved in several parts of water. This ink does not attack pens, does not mold, and is very black. $-E$. U. Viedt.

Facts and Simple Formulæ for Mechanics, Farmers,
Two hundred and seventy cubic feet of new meadow hay and 216 and 243 feetfrom large or red stacks will weigh a tun; 297 to 324 cubic feet of dry clover will weigh a tun. Laths are $1 \frac{1}{4}$ to $1 \frac{1}{2}$ inches by 4 feet in length, are usually set $\frac{1}{4}$ of an inch apart, and a bundle contains 100 .
A tarred rope is about one fourth weaker than untarred white rope. Tarred hemp and manilla ropes are of about equal strength. Wire rope of the same strength as new hemp rope will run on the same sized sheaves; but the greater the diameter of the latter, the longer it will wear.
One wire rope will usually outlast three hemp ropes. Running wire rope needs no protection; standing rigging should e kept well painted or tarred.
The coefficient of friction of leather belts over wooden drums is 0.47 of the pressure, and over turned cast iron puleys 0.28 of the pressure.
A mixture of 9 parts phosphate of soda, 6 parts nitrate of mmonia, and 4 parts dilute nitric acid is a freezing compound which will cause a fall in temperature of $71^{\circ} \mathrm{Fah}$.
Three fourths of a cubic foot of water evaporated per hour will produce 1 horse power.
Cold blast iron is stronger than hot blast. Annealing castron diminishes its tensile strength.
The safe load in tuns which an iron chain will withstand equals the square of the diameter divided by 9 .

