Gaximitic gmerical.

BITTABLIBHED 1848.

MUNN \& CO., Editors and Proprietors.

 PUBLISHELD WEEKLIT ATNO. BY PARK ROW, NEW YORK.
$=$ - D. MUNN.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year, postage tncluded.....
One copy, sixmonths, postage fincluded.

Ten copies, one year, each 82 70, postage included
Over ten coples, same rate each, postage included.......................... 2780 The postage is payable in advance by t
criber then recelves the paper free of charge.
Norr.-Persons subscribing will please to give their full names, and Post oflce and State address, plainly written. In case of changing residenc state former address, as well as give the new one. No changes can be made
unless the former address is given.
distinct paper from the American Supplement.

one year by mall.... TERMN.
SCIENTIFIC Amritcan and St pplembnt, to one address................ 700
Single Copies.. 10
The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& Co., 97 Park Row, N. Subscriptio

VOLUME XXXV., No. 6. [New Series.] Ihirty-first Year
NEW YORK, SATURDAY, AUGUST 5, 1876.

Contents. (Illustra.zd articles are marked with an asterisk.)	
Adding pencil, improved**...... ${ }^{86}$: New books and publications..... ${ }^{91}$	
crican Chemical society 90 Obesity	
Boat race, the collegiate........... 79 Iflympla, excavationsat...........	
Brussels exhivition, the, 1876.... ${ }^{87}$ Pr Paints, etc. Japancse.............. ${ }^{83}$	
Cars, steam power	${ }_{87} 7$ Patent decisions,
at the centennial.........: ${ }_{81}{ }_{81}$ Petroleum, etc.	
	g s
	rolectile
Engine jack, compound*.1.tili. ${ }^{83}$ 83 Radome	
Farming in Cafitenia .a........ 85	
Glass, anclent Greclan: 80 S Sulpho	
Heating by hot water (8) 92	
lifting machine, Improved d...... 86 F Wash	
Locusts, a few more words about. Lubricators*	
Naval items.	

THE SCIENTIFIC AMERICAN SUPPLEMENT

Vol. 11., No. 32

For the Week ending a ugust 5, 1876 .
Vith Fifty-Four Ill nstrations.
TABLE OF CONTENTS.
the international exhibition of 1876. With 16 illustrations. The Pennsylvania Company's Diamond Drill, 1 engraving.-Valveless
Engines.-Brewers' Exhibits. -Government Exhibits.-Anclent Brecch Loading Cannon, 1 engraving. -United States Naval Machinery.-Boll ers and Engines of United States Cutters, 6 engravings.-Rienhe's Testing and Weighing Machines, 6 engravings. -The Norwalk Engine, 2 en gravings.- Niagara Pump. 1 engraving.-Exhibit of Anilfne ColorsExhllit of American Sllverware
II. ENGINEERING AND MECHANICS.-American Iron Bridges, by T. C Clarise.-Trials of the New 88-Tun Gun.-The I
Pumping Engine, with two full-page engravings.
III. TECHNOLOGY.-New Coloring Matters.-The Spirophorus.-Miniaturc Maps.-Singular Accident from Phosphorus.-New Domestic Ice
Machine, 3 engravings.-How to Bulld Cheap Boats, No. 4.-The Twelve Dollar Row Boat, 11 ligures.
IV. ELECTRICITY, LIGHT, HEAT, ETC.- Influence of Temperature on
Magnetization.-Electro-Actinometer.-Loan Collection of Sclentific Apparatus.-Sound.-Light.-Effect of Electricity on Particles Suspended in Liquids.-New Microscopic Silde, 5 figures.
v. Lessons in mechanical drawing. By Professor macCord, 6 illustrations.
vi. Natural history, ETC.-Selective Absorption.-Phenomena in
Ceylon.-The Challenger Expedition.-Red Clay of Ceylon.-The Challenger Expedition.-Red Clay of the Ocean.-Tempe-
rature of the Sea.-Ocean Animal Life.-A Curious Crab.-Sea Urchins. rature of the Sea.-Ocean Animal Life.-A Curious Crab.-Sea Urchlns Stones in Brazil.-Huge Meteortes from Greenland, 2 engravings. - Hyglene, Medicinc, etc.-Importance of a Knowledge of Laws of Health,
by Dr. Tromas BoND.-Dress, Bathing, Ventlation, Dwellings for by Dr. Thomas Bond.-Dress, Bathing, Ventilation.-Dwellings for Workmen.-Th: Ophthalmoscope, 2 engravings.-Headaches from
Strain, by Dr. S. W. MITCHELL.-Water Cress in Materia Medica. VII. DOMESTIC ECONOMY, AGRICULTURE, ETC.-House Dralnage VII. DOMESTIC ECONOMY, AGRICULTURE, ETC.-House Dralnage, by
J. R. Willetr, 4 figures.-Grease Trap, 1 figure.-Potatoes, Level CulJ. R. Willetr, 4 figures.-Grease Trap, 1 figur
ture.-Plowing in Rye.-New Wheat Destroyer

munn \& Co., Publishers,
Pars Row. New York.

WORKMEN AND THEIR INSTRUCTORS.

That there is a gulf between the purely practical man and his teacher the theorist is one of the misfortunes of our ation, one of the other, is painfully apparent to anybody who comes into contact with them both. Neither will allow that a goodly store of the knowledge and experience pos that a goodly store of the knowledge and experience pos
sessed by the other would not be a decisive benefit to him But the theorist well knows that the efforts he may make in purely practical pursuits, however successful from a me chanical point of view, are sure to be, comparatively, finan cial failures: or, in other words, the expert workman must
as a rule look for financial success in the same degree as he as a rule look for financial success in the same degree as he abandons his practice and enters the domain of theory. is a very easy matter to quote examples of great men, who ies, and, rising to the pinnacle of fame, made the worl their debtors ; but how would it have been if Galileo had known that, so soon as he had advanced to a certain hight in knowledge of his beloved science, he must, to advance any further, abandon it and enter an arena new to him? And this is the precise position of the expert workman. The day has gone by when fame alone is a sufficient reward for labo or skill. Diogenes would in our day find his tub kicked in to the street, and himself under lock and key as a vagran Ga:ileo would be sneered at as a visionary; while ordinary
good breeding prohibits enthusiasm, which is now-a day considered an attribute of youth or inexperience. The or dinary mechanic of to day is a child of to-day, with its rul ing passions well developed in him. Among those passions a desire. a greed almost, for money is not the least; and he naturally takes the readiest course to obtain it. Now what is that course? Is it to become a skillful, practical mechan ic? By no means:it is to learn the most commonly known method of doing work, the principles, so far as generally known, governing the manipulation or construction of th work or machine, as the case may be. In fact, since to tak charge of others is his aim, he only exerts himself to gain sufficient knowledge to enable him to do so. The sho manipulation, knowledge of business, force of character mathematics, mechanical drawing, etc., necessary to the at tainment of his object, he strives to master. The better his education, the more sure he is to rise ; so that a really intel ligent and well educated man, with ordinary exertion, is rarely found in the working mechanic, even if he has had ten or twelve years of experience. As he drifts away from his position as a workman, he drifts away fromits elements ipulative; horeman, his sturs five years at his business, and during that time his attention has been divided between two things, one to become as expert a workman as he can the other to gain the extra knowledge necessary to bring him into notice and make him capable of managing and di recting other men; and so soon as he makes the first step of
ad vancement, his progress in acquiring manipulative skill is ad vancement, his progress in acquiring manipulative skill is
cut short. This is of course unavoidable; but it leads to consequences, as we shall presently see, that are not un avoidable, but are on the other hand very deplorable. As a saperintendent he enters a new fied, in which his purely practical knowledge is of comparatively little value to him yet he is the representative head and front of the purely practical man, and will often aspire to a superior knowledge of even the practical workmanship. The expert workman, who has spent from 12 to 20 years in the workshop, and who in addition to being naturally and mechanically skilful, ha and sees here a machine running too slow, there a workman who would do double his quantity of work if a little of that inside information, which old and skillful mechanics alway possess, were imparted to him. Then he thinks how much more work could be got out of the same amount of men and machinery if they only knew what he knows. He smiles to himself, and dismisses the subject from his mind, feeling that in his sphere of knowledge he stands alone: conscious, perhaps, that he could not fill the position of even a fore man, but conscious at the same time that money is being thrown away, and that, sofar as the practical workmanship at least not as he knows it. He has not only no enthusiasm, therefore, for those above him, but he has innately a poor opinion of them, and inwardly rebels at his own position. There is his field of usefulness a comparative waste; and his mechanical odvancement is impossible, because: Here we may pause and repeat a woman's reason: Because. The truth is that he is not supposed to know anything, and for the simple reason that his judges werenever in his element They might have attained to his knowledge, but they lef his field of study and do not know that it takes twenty year to become, on light work only, an expert workman at the lathe, machine, and vise
What are the chances of combining in one man, first, mechanic sufficiently expert as a workman to stand legiti mately as an authority and teacher to a large shop of workmen, secondly, one with sufficient judgment and command to govern them, and thirdly, one who shall also be an ex pert theoretical engineer? Let us see. Out of every 100 turners, there will be found not more than 2 of the highest
order of efficiency. Out of 100 workmen, not more than 5 at most are capable of taking charge of men. Out of 100 men, not more than 5 are expert at the planer as well as the lathe; then again, not more than 5 in 100 are capable of explaining even what they do know. Out of every 100, there may be also 5 who have a knowledge af mathematics sufficient to make the calculations absolutely necessary to their
workmen can make a decent mechanical drawing. But, on the other hand, 5 per cent are unsteady, 5 per cent are com paratively untutored, and so on; so that the chance of find ing the above-mentioned combination in one man is some what small. It becomes apparent, then, that as a rule it is not the most useful workmen who are promoted into bette positions, for the reason that the requisites to fill those po sitions include requirements other than manipulative skill which requirements in the aggregate give practical expert ness a comparatively small place in the general qualification of the foreman. Thus it happens that we may find a hun dred cases wherein the workmen of a shop have a profound respect for some particularly expert workman, while only ne case in which such respect is entertained by the work men for the foreman of a shop; and it generally happens hat, where such respect does exist, it is a bar to the ad vancement of the expert for the reason of the impossibilit of his assuming control over men with whom his relations ave been so intimate. That this should be so is not at al nreasonable, because his superiority is brought befor them almost every day of their lives. He is to them, to certain extent, a mystery in and upon a matter in which they themselves are, to themselves, masters; for of what doe he ordinary mechanic assume to know more than of the rade at which he spends his days from morning till night year in and year out? When a mechanic exerts himself to his utmost, when he puts forth the whole strength of his muscles as well as of his mind, when he calls to his aid al his experience, all his knowledge, all his determination, and all his strength, and then fails, and meets another who, with the same tools and under the same conditions, can perform vastly more and superior work, he knows that this capabili y is not due to either advantages of brute force or sehool ducation, but to some indefinable qualification known a skill. This seems to him to set education, perseverance and strength at defiance; then respect creeps in, and the kill becomes a shrine, and its possessor an idol. An exam ple of this kind occurs to our mind. A tall strong man, with brawny arms and with muscles hard and well devel oped, was engaged in filing up some parallel bars; he had the work by contract, and had filed up scores of them. He was an experienced mechanic, and had gotten himself into trouble for working so quickly as to get those men who chanced to have the same work to do by day's work into dis epute, because of their inability to compete with them, even in cost, letalone in time. On one occasion, however, a mewhat delicate looking workman, who worked near hallenged him to file up a bar in competition with himself the challenger). The gauntlet thus thrown down was ac cepted, and for three hours the contest raged. Each was al owed new rough, second cut, and smooth files; and the ex citement among the other workmen, of whom there wer ight,ranged along the side of the same bench, was at high pitch. The challenger finished his work first, and it was examined by his opponent and pronounced well executed ; but a repetition of the trial of skill was requested, and made, with the same result. It was in winter ; the work shop had no heating apparatus of any kind, and, though it was freezing, the contestants were in their shirt sleeves and yet were perspiring. Then the challenger was thus ad dressed by his opponent, who had ceased working and had een engaged a few moments in apparentdeep thought: " cannot understand it; I can only accept and respect it. ave nearly twice your strength, and have had ten year more experience. I can look clear over your head, and ca ho'd you with one hand ; and yet I am beaten, beaten at my own job too ; and worse than all, I cannot for the life of me tell how it was done." He surveyed himself, held out his strong arms and looked atthem, then shrugged his shoul ders and went on with his work. He might look within himself, and find, so far as his understanding was capable of judging, every element of superiority, except in that mysterious, intangible, indescribable qualification known to him under the cognomen of skill, which the closest scrutiny of the most experienced eye cannot detect save in its re sults.

ANCIENT GRECIAN GLASS

Among the rare objects discovered in ancient Grecian burial places are some curious ones of glass, mostly found in the graves of women. Frequently these consist of ves els with long necks, drinking vessels (without handles and round at the bottom), and of flat and cpen dishes. All thes lass objects appear to have been articles of luxury, and no domestic utensils. According to the recentinvestigations of Professor Landerers in Athens, this gloss is usually a sili cate of soda, sometimes of potassa; but it is always ver rich in lead oxide. These wonderful ancient productions ften show the most magnificent rainbow colors, with a me tallic luster like polished gold and silver, and the materia of which they are formed may be split up into very thin ayers. That this peculiar appearance is the result of ol age, which has produced a change in the material, may be seen in the glass vessels preserved in the Metropolitan Mu seum of Art, in New York city, which are of still older date aving been procured from the island of Cyprus, by Genera Di Cesnola. These objects belong to a period of time inter mediate between the ancient Egyptian and the Grecian peri $d s$; and the coloring operation is the same as that which takes place on the surface of glass panes in windows ex posed to continuous changes in moisture and dryness. But it is found in its most complete result when, in the cours of centuries, the action of time penetrates the whole mass, forming layer upon layer, shining with the colors of soap bubbles or motherof-pearl, but with much greater in tensity.

Among the rarely occurring objects are some of a deep green or black brown color, which are called vulcanic glass, and are made of obsidian; but to these the ancients added
oxide of lead in the form of massicot, so as to make the mass oxide of lead in the fo
more easily fusible.
Colored glasses have also been found in the ancient Gre cian burial places; the yellow colored (which, however, had become almost opaque) contained a silicate of alumina colored with oxide of iron; probably ocher was used in these, mixed with the pulverized glass before the melting, so that the color was obtained after the fusion. A blue glass, which contained streaks of blue of various shades, contained oxide of copper; and in producing this effect the ancients used probably the malachite and azurite (both mineral carbonates of copper) or other green or blue colored copper ores, or the so called corruleum, which in Egypt was made of copper, sand, and salt, and was used to color the cases in which the mummies were preserved. A specimen of white glass. resembling opal, but showing thousands of cracks, was undoubtedly made of milky half opal, which is found in Greece in the island of Mylos, and which was fused to make objects of the peculiarly colored appearance.
These and other modern investigations continue to prove that the so-called lost arts of the ancients, which some persons grossly exaggerate, trying to make it appear that the ancients surpassed the moderns in knowledge and civilization, did not amount to more than laborious attempts to produce a few of the richer objects which modern industry produces with the greatest ease and in the utmost abundance, duces with the greatest ease and in the utmost abundance,
placing them, for reason of their low price, at the disposal placing them, for reason of their low price, at the disposal
of every ind ustrious man, even of the comparatively poor of everg industrious man, even of the comparatively poor
laborer, who, thanks to the inventive genius of the present laborer, who, thanks to the inventive genius of the present
day, enjoys comforts which the working man of ancient araece would never think himself worthy to enjoy.

MECHANICAL VIBRATION AS A SUBSTITUTE FOR ANESTHETICS.

The application of anæsthetics in cases of surgical operations is of comparatively recent date. Dr. Morton discovered that the ethers, inhaled to a sufficient extent, produced a
gerezal anæsthetic state, during the continuance of which gereal anæsthetic state, during the continuance of which operations, which otherwise would be most painful, might be performed without the knowledge of the patient. The form operations with greater deliberation and with greater precision, not having to contend with the writhing and shrinking of the patient; but certain dangers which accom pany general anæsthetics, whatever the agent employe
nduced experiments for producing the effect locally.
For minor operations, surgeons have had recourse to re frigeration produced by a spray of very volatile liquid, or
by the application of freezing mixtures. Intense heat induced by a galvanic current has also been employed, and various other agents have been tried with more or less suc-
cess; but barring this danger, chloroform and ether stand cess; but barring this danger, chloroform and ether stand
thus far unrivaled. The desirability of an agent that will thus far unrivaled. The desirability of an agent that will
produce local anæsthesia cannot, however, be questioned Dr. Livingston records a remarkable instance of general nervous insensibility, which, although produced by an undesirable agent, proves that the nerves may be thrown into an insensible state by a means quite unlike the ordinary administration of anæsthetics. He says: "I saw the lion just in the act of springing upon me. I was upon a little hight the ground below together. Growlinghorribly, close to my the ground below together. Growlinghorribly, close to my
ear, he shook me as a terrier dog does a rat. The shock ear, he shook me as a terrier dog does a rat. The shock
produced a stupor similar to that which seems to be felt by a mouse after the first shake of a cat. It caused a sort of dreaminess, in which there was no sense of pain, nor feeling of terror, though quite conscious of all that was happening. It was like what patients, partly under the influence of chloroform, describe, who see all the operation, but feel not the knife. This singular condition was not the result of any mental process. The shake annihilated fear, and allowed no sense of horror in looking round at the beast." In describing his injuries, he says: "Besides crunching the bone into splinters, he left eleven teeth wounds on the upper part of my arm.'
The often related circumstance of the man who went into a sawmill and tried to see how near he could put his finger to the revolving saw without touching it, and on looking, found to his surprise that his finger was gone-and who, a few moments afterwards, illustrated to the proprietor of the mill how he lost his finger by putting one from the other hand so near the saw that he lost that also-although ludicrous, suggests a principle and a line of experiment which might, if investigated and followed out, result in a blessing to humanity.
The principle seems to be this: That rapid vibration, or a series of sudden concussions, even though slight, and not painful of themselves, will produce, in the part subjected to the treatment, a numbness or insensibility in the nerves, which may be immediately followed by a surgical operation without pain or inconvenience to the patient. The means for carrying out this principle are subjects for experiment.
A square stick, having rounded corners, rapidly revolved, will produce insensibility in a finger placed so that it may be vibrated by contact with the corners of the stick. It may be a question whether this effect is produced directly by the rapid vibratory motion of the parts, or whether it is due to a compression of the nerves, the effect of which is prolonged by repeated concussions; in any case, it would appear that experiment might bring out a means for producing local an-
esthesia or insensibility of the nerves by causing the parts to be vibrated rapidly by some mechanical device.

CanNed meats poisoned with mercury. In our paper of May 27 we published the statement of Professor Falke, of Manhattan College in this city, to the effect that, on opening a can of cooked corned beef, bearing
the stamp of a Chicago company, which he had recently purchased at a respectable grocery here, he noticed some globules of metallic mercury; and on examination of the meal, found additional quantities of the poison in the form of albuminate of mercury. Professor Falke mentioned the
matter before the Academy of Sciences, and the can was matter before the Academy of Sciences, and the can was
examined by the members. After some discussion the con examined by the members. After some discussion the con clusion reached was that the presence of the mercury
accidental, caused doubtless by the accidental breaking of a accidental, caused oubthess by the accidental breakic.
thermometer bulb in testing the heat of the can, etc.
This statement having met the eye of one of our es teemed correspondents at the West, he wrote to us, stating that it was common at some establishments in his vicinity to
that seal the cans with mercurial solder, and that possibly that had something to do with the case in question. We deemed it hardly possibly that intelligent parties engaged in supply ing the public with canned food would venture to make use of so dangerous a material in such a connection; and we therefore wrote to our correspondent, asking him to send us a specimen of the solder in question. He did so, of Professor A. R. Leeds, Stevens Institute. We were sur prised at the result, showing, as it did, that the solder con tains a large quantity of mercury, which is at once libera ted under the heat of the soldering iron, and is readily condensed in metallic form. This appears to be a sufficient explanation of the presence of free mercury and of albuexplanation of the presence of free mercury and of albu-
minate of mercury in Professor Falke's case; and warrants minate of mercury in Professor Falke's case; and warrants
the conclusion that the many cases of sickness from par taking of canned meats, reported in the papers, may be due to the same cause.
Mercury is mised with the solder in order, doubtless, to make it run and seal more easily; but it is a dangerous and subtle poison, and its employment in connection with We hope our legislators will promptly move in the matter In the meantime, we caution our readers to avoid the use of foods that are put up in mercury-soldered cans.
Any chemist or intelligent person, by a few simple tests, can quickly determine the presence of mercury in the solder. In the specimen sent to us, the mercury is revealed by simply heating a bit of the solder in a small test tube
over a lamp flame. The metal condenses on the interior of over a lamp flame. The metal condenses on the inter
the tube, and a bright globule may be soon collected.

the centennial exposition

We noted, not long ago, the excursion of the $4,000 \mathrm{em}$ ployees of the Singer Sewing Machine Company to the Centennial. The admirable example thus set has been followed by other large employing concerns, and it is to be hoped that parties of working men will be despatched from all our great manufacturing establishments. Employers
will find it directly to their interest to encourage these excursions, and to grant the men the necessary holidays. To examine the Centennial, even rapidiy and cursorily, is to receive almost insensibly a vast amount of useful information. Besides, as we have already suggested, the advantages thus to be gained will be enhanced if the workmen are required to make some report of what they have seen ward might be offered for the best report, and thus many might be induced to observe more closely than they other wise would. Those who stay at home might be constituted the jury for decreeing the reward, and thus, being obliged to hear all the reports, they as well as the excursionists will
share in the advantages of the journey. Of course, the hot weather has kept away large number of people from Philadelphia. Still the attendance is re-
ported to be large and to yield remunerative returns. This ported to be large and to yield remunerative returns. This certainly is encouraging, as no one would have been sur
prised had the receipts fallen off seriously during the heated term. The rush will probably begin about the first of September; and from that date until the Exposition closes, the buildings will be thronged. Those, however who saw the grounds just before the present hot weathe set in, probably saw them at their best, as the vegetation
has been sadly injured by the drought, and the asphalt pavements, becoming melted, have lost their smoorh surface. As a market, the Centennial as proved a great success Our people have bought out whole foreign departments, and in many sections it is hardly possible to find an object not likewise purchased liberally. The New England exhibitors of cotton and wool machinery have found some good customers in the Brazilian staple and fleece displays. The Boston
mills, from Yankee plans and Yankee fittings, will be built in Brazil. Over a hundred and fifty thousand dollars worth of pumps, engines, blowers, and drills have thus far been sold to South American buyers. Boot and shoe machinery is also, we learn, meeting a splendid foreign sale ; and even
in objects of art-notably furniture-the sale of a fifteen thousand dollar suite to a Parisian house shows that Ameri. can art industry is by no means unappreciated. Those who
have made a study of the business aspects of the Exposition have made a study of the business aspects of the Exposition
predict an enormous trade in the fall; but it is stated that exhibitors manifest too great carelessness in selecting the persons who explain their exhibits. There seems to be al most a dearth of smart salesmen, while all such on
hand are said to be succeeding beyond all expectations There is one manufacturer who exhibits his own machine in a way that may serve as an example for general emula-
tion. The device is a very ingenious safety lock for eleva ors, and under ordinary circumstances would probably be shown in the model. The manufacturer, however, decided to exhibit the invention on a full sized working elevator and when the judges came to examine the device, he had
everything in readiness. Entering the car, which he had previously loaded heavily with pig iron, he was lifted to a hight of about thirty feet ; then he coolly reached upwar and began to hack at the supporting rope with his knife. Consternation speedily became manifest among the judges. Some implored him to come down, that they were satisfied and did not want to see him killed. The imperturbable in. ventor went on hacking at the rope, which suddenly parted The spectators turned away so as not to see the rash man dashed to pieces; but instead of gratifying their anticipa tions, the elevator car was instantly caught, and actually jumped up a couple of inches above the marked point for its stoppage. From the expressions of the judges, that exhib itor may expect a favorable report; and as he adopts the same startling plan for attracting visitors' attention, it is needless to say that a crowd always surrounds his exhibit. So much has been said and written about Japan that her neighbor,

china,

through the general similarity of the exhibits, has come in for little or no attention. And yet the Chinese display em. bodies some articles as marvelous in their workmanship as the Japanese lacquers and bronzes. At the entrance of the section is erected a large massivedoor of a temple, curiously ornamented with Chinese characters and oddly contrasting colors. The same general design is followed in the show cases, which have roofs like pagodas, terminating in grace ful peaks and spires. In lacquered ware products, Japan excels; but in the more minute arts of carving and inlaying work, the Chinese are the superiors. Certainly, some of their carvings in ivory and mother-of-pearl reveal a patience and delicacy of touch nothing short of marvelous. Commencing on the west side of the section, the attention is a Some of these are of immense age; and they are of the high est value, as showing, probably, the earliest efforts of Chi nese art. The designs, which are strikingly original, connese art. The designs, which are strikingly original, con-
sist of strange looking birds, and animals, and natives ensist of strange looking birds, and enimals, and natives en-
gaged in various occupations. There is one pair of enornous vases, ornamented with handles fashioned to repre sent elephants' heads. On the eastern side of the section ar shown handsome screens, elaborately ornamented with pic tures of Chinese ladies in beautiful costumes woven in silk Near, there are cases of curious ornaments cut out of ivory; and adjoining are superb displays of porcelain. Then come specimens of wood carving. By this means, the Chinese give us an idea of their habits and customs, as there are a large number of curious groups, in processions and ceremonials, in which all the figures are carved with the utmost minuteness. There is a multiplicity of carved picture frames brackets, doo:s, cabinets, and like objects. Perhaps the most prominent article in the entire display is a bedstead made of fine grained wood, every inch of which is covere with carving of the most wonderful delicacy. The canopy is semicirculvr, and arches from foot to head. It is made of he finest and thinnest silk-a mere film-and on this are embroidered in silk the most exquisite designs in birds and fowers. It can well be believed that the bed represents the labor of years. Another bedstead, less elaborately orna mented, has been sold for $\$ 1,600$. There are, beside numer ous exhibits of work and jewel boxes, made of highly polished and costly wood, together with card and chess tables of every form, inlaid with ivory and mother-of-pearl. The specimens of silks are of the finest quality. Th3 colors, especially orange, maroon, and green, are exceedingly lus rous, while the parts that are embroidered exhibit exquisit skill. The rear portion of the Chinese section is filled with hina and lacquered ware in endless variety. The depart ment is always full of visitors, and the people seem never
to tire of looking at these evidences of the strange civiliza. to tire of looking a
tion of the Orient.

New Caledonia Nickel

Through the explorations of M. Garnier, New Caledonia ow yields a green mineral, consisting of hydrosilicate of nickel and of magnesia, which appears destined to acquire considerable industrial importance. The mineral is found in the midst of very abundant masses of serpentine at va rious points of the island, and in association with eupho ides, diorites, amphibolites, and other magnesinn rocks. Sometimes this combination of nickel shows itself on other rocks in the form of a fine green covering; at others, it penetrates the rocks and colors them inteusely; and again t is found in both filaments and in nodules. As might be expected, the nickel is accompanied by iron, cobalt, and chromiun, almost invariably. The metallurgical treatm ent proposed by MM. Christophle and Bouillet is quite simple he matorial dissolved in hydrochloric acid is precipitate y lime under form of a nearly pure nickel oxide. Reduc ion by charcoal easily gives a metal 99 per cent fine, incomparably purer than that obtained from the sulphuretted and arsenious ores hitherto employed. It is not, however, in
the free state that the metal is best used. As combined with the free state that the metal is best used. As combined with
copper in the proportion of 15 per cent nickel against 85 of copper, a white malleable and very fine alloy is produced excellently suited for all metallurgical manipulations.

A rod of brickwork $=272$ superficial feet, $1 \frac{1}{2}$ bricks thick or 4,350 bricks average work. One yard of paving $=36$ bricks at or 52 on edge. There are 384 bricks to a cubic yard, and

