FACTS AND FIOURES CONCERNING THE EARTH AND ITS ATMOSPHERE.

It has recently been to me a matter of surprise that there are no published analyses of the atmosphere in the United States, or indeed in America,by an American. It is not that any notable difference is observable in the composition of American air, as compared with that of Europe, but because the intimate relations of the atmosphere t) health and climate are assuming daily a more universally acknowl dged impor tance.

A little more than half a century ago, Lord Cavendish be sto wed his unsurpassed experimental skill upon the problem to the extent of making five hundred determinations of the percentage of oxygen. With methods which now appear en tirely inadequate, he finally settled upon the number 20.833 as expressing the average. The best m ?an result of the present day is 20.95 , a little more than one tenth of one per cent over the number obtained by Cavendish. And yet Lord Cavendish could not satisfy himself that his experiments showed any difference between the air in London and in the country. Sufficient is now known to render it probable that the air in no two contiguous places is precisely the same. With all the mighty apparatus of winds and moun tains, of diffusion and changes of temperature, the homoge neous mixture of the constituents of the atmosphere is never
perfectly achieved.* The difficulty is better understood perfectly achieved.* The difficulty is better understood
when the vast quantities of matter involved are considered when the vast quantities of matter involved are considered,
quantities not adequately realized when hundredths of one quantities not adequately realized when hundredths of one not lay my hand upon these figures in a convenient form ; and after calculating them from the best data available, the thought occurred of giving them a permanent form.
In his " Meteorology," Sir John Herschel states that, if the diameter of our globe be taken as 7,926 miles, the weight of the atmosphere is 11.67085 trillions of lbs., or, making allow ance for the space occupied by the land above the sea level, 11×10^{18}, that is, 11 trillions of lbs. A little closer approxi mation can be obtained by using the most recent determina tions of the earth's dimensions. These are as follows:

	Polar radus in fect.	Equatortal radus in
Bessel.	. . . 20,853,662	20,923,596
Airy.	. 20,853,810	20,823,713
Clarke.	. 20,852,429	20,923,171

According to the last named authority, the equator also i elliptical, its major axis being 41,852,700, and minor axis $41,839,944$ feet. Taking Clarke's figures as a basis, the lining the results given above, we obtain $41,707,268$ feet for a mean polar, and $41,846,980$ for a mean equatorial diameter and for the earth's mean diameter $41,777,124$ feet or $7912 \cdot 36$ miles. If the earth's volume becalculated as a spheroid, on the former supposition, it amounts to $38113 \cdot 3084 \times 10^{18}$, or trillions cubic feet: if a sphere, to $38178 \cdot 1 \times 10^{18}$ cubic feet
which is $64 \cdot 79 \times 10^{18}$ cubic feet in excess over the former which is $64 \cdot 79 \times 10^{18}$ cubic feet in excess over the former
somewhat more exact calculation. Accepting the latter number, however, as sufficiently correct for our purpose and much more convenient in the following calculations, we ob-
tain for the volume of the earth $259,350.52$ millions of cubic tain for the volume of the earth $259,356 \cdot 52$ millions of cubic
wiles, its surface $196 \cdot 68$ millions of square miles, or $5483 \cdot 1 \mathrm{x}$ wiles, its surface 196.68 millions of square miles, or $5483 \cdot 1 \mathrm{x}$
10^{12} square feet, or 7895.68 billions square inches. Multiplying this figure by the average pressure the atmospher exerts at 32° Fah. on every square inch of surface at the level of the sea, or $14 \cdot 7304$ pounds avoirdupois, we have a result not widely different from that given by Herschel namely : 11.63065×10^{18} pounds, or 5192.5523×10^{12} tuns.

If we assume that the weight of the atmosphere is ap proximately $11 \times 10^{18} \mathrm{lbs}$., the weight of that portion of it displaced by the elevation of the continents is 630,658 bil lions of lus. In fact it is not so much; it is 125,238 billions
lbs. This calculation is readily made by recurring to the lbs. This calculation is readily made by recurring to the
mean hights, obtained by Humboldt and other eminent geographers, for the elevation of the continents above sea leve We shall have, putting the results in tabular form

			Mean Elevation.	
Surface of		$\begin{gathered} \text { As calcu- } \\ \text { lated } \end{gathered}$	A8 gipread over entire cont tinntal arca	$\begin{gathered} \text { As spread } \\ \text { over earth's } \\ \text { surface } \end{gathered}$
Furime		${ }_{60}^{600} \mathrm{tect}$	ISk	-1i
Aorith	$1{ }^{1}$	7.19	${ }_{211}{ }_{2} \times 17$	${ }_{75} 5653$
Arrica	${ }_{8}^{11 \cdot 3} \quad:$	1, 600	${ }_{3}^{360.78} \times$	${ }_{\substack{3 \\ 73.553 \\ \hline 152}}$
Australa	号1		$1110 \cdot 6$	
$\underset{\text { Water }}{\text { Fiarih }}$	${ }_{1}^{145 \times 68} \times$			204.008 ${ }^{\circ}$

It will be seen from the above that if the excess of land in America above sea level were spread over 51 millions of square miles, the mean elevation of the continents would be increased 291 feet, and, if over the surface of the globe, 75 feet. The mean elevation of the continents is 1,111 feet, and that of the entire earth's surface 288 feet.
From these figures, we can readily obtain quite a close approximation to the true weight of the earth's atmosphere. In the first place the weight of that portion resting upon the sea is found and added tothat resting upon the continents, which give us a correct total. The pressure on each square inch of the sea, at 32° and at mean barometric pressure,being $14 \cdot 7304$ lbs., the corresponding weight of that portion of atmosphere is $8.61475 \times 10^{18} \mathrm{lbs}$. At 1110.67 feet of altitude the barome ter stands at 28.755 inches and represents a pressure of 14.119 lbs . The corresponding weight is $2.89067 \times 10^{18} \mathrm{lbs}$.; 11.50542 trillions of lbs., then, is the total. Or, in the econd place, the entire surface of the globe, at a mean ele vation above sea level of 288 feet, may be multiplied by the
mean pressure at that altitude. This, at a barometric hight mean pressure at that altitude. This, at a barometric hight
of $29 \cdot 672$ inches, is 14.5631 lbs. The result is 11.503461 tril-

lions of lbs., very slightly differing from that given above. The weight of a cubic foot of air at standard pressure and temperature being 0.080066 lb ., we get from the weights pre feet for the entire volume of the atmosphere. This result is best understood by calculating the thickness of the envelope which such anatmosphere would form around the globe. It would be either 25,982 or 25,978 feet,according as the former or latter number is taken as representing the true volume of the atmosphere. A simple way of arriving at the thicknes is by findiag the relativehights of a column of mercury and a column of air at mean temperature and pressure. These would evidently be as the relative weights, which are as 1 to 0,5131, and the correspon
At an altitude of 288 feet, the hight of the barometric column is 29.672 inches, and the hight of the atmosphere above the mean elevation of the continents, 25,996 feet. Lubricating 288 feet from 26,214 , the difference, 25,926 , is less han the former numbers. This is to be expected from the ncrease of density as we go towards the earth's surface he mean of the three values is 25,985 feet, and represent very nearly the actual hight of the atmosphere of uniform
density. This is 415 feet less than five miles. The very caredensity. This is 415 feet less than five miles. The very care-
ful experiments made to determine the earth's density have shown that its weight cannot be very far from 5.56 times that f a globe of water of equal bulk, and this would be $5900 \cdot 8681$ trillions of tuns. As the atmosphere weighs $5134 \cdot 5$ billions of tuns, the weight of the latter is to that of the former, as 1
to $1,149,000$. Their relative volumes are as 1 to 267 . If the $1,149,000$. Their relative volumes are as 1 to 267 . If the
elative weights and volumes are represented bv circles, the diameters of the circles in the first case are as 1 foot to 1,071 feet, and in the second, as 1 foot to 16.35 feet
When we come to calculate the amounts of the many va ious bodies which make up the atmosphere, the variations in the results of the observers, depending in part upon the different methods of analysis employed and in part upon the ctual variations in composition of the specimens of air anayzed, present us with a long array of figures to choose from Besides the four principal constituents of the atmosphere here are various compounds of nitrogen and oxygen, of car bon and hydrogen, of nitrogen and hydrogen, of hydrogen and sulphur, of hydrogen, nitrogen, and sulphur, to say nothing of salts of chlorine, sulphuric acid, nitrates, etc., diffused throughout the atmosphere by processes of combus tion and evaporation, or set free by the agency of decay and
putrefaction. It is only through its great complexity o composition that the atmosphere is qualified to discharg the multitude of services required of it by the vegetable and animal kingdoms, and in the general economy of the globe. We may fairly assume, from the vast accumulation of the re sults obtained by many eminent analysts, that the volume f oxygen in the atmosphere rarely exceeds $21 \cdot 1$ per cent or falls below $20 \cdot 1$. But the range of variation actually falls within extremely narrow limits; and if the oxygen either ex ceeds 20.99 per cent, or faces below 20.9 per cent, there is
reason to look for accidental circumstances modifying the reason to look for accidental circumstances modifying the
average composition. This was strikingly shown by the 100 analyses of the air of Paris made by Régnault, the oxy gen percentage varying from $20 \cdot 913$ to $20 \cdot 999$, giving a mean f 20.96 . Of 9 specimens of air from the neighborhood of yons, 30 from Berlin, 10 from Madrid, 23 from Switzerland rom South Medice comprised between 20.908 and 20.998 per cent.

It may seem of little consequence that the amount of oxyen should be diminished by one tenth of one per cent, and would be, were not the loss in oxygen replaced by other have been ascertained from a close observation of these changes in composition. The younger De Saussure, who de voted many years to this work, established the fact that the amount of carbonic acid in the atmosphere during the three summer months was considerably greater than that in De cember, January, and February, the relative amounts being as 100 to 77. From multitudes of determinations continued during fourteen years, he concluded that the ordinary rang of variations in the volume of carbonic acid was included between 6.2 and 3.7 parts in 10,000 , and that 4.9 parts in 10,000 fairly represented the mean. A similar remark ap plies to the extreme multiplication of these carbonic acid de erminations as to those of oxygen: that single experiment are often quite at variance with the general results, and tha the analyses must be repeated until the laws affecting the composition of the atmosphere are established beyond doubt What, for example, could be more surprisingthan the fact indicated by many experiments, that the percentage of $c: r$ bonic acid about the tops of mountains is greater than at
their feet : and this, too, notwithstanding carbonic acid their feet : and this, too, notwithstanding carbonic acic
is more than half as heavy again as air, so powerfu appears to be the agency of plants in decomposing the carbonic acid near the surface of the ground and replacing it by a corresponding amount of oxygen? The solution of carbonic acid and its precipitation upon the ground dissolved in rain likewise assists its removal. During calm weathe night than in the day; but when disturbed by violent winds, causing a down rush from the upper strata, the percentage of oxygen at the earth's surface may temporarily undergo an ncrease much beyond the average
One of the principal sources of the increase of carbonic acid in the a tmosphere is the process of respiration by an mals. If the number of respirations by ar adult be reckoned at 15 per minute, and an average amount of 32 cubic inches
of air is expired, containing $4 \frac{1}{2}$ per cent of carbonic acid, there is thrown into the atmosphere daily by each individual
about 20 cubic feet of this gas. The population of the globe would annually increase the volume of carbonic acid $7,3: 0,000,000,000$ cubic feet, and diminish the oxygen by the same amount. This again would at least be doubled by the respiration of the lower animals and by the agencies of decay and combustion. The volume of the atmosphere is 968,870 ,. 000 cubic miles ; and of this, if four hundredths of one per 000 cubic miles; and of this, if four hundredths of one per ent be taken as the average volume of carbonic acid, 387,510 cubic miles consist of the latter. If 20.96 per cent is the mean for oxygen, it amounts to $203,076,600$ cubic miles About 100 cubic miles of carbonic acid are annually added to the atmosphere, at which rate the amount of carbonic acid would be doubled in 3,731 years and all the oxygen con sumed in two million years, were not the carbonic acid de composed by vegetation in an inverse proportion. The weight of a cubic foot of carbonic acid is a little more than one tenth of a pound, and of a cubic mile about eighty and half million of tuns. The total amount of carbonic acid in the atmosphere is three billion tuns, containing 27.28 pe cent or 851.870 millions of tuns of carbon. The computed ent or 801870 milions of tu of carbon. The compute area of the coal measures on the earth's surface is 260,000 000 quare of 00 tuns of coal. If per cent of this coal is estimate carbon, the amoun of carbonic acid the atmospher would be doubled by burning this amount of coal annually for 4,500 years. The total amount of coal is 4.83 billions of tuns, which,if burnt, would increase the amount of carbonic acid in the atmosphere four and a half times, or raise its per centage to $0 \cdot 18$. This percentage is smaller than is fre quently present in the air of crowded rooms like theaters, and which people endure, at least for some time, without serious consequences. If all the coal of the carbonaceous er were formerly a part of the atmosphere, the earth need not necessarily have been untenantable by air-breathing animals. These results appear surprising until we reflect how small a portion of the earth's bulk is made up of carbonaceous de posits. The whole annual production of coal would make bar 12 feet square passing from east to west through the earth's center. Butif spread over the earth, it would amoun to 0.015 cubic inch for each square yard of surface, hardly enough, when rubbed over a square yard of drawing paper of fairly blacken it. The entire bulk of the coal measures, ven when estimated at double the available amount c coal now known, probably does not exceed 450 billions of cubic feet, which would form a layer about an inch thick ver the earth's surface.
But a vast amount of carbonic acid is locked up in the arth's strata, combined with various bases, more especially lime and nangnesia, forming immense deposits of limestone and dolomite. If this carbonic acid at one time formed a portion of the atmosphere, its bulk must have been prodipious. A very thin stratum of carbonate of lime, when de posited. would yield as much carbonic acid as the atmos phere at present contains. It wouldrequirebut a thin pellile, a whitewash of 0.136 inch in thickness over the whol surface of the globe. A similar layer of pure limestone, 28.37 feet in depth, would double the weight of the atmos phere.
The
The thickness of the stratified rocks extending upward rom the Potsdam formation probably averages as much as 38,500 feet, of which three eighths or 14,500 feetmay be put own as limestone. This is equivalent to 140 millions of cubic miles of limestone rock, weighing 1.55 trillions of tuns and containing 682 billions of tuns of carbonic acid. This would be to the weight of the earth itself as 1 to 8,652 , and would increase the weight of the atmosphere 133 times.

Albert R. Leeds

The Wonders of the Deep.

In her scientific cruise of threeyears and a half, the Chal lenger steamed and sailed 68,930 miles, crossing both the Atlantic and Pacific-the former several times. The deepest soundings were 4,575 fathoms, in the Pacific, between the Admiralty Islands and Japan; and in the Atlantic 3,875 fathoms, ninety miles north of the island of St. Thomas, in the West Indies. We have noticed the principal movements the West Indies. We have noticed the principal movements
of the expedition from time to time. Its return to England has revived public interest in the work of Professor $\mathbf{W y}$. ville Thomson and his associates, and many interesting details concerning it have appeared in the English journals Many curious crabs were brought home. One very odd spe cimen, which came to the surface only at night, is described as having a head which is nearly all eye, and a body so transparent as to render visible all the nerves, muscles, and internal organs, while another more lobster-like creature had no eyes at all. Near Amsterdam Island, in the South Indian (cean, the ship encountered a belt of gigantic seaweed, of which single plants are said to attain a length of a thousana feet and a thickness equal to that of a man's body. A gale of snow, to which the vessel was exposed in the Antarctic Ocean, consisted of exquisite star-like crystals which burned the skin as if they were red hot. The history of the expedition abounds with similar unique experiences.

indelible Ink without silver.

Mr. A. J. Foose, of Del Norte, Colorado, sends us the fol lowing formula for an indelible ink without the use of nitrate of silver, which, he maintains, is thoroughly efficient and capable of resisting the action of freezing and thawing No. 1. Extract of logwood, 1 lb .; water, 1 gallon. No 2: Sulph. prot. of iron, 4 ozs.; water, 4 ozs. No. 3. Sulphu ret of potassium, \ddagger oz.; water, 2 ozs.
After dissolving the logwood by boiling, add No. 3 to No. , until the iron assumes a black color; then add this compound to No. 1, and boil a few minutes. Add cyanuret of potassium, $\frac{1}{2}$ oz., which fixes the color. For ink, add gum potassium, $\frac{1}{2}$ oz., which fixes the cat
and alcohol; for dyes, add grease.

