length, the object being to ascertain if, by the use of petroleum or a mixture of petroleum and spirits of turpentine, leum or a mixture of petroleum and spirits of turpentine,
steel of that degree of temper could be turned at any steel of that degree of temper could be turned at any
faster speed than with a tool used dry. The result of the faster speed than with a tool used dry. The result of the
experiment was that the difference, i i any, was too slight to experiment was that the difference, ii any, was too slight to
be of practical importance. A similar experiment upon a piece of soft steel demonstrated that,by the use of petroleum, no advantage in cutting spaed was to be obtained. The cutting speed employed during this experiment was 37 feet $p e r$ minute.
The last experiment made wus upon a piece of 'Turton's round hammered tap steel, tempered to a clear bright blue along 4 inches of its length. the cutting speed employed being 10 feet per minut.e. The first cut, $3^{\frac{1}{2}}$ inch deep, was tak n with a lubricant o. three parts petroleum and one part spirits of turpentine, the second cut being taken dry, the result being that ti'ie tool stood a little batter with the lubricant than without. It has been known for a long time that benzine, keros ne, turpentine, or any of the light volatile oils act as lubricants for cutting tools more pffectively than pither water or oil, their adrantages loeinir that they are nore penetrating, and hence approach much more rasily and freely to the eutting edge of the tool, which they there fore keep more cool. The difference in their favor is, how aver, not very great. A short time since, Thomas and Co. of the Freeland T'ool Works, had to plane a platen for a printing press, 6 feet ly 4 feet, and it was found, after one half had had \mathfrak{a} cut taken off it, that the other half was chilled so that ordinary tool steel would not touch it. Then Hol son's and Jes op's double refined steels were tried, and it was determined to throw the platen away and cast another Finally, however, a tool made of chrome steel, 是 by $1 \frac{1}{d}$, wa used, and it carried the cut across the chilled part nicely During the last part of the cut, Mr. Thomas took a piece of rag soaked with kerozene and applied it to the tool during the back stroke of the planer, with the result that the tool retained its keenness much longer, thus agreeing with our own experiments, the cutting speed emplored being in thi case 14 feet per minute.

HARMONY AND DIBCORD WITH OPTICAL BTUDIES.

oruke delivered at ter btevens institete of tecen
properaor c: f. hrackett, of princrton, x.
In the previous lecture it was shown that all matter is en dued with energs. Hydrogen will penetrate through \boldsymbol{r} po rou; cell; a ball suspended by a string will continue to vi brate for a long time when set in motion. The vibrationso tods and strings were illustrated in a variety of wars. The cessation of sound in a racuum was shown by means of a bell under a receiver, and the conduction of sound through wood by mutfing a music box and connecting it with an zolian harp liy means of a wooden rod.
On the prement occasion, we shall cunsider how the vibra tions thus studied may be utilized in that most glorious of ull arts, music If the same note is sounded on a flute, violin, and an accordeon, we instantly recugnize to which in strument it belongs. By the same puwer the ear recognizes in an adjoining room the voice of a friend who has retarned ufter a long alsence, although wet have not yet seen his face. The impression thus conveyed is often so precise that we would le willing to swear to his identity in a court. W see thus that tones differ, not only in loudness and pitch, but ulso in quality or character. 'The pitch of a sound by which ar or low, acute ur grave number of vibrations in a second which the sounding bod makes. The loudness may be illustrated by means of a rod secured at one end; if we pull it back only a little and cause its end to describe a small arc, it will not move with as much force as if we bend it back considerably and let it tly with great velocity. The quality of sounds is due to the manner of vibrating. Instead of fastening the rod at on end only, it might be fastened at both, and then the manner of vibrating would be different. In a stretched string there are present a great. many different vibrations, all of which courbine to give us the impression of a musical note. When we look upon the restless ocean, we perceive at the same time huge billows surmounted by lesser waves, and perhaps delicate ripplets orowning the whole; in like manner musica notes are made up of waves of various sizes.
An organ pipe consists essentially of a fine edge placed in a hole; when the air passes over this edge a whistling sound like that of the wind is produced; but when a tube is placed orer it, this whistling is raised to the dignity of a musical note by the vibration of the column of air contained in the tubs. 'I'he same effect is produced by substituting a resona tor of proper size for the tube; a sounding box developed a mere hint or ghost of the same sound. After having dis sected an organ pipe in this way, another pipe already ad justed was taken, and it was shown that a second, highe sound could be produced in it by harder blowing
A tuning fork may be set in vibration with a bow in such a manner as to emit no distinctly audible musical tone; when, however, it is held before the mouth, which is opened as though the experimenter were about to sing the correspond ing note, the air in the mouth is set in vibration, and th ote of the tuning fork is plainly heard. The octave of this note can be obtained in the same way. An organ tube, a re sonator, or a sounding box, brought near the tuning fork will answer the same purpose; but they must betuned to correspond to the fork, or, in other words, thes must contain the proper volume of air. Of a number of resonators on the lecture table, only one responded to the tuning fork ased.
If we olose the upper end of an organ pipe, a much grave note is produced. The mode of vibration of the air has bee
changed. When the sound wavestrikes the end of the tube, it developes a nodal point, because it is not free to move further in the same direction, but is reflected back to meet the next following wave at other points. Wherever the crests of two waves or the troughs of two waves coincide, larger waves result; but where troughs and crests meet, they neutralize each other and produce nodal points. The modes of vibration are characterized by the position of these nodal points. With the same tube, for example, harder blowing will change the number and the position of the nodal points. What we are accustomed to call the pure, sweet, simple tone of the organ is really nothing of the sort; it is, in fact, a rery complex form of vibration. To get a pure and simple note, we must take a tuning fork ; hence, by analyzing the compound note of a musical instrument, we ought to be able to recompose it, by combining a number of tuning forks re precompore its by combining number of tuning forks re imitated a violoncello note by means of a series of tuning imitated

The difficulty in this experiment lies in obtaining the pro per relative intensities of the components.

Fig. 1.
 5: 6
 4:5
 3:4

We are not by any means dependent on the ear alone for the study of musical vibrations. They can be made apparent to the eye. If we attach asrip of paper or glass, covered with lampblack or any other fine powder, to one tuning fork and a bristle to another, we will oltain a series of compound curves by drawing the latter slowly over the blackened surface. This curre in a resultant of the two vibrations. In this way very instructive diagrams are produced with tuning forks whose vibrations have certain definite relations, such as those, for example, corresponding to the ordinary musical intervals. In Fig. 1, the ratio of $5: 6$ corresponds to a minor

Fig. 2.

3:5.

 $5: 8$.
 3:2.士
 3:2.
 hird ; 4:5 to a major third; and $3: 4$ to a fourth. In Fig. : the ratio of $3: 5$ is that of a sixth; $5: 8$ of a minor sixth; and $3: 2$ of a fifth. Fig. 3 exhibits the result of operating with two forks whose vibrations differ more slightly in number. It represents the lwating thus produced, with its alter. nations of intensity:

Fis. :
24:25. 133

. .nother way of studying these resultant qibrations is by the aid of Tisley's pendulum, which consists of a marking point so arranged as to obey the motion of two pendulums swinging at right angles to each other. A variety of effects is produced by lengthening and shortening the pendulum nd by varying the intensities of their motion. The result a series of beantiful symmetrical curves represented

Fig. 4.

where the vibrating pendulums are of equal length. Fig. 5 represents the octave, where one pendulum is twice th length of the other. Fig. 6 is the fourth, the ratio being three to four; and Fig. 7 is the fifth, heving the ratio of 2 to

It is almost, if not quite, impossible to produce tw gures exactly alike with the same arrangement of the pen ulums; they will differ as much as the leaves of the same ree. Although the eye readily detects the difference be ween them, the sounds they represent are identical to the ear.

A third method of optical study is by the aid of manomeric flames. The vibrations from the instrument to be studied are made to act on a piece of membrane in contact with a stream of illuminating gas feeding a jet. When the gas is

Fig. 6.

lighted and the instrument sounded, the tremors of the membrane causs the Hame to vibrate up and down. On revolving a mirror before the flame, the motions of the latter are spread out in the form of serrations differing with the tone. By having a number of such flames and membranes in connec. ion with a series of resomators, composite sounds may be analyzed into their constituents.

Fig. ${ }^{\text {i }}$

By means of these and various other apparatus too numeous to describe, even a deaf person could thoroughly stady musieal
C. F. K

Electricity an a Transmitter or Power.
It is well known that the Gramme magneto-electric machine, which transforms mechanical force into electricity, can also tee employed in inverse manner to transform electricity into mechanical force. The property may be utilized to transmit power over long distances. The motor of a factory, for example, could be connected with one machine so as to rotate the same and thus generate a current. This current, carried over distances by cables, might be communicated to another Gramme machine at the point where the power is required. The second machine, by the current, would thus be caused to revolve, and the power would be utilized as necessary.
Of course, in this double operation, there is a loss; but according to M. Magnon, who has investigated the subject excording to M. Magnon, who has inrestigated the subject ex-
perimentally, this is even less than takes place with any perimentally, this is even less than takes place with any
other mechanical disposition. If the waste of power other mechanical disposition. If the waste of power
equaled that involved in transmission by wire rope, long equaled that involved in transmission by wire rope, long
belts, and like means, it appears that the new plan has superior advantages, in that it does away with a large amount of shafting, belting, etc., and besides allows of power being transmitted over much longer distances than would be practicable by such devices. The details of M. Magnon's experi ments, are not given, so that we are unable to review the data on which his opinion is based.

