novel show, that of birds, birdskins, and feathers. Here are cases upon cases and piles innumerable of feathered vic tims, from the magnificent Impian pheasant off the Himalayas to the tiny hamming bird of tropical America. The birds and birdskins are carefully sorted, and particulars taken for the transmission to the brokers, who are thas able to prepare their sale catalogues. One of the latter is before us, and although it is only a supplementary one the follow ing are among the goods it specifies: 3,297 jays, 1,073 king fishers, $, 1,047$ ospreys, 649 red and orangetanagers, 394 par
rots, 98 red ibis, 1,095 bee eaters, 653 bronze merles, 1,416 rots, 98 red ibis, 1,095 bee eaters, 653 bronze merles, 1,416
humming birds, and 2,023 various. Coming to the feathers, ostrich, of course, occupy the place of honor, both as regards quantity and relative value. Among other feathers are those of the osprey and the marabout or paddy bird of In dia. The latter are very pluffy and gracefal in appearance, and in color are either a snow white or gray. The whole of the feathor and bird business of London is concentrated in
this warehouse, and the value of the peculiar merchandise here on show monthly is something about $\$ 250,000$.
The storage room, devoted to silk, is very considerable; and as far as possible, the different varieties, of which the and as far as possible, the different varieties, of which the
principal are Bengal, China, and Japan, are kept distinct. Each skein has to pass muster, the inferior or damaged ones being thrown out; and the merchantable bulk of every bale is then enclosed in a hessian covering, which, when sewed up, constitutes a company's package. Bengal silk is in
skeins, that from China in fiattened bondles or books and skeins, that from China in flattened bundles or books, and the Japanese skeins are tied up in grape-like bundles. The twine used by the Japanese silk packers is made of paper bat nevertheless wonderfully strong and of beautiful rega larity. They are very liberal in the use of paper bands,
which enclose the skeins in all directions; but as this paper which enclose the skeins in all directions; but as this paper is carefully preserved by the sorters and weighed off agains their object, which is to get credit for paper as if it were thir object, which is on get credit for paper as in thousand
silk. In the storerooms are between five and six tho silk. In the storerooms are between five and six thousand
bales of silks. The fac's of blinds being fitted to all the bales of silks. The fac's of blinds being fitted to all the
windows is calculated to puzzle the uninitiated, but this is windows is calculated to puzzle the aninitiated, but this is that the exposure of silk to light and warmth results in ap preciable loss of weight.
The chief source of the indigo supply is India, but of late years the Central American States have been sending in creasing quantities to this market. Bengal indigo, especial.
ly that classed by importers as Bengal blue, is most highly ly that classed by importers as Bengal blue, is most highly
esteemed. Then follow Bengal violet and copper indigoes, and after these rank Oudes and Madras. The culture of the indigo plant is very precarions; and it thas happens that, al though the consumption is tolerably aniform, the price is liable to violent fluctuations.
Inside the indigo warehouse there is but one universal color, and that is blue. The atmosphere is of a cerulean haziness, and the men, as they move about, give one the impression of having been in a dye bath. Certainly the blueness of Gainsborough's blue boy would have been doubly intensified by a brief sojourn in this region. The cases of indigo are weighed, tared, and samples drawn for display in the show rooms on the ffith floor. The skylights of these fine rooms are so arranged as to throw the light from the north on the samples of indigo arranged in long lines of
trays below. Color is, of course, the chief guide to quality, trays below. Color is, of course, the chief guide to quality, lightness being also a characteristic of good indigo.

Corregiputeufe.

A Colonsal Fortune Undeveloped

To the Editor of the Scientific American:
For many years the subject of limiting the production of cotton, to ball the price to a more remanerative figure, has engaged the attention of many cotton planters in the South. If but a tithe of the mental labor which has been fruitlessly expended in this direction could be devoted to the invention of means by which the cost of production of cotton most important resalts.
In the great Northwest, there has grown up within a few years a gigantic empire, teeming with its millions of thrifty farmers, who are able, by the aid of improved agricaltural machinery, to produce the grain crops which feed a notable part of the civilized world. It is well known that this great
result would not have been possible without the labor-savresult would not have been possible withoot the labor-sav-
ing machinery which has enabled them to compete in the markets of the world. But if we look at the cotton calture of the South, it is matter of great surprise that the production of so important a staple, involving so much constant manual labor, shoold have received so little assistance from inventors. There cannot be a more inviting field for memach thought for ten years, I wish to direct the attention of mechanics to the nature of the demand and the probable means by which the supply can be achieved.
A given number of hands, in the rich cotton belt, can plant and cultivatedouble the quantity of cotton during the spring and summer that they can gather and prepare for the market in the fall and winter. Here, then, is a limit to the production of cotton which compels the cultare of other crops in connection with cotton, crops which do not require labor in the season of cotton picking. Machinery for harvesting thecotton crop will enable the planter to donble the quantity of cotton which can be produced by a given number
of laborers. Here, then, is the first great want of the cotton of laborers. Here, then, is the first great want of the cotton grower,
I believe the man who successfully supplies this great want, by inventing machinery which will do for the cot-
ton crop what the improved reapers are doing for the wheat crop of the Northwest, will require a sewing machine to to the cultivation of the cotton plant will naturally follow, and still farther diminish the cost of production.
Shortly after the late war, an ingenious Yankee exhibited n the Soath a device for picking cotton, which did the work, it is true ; bat it required to be brought to bear apon the cotton boil with something of the precision which points
a gun at a bird. A southern negro would easily gather ten a gun at a bird. A southern negro would easily gather ten
locks of cottonin the time required by the inventor to bring locks of cottonin the time required by the inve
If I could be permitted to advise the would-be inventor of a cotton picking machine, I would say: Take your first les ron in a cockleburr patch, as it is here called; pass through it,and note how tenaciously the numerous barbed points up. on the burrs catch and hold your clothing. Thus you will find the first elementary principle of the cotton picker. Pass through the patch again apon a windy day, and note how our coat tail flies about in the wind, hunting, as it were for the barrs that so readily seize it; and note also the in you have a second lesson in the elements. Expand the cockle burr into a drum or cylindercovered with card clothng, such as is used in treating cotton or wool, but with teeth so fine as to exclude the limbs and leaves of the plant, seiztng anly the lint. Let there be two of these card cylin ors, revolving in opposite directions, one apon either side
of the row of plants; let them be placed nearly upright of the row of plants; let them be placed nearly upright
leaning obliquely towards each other like the opposing raf ers of a roof, so as to connform somewhat to the pyramida form of the plant; let them be geared so that they can be raised or lowered by a lever to suit the hight of the to suit the breadth of the plant. Let each cylinder be provided with a comb or counter card, to remove the accumulated cotton from the card teeth, and drop it into a proper receptacle apon the machine. Let the whole be monnted upon broad-tired wheels and drawn by two horses, one upon each side of the row of plants. Let a sai table rotary fan be attached below, to send a strong draft of
air up through the cotton plant to put the long loose locks air up through the cotton plant to put the long, loose locks of lint in active agitation, so that they shall industriously search for the card teeth, and also to blow away sand and
dust from the lint, and thas improve its quality. Do this, dust from the lint, and thas improve its quality. Do this and you have the dry bones of a cotton picker, to be care-
fully stadied, elaborated, and clothed in suitable habiliments, such as this writer has neither skill nor time to devise.
Itis not necessary that the cotton picker shall do its work cleanly; if it can but garner two thirds or three fourths of of the crop, manual labor will take care of the remainder. The castomary price for picking cotton by hand is 75 cents per 100 lbs. of seed cotton, the average yield of which, in
marketable lint, is 33 lbs. The cost of hand picking,therefore, is 24 cents per lb., a very large item, which ought to be re duced, by appropriate machinery, by more than one half. A successfalinventor who should exact as his royalty only of 1 cent per lb. upon the cotton crop of the United States might fairly figure his annual income at more than $\$ 3,000$, 000, a sum worth
gift of invention.
If these suggestions should drop a germinating seed into the fertile brain of the coming man who is destined to immortalize himself by the invention of a successful cottonpicking machine, I shall be most happily rewarded for my Rome, Ga.

Robert Battey, M. D.

Boller Explonions.ma Suggention to Experts.

To the Editor of the Scientific American :
The importance of the sabject emboldens me, although not an engineer, to ask for a little space in your valuable journal, to allow me to rejoin to a commonication from L. B. Davies, as to the cause of boiler explosions, which appears in your issue of November 18. I beg to be understood in advance that I have no intention of opening a controversy with an expert such as Mr. Davies seems to be, and that what I shall say is to be taken merely as a suggestion to practical engineers that, possibly,there may be a cause for such accidents which has been overlooked. The experiments as to the action of water under repeated heating, that I shall pre-
sently detail, were instituted three years ago in consequence of a series of investigations described, if Irightly remember, in the Journal des Débats, of Paris. The point was not directly raised by the article, but some collatoral statements led me to question whether water, such as is ordinarily ased for motive parposes, might not possibly acquire an explosive property by frequent heating. Although water is a protoxide of hydrogen, as a matter of fact, as found in its natural state in rivers and reservoirs, it contains a considerabee percentage of nitrogenons admixtare, partly in the form of animal and vegetable life containing nitrogen, and partly in compounds resulting from the decomposition of animal and vegetable tissues. The sedimentary coating it deposits in boilers, and the colomn of sediment that settles in a test
tabe after protracted boiling, are sufficient evidence as to the importance of the compounds held in solution to any careful and accurate investigation of thecauses of explosion, in instances where inspection has failed to reveal any defects columns often acquire molecular properties that render them extremely brittle, and it is very possible that boiler iron under frequent heating and tension, saying nothing of inequality as respects both, may suffer molecular
that cannot readily be detected even by an expert.

The experiments I have to detail were conducted in test tubes, with Croton water first, and afterwards with water obtained from the Hudson river. The degree of heat employed was uniform. The tubes used were two ounce,tightly corked with rulber stoppers, through each of which was passed longitadinally the refuse spout of a sabcutaneons syringe, for the escape of steam. For the experiment I used seven tabes, each loaded with half an ounce of water. Six of the tabes were employed in this manner, namely, Six of the tubes were employed in this manner, namely,
five of the six as a reservoir with which to replenish the sixth,thus eliminating one after another until only the sixth should remain : the seventh to be replenished with fresh water as often as the exhaust reduced its contents to one third of an ounce. That is to say, heating each in succession for five minutes: as often as the contents of any one of the first six was less than one third of an ounce, it was brought back to the original volume of water by replenish ing from out its fellows, and so on until five of the six were empty; while,when the seventh had lost one third of its con tents, the deficiency was supplied with fresh water from two and a half ounces reserved. The tabes were of average thickness. The interval allowed between boilings was one hour, during forty minutes of which the tubes were sus pended in cold water to insure the necessary lowness of temperature. The thermometrical tests in each case were made with a very correct medical thermometer; and the externa urface of each tube after cooling was carefully cleaned with a strong solution of caustic potash. The heating instru ment was an alcohol lamp, filled after each series of heating and carefully trimmed; and previous to each series I took the precaution to heat four ounces of fresh water in a tin cup for seven minates, and then to test the heated water with the medical thermometer, in order to prevent any appreciable variation of temperature. Under these conditions. the test tubes being suspended by a wire loop always at the same distance from the tip of the wick, each time 1 fond that there was a fixed dimination in the time re quired for perceptible boiling, after each experiment, and hat the loss in volume by conversion into steam increased a rifle at each heating. The average first term with all the ubes was 3 minutes and 41 seconds. The last half ounce of the three ouncesallotted to the six tabes roplenished from ach other boiled in 2 minates and 47 seconds. The same uantity in the seventh tube, constantly replenished with resh water, boiled in 3 minutes and 5 seconds, the diminu tion in time being 54 seconds in the one case, and only 36 in the other. Using three ounces of water from the Hudson river, in six tubes, under the same conditions, the average time of boiling at the first series of heatings was 3 minutes and 38 seconds, while the last half ounce boiled in 2 minutes and 27 seconds, a diminution of 71 seconds. Using three ounces of filtered Croton water, ander the same conditions, he first term was 3 minutes and 49 seconds, and the second minates and 13 seconds, a difference of orly 36 seconds I have carefully repeated these experiments a sufficien number of times to convince me that these phenomena are pretty constant; and, from the difference between filtered and unfiltered water in respect to them, it must be concluded I think, that the presence of organic compounds has con siderable influence in bripging them about. There is also a phenomenon, not readily described, but one readily appreciable by the eye-a manner of boiling, so to speak-which would enable an expert to guess pretty accurately whether a volume of water had been frequently heated, or was merely andergoing that process as virginal. It consists principally in the fact that water that has been persistently principally in the fact that water that has been persistently
boiled and cooled breaks suddenly and violently into ebulliboiled and cooled breaks suddenly and violently into ebulli-
tion, as compared with fresh water under the same degree of heat. The experiments seem to indicate that nitrogenous compounds are responsible for this phenomenon, which in the last half ounce of a three ounce reduction pretty broadly suggests that the liquid under experiment has acquired an explosive property that, ander such conditions of high heat as occar in using steam as a motive power,might prove very dangerous and destractive. I will not presume to say that experiments conducted on such a small scale are conclusive, prop as establishing the fact that ordinary water acquires the to the number creased rapidity of conversion into steam accompanies each increment of this change in molecular properties. I believe that nitrogenous compounds are responsible for this change and for the sudden violence of ebullition that accompanies it; but this point I havenot been able to verify with the faciliies at my command.
New York city.
F. G. F.

Suspended Animation an a Pronerving Agent.
To the Editor of the Scientific American:
On page 225 of volume XXXIII of the Scientific Ameri an, you have an article on the above named sabject in which you give three different lines of investigation for future experiment. These are: 1 . The power some animals have of rendering their natural prey utterly insensible for an indefinite period. 2. The peculiar effect of cold on some of the lower animals, which reduces them to a state, not death, nor yet the ordinary torpidity caused by low temperature in other organisms. 3. Hibernation. In considering each in turn, you give as an instance of the first the complete torpor or anæsthesia produced by the sting of the female of the "digger" wasp upon its prey; of the second, the well known torpor produced by cold in the case of serpents and certain fish, with subsequent return to activity on the application of heat: and lastly, hibernation is explained by the fact that "the mascular irritability of the left ventricle of the heart,bighly increased, permits it to contract under the weak stimalus of
the non-oxygenated blood. It is this exaltation of a single
vital property which preserves the animal life." One or vital property which preserves the animal life." One or two quotations from recent lectures of Dr. Brown.Séquar in your city will serve to indicate several other methods of investigation. The learned doctor gives an instance of a dead ox having been kept 56 days without patrefaction M. Floarens considers that a spot in the medulla oblongata is the focus of vital force. There is, you know, a spot which is pierced by the matadors in Spain when they rush to kill a ball immediately. Death occurs instantly. ${ }_{*}^{*}$ It is interesting to know what becomes of the nervous force in these cases. It seems to have been altogether lost. I say it seems, for if we examine a little further we find that it is only dormant. The nervous centers have lost it almos altogether, bat the nerves are quite rich in nerve force, so much so that I have kept one of those animals for nearly 65 days in my laboratory, without any trace of putrefaction at a temperature which varied between 45° and 65°. The lack of patrefaction certainly depended on the long persis tence of the nerve force after death.
Animals thas killed could no doabt be transported across the Atlantic from North or Soath America,in sailing vessels, without loss of weight and with little expense. It would be interesting to know if simple compression of the medulla as by a ligature, for example, would not so suspend anima tion that it could be recalled at pleasure.
I quote farther from the same author: "You know thrat they (the fakirs of India) may remain dead to all appearance for a number of days, and, it is even said, for months, with out any change occarring in the body, withoat any change in the weight,withoat their receiving any food. They show neither circulation nor respiration, as their temperatare diminish very considerably, and altogether present a series of effects which arecertainly very marvelous. But in the ligh of the fact that I had a dead animal in my laboratory lying fos several months without any sign of decompnsition, in a temperatüre varying from 40° to 60° during day and night we can understand that these fakirs may remain able to live although they do not live-that is, they do not have actual and active life. But why, you will say, do they come out Admit that there is in us a power which is quite distinc from our ordinary power of mind, which is quite distinct from that which we call consciousness, which daring our sleep is awake and watches: with this admission and the facts I have mentioned above, we have all the elements, I think, for an explanation of what has been said aboat the fakirs."
Although I do not quite comprehend this explanation. have thought it well to allude to it, as leading to a possible solution of the problem given toward the close of your article, namely that of having our own sensation and volition suspended at will, indefinitely
Chatham, N. B., Canada.
Join McCurdy, M. D.

The Supposed Planet Valcan.

To the Editor of the Scientific American:
I felt mach interest in the discussion on the planet Val can ; and if all the observations are genaine, they are to tally irreconcilable with any hypothesis as to the periodicity of the planet yet proposed. Ithink it was in the winter of 1872 that I gave you my observations, which you pablished, of a transit of the planet seen-as I have since de-termined-by me on September 15, 1859, in the forenoon. If I recollect rightly, I gave the diameter of the planet as apparently $2 \downarrow$ inches, taking the apparent diameter of the san as 28 inches. This was aboat 80^{\prime} clock, A. M., when the planet had just entered on the eastern limb of the sun, a little soath of the sun's equator. The sun being near the horizon, it was enlarged by refraction. The planet was nearly, if not quite, two hours in making the transit, and I looked at it every five or ten minates. We used only a smoked glass. In stadying and comparing the phenomena I attributed to this planet, I found a regular recarrence of the phenomena at aboat the end of 23 days. By averaging the periodicity, I fixed it at 23.02 days. During over ten years I have minately observed the recarring phenomena, with a view of verifying both the theory and the periodicity, and I have found bat little if any variation in the periodicity. I do not claim that it is exact, but I am satisfied it is as near an approximation as can be til the planet's true position is determined.
I believe that the planet has an enormons size, at leas equal to that of Uranus: and therefore the planet has neve been seen by the observers who saw small black speck make transits of the san. If any such speck has been
seen, of which there can be no doabt, then it was a satellite seen, of which there can be no doabt, then it was a satellite
and not the planet. I believe, however, that Mayer saw the planet make a transit on March 15, 1758, when he saw spot one twentieth the diameter of the san, which agrees in size with my observation in 1859 .
It is to be regretted that M. Leverrier rejected all the observations where no forward movement of the speck wa observed ; for if it were a satellite, it might for a time be stationary, or have even a retrograde as well as a forward movement. The following calculations have recently been

From 1758, 74 days, when seen by Mayer at the descend ing node, to 1859, 258 days, when seen by Tice at the ascending node, is 101 years and 184 days $=37074 \cdot 24$ days \div R $(23.02)=1610 \frac{1}{3}$ revolations +0.55 days.
From 1758, 74 days (Mayer), to 1859, 85 days (Lescarbaalt), is 101 years 11 days $=36900 \cdot 25$ days $\div \mathrm{R}=1603$ revolation +0.19 days. Both these observations were at the descend ing node; therefore a whole namber expressed the number of revolations.
From 1758, 71 days, to 1876, 91 days (Wolf and Weber,

April 4, 1876), is 118 years and 20 days $=43119 \cdot 50 \div R=1873$ $\mathrm{R}+3 \cdot 08$, from which deduct 2 days for the time it will take路 ing 10 days. My position for the planet was for April 3 , ration of the small speck
From 1859, 85 days (Lescarbault), to 1859, 258 days (Tice) is 173 days $=7 \frac{1}{\frac{1}{2}}$ revolations $+0 \cdot 36$ days. From which has o be deducted difference between time in Earope and Amorica, which will leave a difference of between 2 and 3 hours
Mayer's observation and the observation of October, 1802, ives 707 revolations $+2 \cdot 98$ days, deducting 2 days for pas sage from node; this leaves 0.98 day; bat one is an obser vation at the ascending node, and the other at the descen ding node, therefore there should be half a revolation. It is therefore half a revolation, say 11.50 days, short. Bat here a remarkable fact occurs, a series coming in as though there were two planets, half a circle, 180°, apart, and revolving aroand the sun in the same period, 23.02 days.
From October 10, 1802, to October 2, 1839, is 13,508 day $=591$ revolations +1.58 days.
From 1839, October 2, to March 12, 1849, is 3,448 days $=$ 145 revolations +0.9 day.
From 1839 to either of the observations of 1859, there acks half a revolution. The observations of 1802, 1839 1849, lack half a revolution when compared with 1758, 1859 876. The observation of March 20, 1862, has no corre sponding observation, differing with one series 7.56 days, and 14.08 with the other. The observations pablished in Scientific American for Jaly 23 and October 24, 1876, be long to the series of 1802, 1839, and 1849. They are midway between the latter series and those of 1758, 1859, and 878. From July 23 to October 24 is 92 days; four revo ations of 23.02 days are 92.08 days.
It will be seen that the component elements of the problem as far as known are irreconcilable, because some may not be authentic. The way out of the difficulty is to look for the planet, not the satellites, oatside of the sun when at its greatest eastern or western elongation. Its immense size will render it visible twice for a day or so on each rev olation, ander proper conditions of the atmosphere. I did ee it, and showed it to my family on the afternoon of Jane 1876, in the exceptionally blue and serene atmosphere of that day. It was aboat five or six apparent solar diameter orthwest of the sun.
It probably may make a transit of the sun on March 12 , 1877, as it will be at its inferior conjunotion on that day and ery near the node. I expect it to make a transit on Marc 4 or 15, 1878, and on the 14 or 15 of September, 1882. may be visible at the total eclipse of July 29, 1878, bat i will be very near the sun, having passed its inferior con anction a day or two before

John H. Tice. St. Loais, Mo

New Method of Cutting screws.

To the Editor of the Scientifc American:
Thinking a method for catting screws woald be of bene to some of your readers, I send you the following, which not generally known
When the screw tool has cat the required length of screw he quickest way of taking the saddle back is by hand and to do that, the part of tailstock which comes in contac with the saddle mast be set a certain distance from it; and to find that distance, it mast be known which are the righ places for patting the nat in and out of gear with the leading screw. But previous to setting the tailstock the required dis tance from the saddle, the screw tool mast be set true and oppo site the end of the work to be screw-cat-where in some cases a hole is drilled-likewise the nat in gear with the leadin screw. The following rales for getting the above distance wil be found to answer for any pitch of leading screw: First, when he namber of threads per inch required to be cat can be divided by the number per inch of the leading screw withou ny remainder, the nut will be right when in gear with any part of the leading screw. And in all other cases, maltiply he number of threads per inch that you wish to cat by some amber of inches (which will depend upon the length of the screw to be cat) that will give an even number, which will be the proper distance to move the saddle.
I have used this mode for several years on both male and ever known it to fail.
Smithville, N. J.
Edwin Judd.

Smiller: Health Lift.

Dr. Smiler, says Max Δ deler, had a large tank placed o he top of his house from which to sapply his bathroom and so forth, with water. The water had to be pamped ap aboat fifty feet from the cistern in the yard, and the doctor foand it to be a pretty good-sized job, which would cause him constant expense. So after thinking the matter over very carefally, one day an idea struck him. He bailt a room over the cistern and pat word "Sanitariam" over the door. Then he concealed the pamp machinery beneath the floor, and he rigged up a kind of complicated apparatus with handles and hinges and a crank, so that a man by standing in the middle of the machine and palling the handle up and down would operate that pump.
Then the doctor got oat circulars and pablished advertisments about "Smiler's Patent Health Lift," and he secured estimonials from a thonsand or so people who agreed that the health lift was the only hope for the physical salvation of the haman race. Pretty soon people began to see abou it, and Smiler woald rush them out to the "Sanitarium and set them to jerking the handles. And when a costome
had pumped up fifty gallons or so, Smiler would charge him quarter, and tell him that three months of that kind of hing would give him mascles like a prizefighter.
The thing became so popalar that he had to enlarge his tank and pat in a smaller pump; and he not anly got all his pumping done for nothing, but the people who did it paid him aboat \$1,500 a year for the privilege.
One day, however, Mr. Maginnis, who had been practis ing at the health lift every day for months, broke the board apon which he was standing, and planged into the cistern and just as he was sinking for the third time Smiler fished him out with a crooked nail in the end of a clothes prop.
A few days later Maginnis came round with a lot of othe patients, and cross-examined Smiler's servant girl, and earned aboat the trath, and then they went home mad. A consaltation was held, at which they resolved to prosecate Smiler for damages and for obtaining money under false pretences. It is thought by good judges that, by the time the coart get throagh with Smiler, it will be aboat the an healthiest lift for him he was ever interested in.

Sawmill Machinerv.

The building devoted to the sawmill exhibit, which is stuated at the base of George's Hill, presents, says one of ar contemporaries, a sight to the inquiring mind both in eresting and instructive. In it may be seen, in operation ll the processes and machinery of a regular sawmill, al he leading manufacturers of this important branch of ma chinery being represented. The exhibit which attract the most attention is that of the Stearns Manufacturing Company of Erie, Pa., who have some of the most beautifa pieces of mechanism at work that we have ever seen. To hem was awarded a prize medal and diploma of merit fo their machinery, on account of its manifest superiority of constraction, in the many novel features and important im provements they have made (which are patented),and general ercellence of workmanship. The Stearns Manufacturing Company have long been regarded as being at the head of his branch of basiness,and their productions may be found n sawmills all over the'country. The central object of in erest in the whole sawmill building, one which command he attention of all the mill men, is a saw which cats throag a sixteen foot log in one and a half seconds of time, every revolution of the saw catting in $10 \frac{1}{2}$ inches. This is th highest speed ever before attained, and shows conclusivel to what a high degree of perfection they have broaght thei machinery. The work exhibited by them, in all its details peaks emphatically for itself, and shows that the Stearn Manufacturing Company have no need to fear any rivals in heir business,as their workmanship cannot be excelled. This is all the more true when we consider that those articles are taken from regalar stock, and are not made specially for ex hibition. A better idea, therefore, can be had of the genera axcellence.

Prompt Payment.
"Prompt pay is the key to all success in basiness. There are times in the history of every trader when he finds it in convenient to meet his bills promptly, and in such case we find the man who knows his credit to be good becoming akewarm, forgetting that his creditors are calculating apon im perhaps to meet some pressing obligation. The result is that he disappoints them, and thas, after one or two repe titions of the same, even the man whose credit is first class can soon impair it, and sometimes to a degree that makes it hard for him to recaperate. Now let us take the man of moderate (say fair) credit. He knows under such circumstances that his credit is scrupulously watched; and if his bills begin to lapse, he is at once notified of it, andinformed hat unless past bills are paid no more goods can be pro carred. With sach a contingency facing him, he sees it is to his interest to meet his payments promptly, and is on the high road to success. Prompt pay does two importantthíng -it inspires confidencein the seller, patting the buyer apon first class basis, and it insures the prompt shipment of goods.'
Our English contemporary, whence we extract the above sound advice, forgets to point out that there is a still greater advantage in seeking no credit at all, bat in making pay ment at once. Persons who have not tried the cash system and we mean not merely in ordinary basiness transactions, but everywhere, even in the small expenditures of the hoasehold) has any idea how mach it simplifies the transac tion and benefits both the bayer and seller. Moreover it is saving to the purchaser of a very large percentage. We have found, by inquiry among many retail dealers in this city, that such houses as are in the habit of allowing credi ot their customers, from six months to one year, add on an average of at least ten per cent to the cash price. And this nust be so, because the dealer cannot afford to lose the in erest on his moneyand take the risk of a failure of paymen of a portion, which is inevitable. Another fact for debtor more especially of wine merchants, tobacco sellers, and tail ors, is worth remembering: and that is that, where one of these dealers gives credit, he calculates that a certain percentage of the debts will never be paid, and this percen tage is necessarily added to the charges made to all casto ners, both time and cash. There are maltitudes of othe benefits, which will saggest themselves to any thoughtful person, all accraing by the prompt cash system.

The American Institate Fair closed on November 25. Mr . D. Cartis delivered an oration, in which he stated tha he entries at the exhibition numbered 1,233 and the risitors over 500,000 . Awards were given in the usual wholesale manner

