In Fig. 4 are represented several

felting fibers

as seen under the microscope. a is a fiber of Saxony wool, somewhat less than 1000 of an labit in aiamet f is rabbit hair, and b beaver down, which has a diameter of about $\frac{1}{8} \frac{1}{00}$ of an inch. c, d, and e are muskrat, nutria, and hare fur. They all show the jagged edges which confer upon them. the characteristic felting quality.
M. Du Chaillu, the well known African explorer, describes a
primitive easy chair, devised by Obindji, a chieftain of a tribe living in the Gaboon country. This dusky
 Felling-Fiber.. potentate is represented,en-
joying a siesta in the offspring of his inventive genius, in Fig. 5. The chair is nothing more than a slab of wood which

$$
\text { Fig } 5 .
$$

rests on an inclined four-legged frame, and is held from sliding by blocks at its lower end.
Figs. 6 and 7 relate to

basket making

For the finer kinds of baskets, osier is the material most commonly used, but for a coarser article strips of split hirkory, oak, or black ash, are frequently employed (Fig. 6.)

Osiers are prepared by soaking in water, after which they are split, cleaned, and bleached in the sun. A number of rows are laid crosswise to begin the bottom of the basket, and are woven together by a spiral weft of wands, which pass alternately over and under the radial wands, to which others are added as the size increases. The wands are bent up to form the sides, and other rods are woven in and out

hight. The edge or brim is finished by turning down the projecting ends of the ribs, whereby the whole is firmly and compactly united. Handles are formed by forcing two or three osiers, sharpened at the ends and cut to the proper length, down the weaving of the sides and close together. They are pinned fast near the edge and afterwards bound or plaited.

Hydrophobia and Intemperance

Mr. L. N. Noyes, of Boston, Mass., sends us the follow ing, from the Brooklyn Argus:
"Hydrophobia, in the dog, I am satisfied, is the result of the animal having been inoculated by biting some person theory may appear, there is not the least question but that the facts will bear it out. First, hydrophobia and mania a potu are identical in most physical conditions-subjects dead of either disease presenting nearly the same autopsy. Secof a dog suffering from rabies, bear the same chemical
analysis. Third, the entire system of the patient suffering from alcoholic madness is so poisoned that rapid inoculation will follow any contact with the virus of the blood. Fourth, the bite of a man in an alcoholic fit has been known to result
in hydrophobia. As to the spplication of these facts: First with the canine race, hydrophobia is never spontaneous; with man, the disease is known to be. Second, there is not a case on record of a dog having died of hydrophobia that
will not admit of proof-if the facts can be ascertained-that the dog had previously bitten an intoxicated person, or had been attacked by some other animal suffering from a like inoculation.
(Aeohige Will. Johnston, Superintendent
Brooklyn Society for Prevention of Cruelty to Animals. We think the statements here made are without founda tion: In regard to the first assertion, that hydrophobia and mania a potu, are identical, by which we presume the writer means that similar symptoms are developed in both, w would refer him to the works of the best authorities, in which he will find that they differ in the most important respects. That the autopsy in both cases is similar is quite natural, since there are no well marked anatomical lesions in either; nor are there in hydrocyanic acid poisoning tetanus, etc. Secondly, as to the saliva of a man dying of drlirium tremens, etc.: we do not fully understand what the writer means. If it is that the same abnormal principles are found in the saliva of both cases, such as would produce hydrophobia if introduced into the healthy circulation, we can only reply that this could only be proved by a number of experiments, which have not, as far as we are aware, ever been made. We almost daily hear of cases where a nose, an ear, a cheek, or a finger is bitten off in a drunken broil, without hydrophobia resulting. Thirdly, there is no virus of the blood in alcoholism. According to Flint, Sr., Minuyer, Watson, Reynolds, Dunglison, and many others, the etiology of hydrophobia is not known while it never appears in the human subject without inoculation in the correct sense of the word, and not as Mr. Johnston uses it. The last deduction is too absurd to demand attention.

Contrespandeuce.

The Centennial Trial of Steam Fire Engines.

To the Editor of the Scientific American

Will you please correct an error in your otherwise admi rable account of the trial of steam fire engines at the Cen tennial?
The judges were assisted by Mr. Wellington Lee, as ex pert, not by a Mr. Wellington as you printed it. Mr. Lee is well known as a member of the firm of Lee \& Larned, who, after Latta of Cincinnati, were the pioneers in steam fire engines, and first made them an established success. He is on all accounts the most competent man living to fill the ex ceedinglydifficult position of expert assistant to the judges. Newark, N. J. Charles T. Porter.

To Measure the width of a River.

To the Editor of the Scientific American:
Let A B represent the line of survey (the course being at any point of the compass), striking the river bank at B. Mark a tree orbush on the opposite bank, in line with A B. Then lay off $25,40,50$, or any number of feet from B to D, at right angles with the line $A B$: from D to E lay off the same distance as from B to D; then from E, walk, at right angles to $B E$ and parallel to line A B, until you reach point

F, which is in line with points C and D. Then measure from E to F, which will be the same distance as from B to C, or the width of the stream.
A. S. Lehman.

Fort Cameron, Utah Ter

A Lesson from the machine tools at the CENTENNIAL.

It is somewhat remarkable that, while the exhibits in Ma chinery Hall show the advancement in special manufactures and processes, yet, in the tools and appliances for producing the machinery, but little progress seems to have been made during the last thirty years. If we examine the loom, the printing press, and the woodworking machinery, our advance is marked by complete and successful applications of new and original principles. But if we turn to the lathe and the planing, drilling and slotting machines, in fact to any of the tools used in the construction of machines, we shall find that we have reach a platform where we may " rest and be thankful," but beyond which we have appar ently but a small prospect of further progress. If we ex amine the lathe, and ask ourselves in what broad particular we have improved upon the old Smith, Beacock, and Tannett lathe of thirty or forty years ago, we shall not readily find an answer. We have the same bed, the same cone mandril, the same gear, screw-cutting, and independent feeds, the same cross feed, the same compound rest, the same tail stock, in fact, the same design and general arrangement all through; and with the exception of the introduction of the
niversal chuck, our chucking devices are identical. If we turn to the lathe cutting tools, we shall find that our prac tice has been stationary. In planing machines, we have ad hered to a like general arrangement of parts; and the de partures from old practice are not worth mention. The slight modifications consist in arrangements for a quick returnmo ion by means of an extrapulley and beltinstead of differ ential gearing, and in the application of an independent res attached to the uprights for planing vertical faces. In plan ing machine cutting tools, we have made no innovation; and the only departure from the old time practice has been in the modern plan of taking a finishing cut on cast iron with a broad, flat-nosed tool with a very coarse lateral tool feed. In shaping machines, we have made some departures in the entire design, giving to one machine capacity for a much wider range of work. The sliding head has been made movable upon the bed, and various attachments for made movable upon the bed, and various attachments for
the table have been introduced. But the machines built by Maclear and March, a generation since, had a quick return motion cone mandrils for circular work, and a vis chuck (as good as any we remember to have seen, except that hately introduced by Thomas \& (co., of this city); wherea do not know of a modern shaping machine equal in ca pacity to the Nasmyth "puff and dart" machine of thirty ears ago. That machine, which is still extensively used in England upon the edges of armor plates, had a stroke of five inches and made 160 cutting strokes per minute. Referring gain to the various attachments for the table, but very few f them are used for ceneral work. In cutting tools for raping machines, we have no modern innovations what In drilling machines, our prores has ben what to the introduction of multiple machines, adapted to special work, and in various forms of radial drilling machines, con situting a more marked improvement than in the machines above mentioned; but in the drilling machine pure and sim ple we have made no substantial progress, except it be in the introduction of the twist drill, which is decidedly a step for ward in drilling fine work. The Maclearand March drilling machines above mentioned were as substantial in their framing, and were provided with self-acting change feed as well as hand feed; for light work a treadle feed was em ployed, leaving both hands free to manipulate the work. In screwing machines, we may justly lay claim to advancement in the introduction of solid dies, and in the use now common of segmental dies fitted to adjustable chucks; so that,while the dies cut the whole thread at one cut, they thus avoid the strain on the sides of the thread, which is inherent in those dies which are adjustable and require to take more than one cut to make a full thread. Another modern improvement is in the dies, which are made to throw open when the thread to be cut is finished, so that the dies do not require to travel back over the thread, a movement which abrades the cutting edges of the die teeth, and also entails a loss of time. We have also added pumps for supplying a more co pious stream of oil to the dies; so that, taken altogether, we have made satisfactory progress, notwithstanding that the tap has maintained its original form, except it be in our hav ing adopted a standard angleand pitch.
Our greatest degree of progress has been in the milling machine, which has been given a very wide range of useful application during the last thirty years. But milling machines and milling cutters, of the same shape as those a present used, and with self-acting feeds, were employed years ago; but their field of employment was then compara tively limited. In the slotting machine, we know of no sub stantial improvement made during the last twenty-five years, and but little indeed in a much longer period. The slotte introduced by Sharp, Stewart, and Co., of Manchester, Eng land, about the year 1855, had a box frame, and as complete an arrangement of change speeds and table movements as any exhibited at the Centennial. In boring machines, we have made considerable improvement, especially in the in troduction of those of the horizontal type.
In none of these machines, however, have we succeeded in attaining higher rates of cutting speed and feed than were formerly used. It is only when we turn to special machines that the march of modern progress becomes visible. The Monitor lathe, for example, will produce infinitely more small work than was formerly attainable by any machine worked by one operative. It is, however, scarcely just to term it a lathe, since it is more properly a special machine having definite limits of useful application. The introduc tion of solid emery wheels is another modern improvement greatly facilitating our operations upon hard metals requir ing to be very true, but in no way advancing us in the prac tice of polishing, for which purpose the wooden wheel, covered with leather and coated with emery, still holds its own. So likewise for many purposes the quick running grindstone has not been displaced by the emery wheel. In polishing processes our progress has been but little, the greatest inno vation being in the employment of rag wheels.
In many of our special machines, we have merely enabled the ordinary mechanic to produce as much and as good work as the most expert workman did formerly: and we have low ered the standard of capability of our mechanics in a propor ionate degree. This, however, is not in the main to be re retted, since, having the improved machines, we do not as rule require the expert workmen. The only attendant vil lies in that,though we have greatly enhanced our ability o produce new machines, we have in a partial degree pro uced a less skillful class of workmen to repair them. It is rue that worn ou tparts may be duplicated, but that is no sufficient, for the reason that the new part is of the origina size, whereas the repaired part requires in a majority of cases to be made sufficiently larger to compensate for the wear in the part to which it is attached. Thus, if a hole is

