## \$rientific Gamerican.

## FBTABLIBHED 1846.

## MUNN \& CO., Editors and Proprietors. <br> pUBLISHED WERELIT AT <br> NO. 87 PARK ROW, NEW YORK.

O. D. MONN.
A. e. beaci.

TERMS FOR THE SCIENTIFIC AMERICAN One copy, one year. postage Included.
One copy, six months, postage include

Clubrates.
70, postage included
Ten copies, one year, each 8270 , postage Included
Over ten coppes, same rate each, postage included
The postage is payable in advance by th
scriber then receives the paper free of charge.
Notr.-Persons subscribing will please to glve their full names, and Post office and State address, plainly written. In case of changing residence state former address, as well as glve the new one. No changes can be made unless the former address 18 given.

Sclentific American Supplement.
from the Scientipic Americas,
A distinct paper from the Scientipic Amrrican, but of the same size
One year by mall... TERM:
SOIENTIFio Ambrican and Stpriemment, to one address............................................. 800 The safest way to remit is by draft, postal order, or registered letter. Address MUNN \& Co.. 57 Park Row, N.
Subscriptions recetved and single coples of either paper sold by al
VOLUME XXXV., No. 18. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, OCTOBER 28, 1878.

| $\begin{aligned} & \text { Qo } \\ & \text { les are } \end{aligned}$ | marked with an asterisk.) |
| :---: | :---: |
| proof paln | ${ }_{281}^{2781}$ |
|  |  |
| erican Institu |  |
| swers to correson | Heght ins |
| rifl |  |
|  | or |
| Bailo ons. utithing |  |
|  |  |
| ers expor manil en |  |
| ers , wripht e |  |
|  |  |
|  |  |
| Cithent alconol-p | Patent laws, new. |
| ten nial, 1 Here en $)^{\text {an }}$ | 崖 |
|  |  |
| Charr prim mide ease |  |
| sourinm (8). |  |
| ust spots | mp. |
| Coatere cleaning | Rubus |
|  |  |
| , ing roomd ary | buts, side bars etc............. 281 |
| my of life, tr |  |
| erric wave | piral, the logarithmic (5).......... ${ }_{\text {ax }}^{\text {za }}$ |
| e, the wand |  |
|  | eleese |
| ting fimers |  |
| ensine trial, the |  |
| nooks | verdigris in apple wutter (25)...... 283 |
|  |  |
| ydrophobia and Intemp | azater |
| ouat |  |
| n reilicsin Howaypor |  |
|  |  |
|  |  |

THE BCIENTIFIC AMERICAN SUPPLEMENT.
For the Weok ending October 28, 1876. With 49 Illustrations.

V. LESBONS IN MECHANICAL DRAWING, by Professor MAOCORD,



## 

VIII. MISCELLANEOUS.-Biographical sketch of James B. Eads, C. E

## The scientific American suppiement




MUNN \& CO., Publishrra,


## gome extinct american animals

When the theory of evolution began to displace the old heory of specific creation, its opponents were wont to ask triumphantly for missing links. If species are the result of gradual development by progressive variation, they said, we ught to find an abundance of intermediate forms: wher re they?
The advocates of evolution could only reply: They will appear when sought for. Darwin even ventured the pro phecy that in course of time links would be found connec ting the extremely specialized one-toed horse with the nor mal four and five toed mammals. The readers of the Scien ific American know how completely the prophecy has been fulfilled in the numerous and increasingly specialized horse-like creatures which roamed over our Western plain uring the tertiary period of geology. At the beginning of he period the four-toed orohippus was most like the hors hat was to be, though it exhibited many unhorselike char
acteristics. From that time down to the present the chain cteristics. From that time down to the present the chain
of development is complete, the precursors of the horse of development is complete, the precursors of the horse
steadily growing more and more horselike in head, and foot, and general structure of body and limb. In the middle ter tiary, the mesohippus had but three toes, a slender splint of bone being the only vestige of the lost toe; and in the mio hippus the splint had vanished. Later the three nearly equal toes of the michippus had become three very unequa toes in the hipparion, the large middle toe being the main i not the entire support of the animal. At the close of the period, the prevailing form was a true horse, in which th windled and useless side toes of the hipparion had ceased o exist as toes, appearing only as slender splints under the sin. In the modern horse these splints are sometimes seen attesting its relationship with the horses of prehistori imes.
Similar, if not as positive, evidence of evolution is norn by the remains of tapirs, rhinoceroses, and otiver hoofed an imals. In eocene times the most prominent of the unequaltoed ungulates were the hyrachyus and the palæosyops, the former allied to the lophiodons and tapirs, the latter to the palæotheriums of the European tertiaries. Both these fam ilies embraced animals varying in size from a small rhino ceros to a peccary. In the miocene period, these families attained a great development in form, variety, and size: the group becamemore distinctly separated from each other, and some of them possessed remarkably specialized character There were, however, no true tapirs, which afterwards be came so numerous. The ascendant forms of this period were rhinocerotic, represented by the diceratherum, with its pair of horns side by side on the nose, and the very interesting genus hyracodon, which furnishes a connecting link be tween the palæotheroid animals of the eocene and the true
rhinoceros of the pliocene. The miocene period also pro rhinoceros of the pliocene. The miocene period also pro-
duced several species of a more perfect rhinoceros, still duced several species of a more perfect rhinoceros, still
hornless. But more remarkable than any of these, indeed hornless. But more remarkable than any of these, indeed brought to light in the strata of the West, were a number of species of grotesque appearance and gigantic size, resem bling the existing rhinoceros in general appearance, but lar ger, some of them approaching nearer to the elephant in size and length of limb. They have been named titanother ums, brontotheriums, and symborodons, and app hav died out during the miocene epoch. While they lived they of have played the part of the then extinct uintatherium filled by the mastodons and elephants of later ages
Very interesting evidence of evolution is also furnished by the equal-toed hoofed animals, represented now by pigs, hippopotami, camels, chevrotains, deer, antelopes, sheep, and oxen. Their remains appear but sparingly during the eocene period, but become abundant in the miocene. During this period the first mentioned family were represented chiefiy by huge swine-like creatures, some of which ap proached the hippopotamus in size. There was also an al lied four-toed form, more like true pigs; but all the specie were of the peccary type. The sole existing survivor of th form on this continent is the South American peccary, ap parently an unmodified remnant of the old miocene fauna. A much more remarkable family was the oreodantide which began in the later eocene, extended through the mio cene, when they swarmed enormously, dying out in th early pliocene. In nearly all points of structure, they wer intermediate between ruminants and swine, furnishing complete line of transition between those now widely sepa rated groups. Their remainsare found in great abundance both in species and individuals; and a gradual modification, corresponding with the chronological position, can be trace from the earlier, more generalized forms to the latest and most specialized: thus affording one of the most complet chains of evidence yet found in favor of a progressive alter ation of form, not only of specific but of generic importance through advancing ages.
Exceedingly suggestive, too, is the history of the camel idæ as exhibited in our tertiary strata. Here was apparent ly the original home of this singular group, now represen ted only by the llamas of South America, and the two cam els of the old world. During the middle and later tertiary ages, transitional forms from the more generalized rum nants-animals increasingly camel-like and llama-like in character-were abundant in North America, whence they probably migrated during the glacial epoch to the presen homes of the existing members of the family, along with this country about that time.
Not less interesting is the story told by the remains of rium, uintatherium, dinocera, loxolophodon, and the eonothe
have been given: huge creatures intermediate between the rders represented by the rhinoceros and the elephant. Professor Flower compares them to broken piers of the bridge by which the gulf, that now so completely divides he orders of the perissodactyle ungulates and the probos cidea, may have been passed over. They were all elephant ike in bulk and general appearance, yet presented a comb nation of characters which made them unlike anything else where known. Their feet were five-toed, theirlegs straigh and massive; their necks longer than the elephant's, and heir small-brained, narrow heads much more like the rhi oceros's than the elephant's. But their distinguished pe culiarity was their frontalarmament of three pairs of horns, hich, with their enormous size and strength, must bave made them formidable indeed. Their end is yet a mystery It has been suggested that at the close of the eocene period hey may have migrated to Asia to lay the foundation of that family which first appears in the old world under the more familiar forms of the typical proboscideans-the elephants, astodons,and mammoths. None of these appearin Americ earlier than the pleiocene period, a long time after they had become abundant in the old world.
Among the carnivora which preyed upon the abundan herbivorous fauna of the great plains, forests, and lake re fions of the tertiary ages, not a few furnish extremely cogent vidence of specific evolution. There were among them erce creatures, larger than wolves (synaplotherum and mes nyx) which presented such a combination of characters that it is impossible to rank them with either of the existing families of the order to which they belong. In some respect they were like dogs, in others they were bear-like; in still others they were more generalized than any existing mem bers of the order. Then there were several species of hya odon, some larger than any of the European forms, and others no larger than a fox: "the last survivors of a group otably differing from any now known." In the characte of their skulls they stand intermediate between wolves and opossums. In the earlier periods, still more generalized types abounded, some of them combining the generic char acteristics of half a dozen of our specialized modern carni ora.
Perhaps the most remarkable of these comprehensive types was the tillodontia, which seem to have combined the characteristics of several distinct groups, the carnivors the hoofed animals, and the rodents. Some of them were as large as the tapir. Their molar teeth were of the ungulate ype, their canines small, their incisors rodent-like. Their eads were bear-like, their general structure like that of the ngulates, their feet plantigrade. Two distinct form bounded: one in which the incisors grew from persistent pulps, like the beaver's, the other having all the teeth root less.
The dominent ty of tertiary flesh eaters, however, were arious modifications of felidæ, fierce cats, some of them surpassing our modern lions and tigers in size and strength Chief among them in the miocene age were the saber-toothed igers, which seem to have overrun the whole world about hat time, and to have lingered in some parts until the hu man period. It is one of the puzzles of palæontology to account for the extinction of this highly specialized type apparently the fittest of all the cat family to win in the truggle for existence. Happily for man they did not sur ive in force, to contest his progress toward the mastery of the earth.

## PROSPECT OF NEW GERMAN PATENT LAWS.

A correspondent in Berlin sends us the intelligence that a modification of the present oppressive and illibe ral system of Cerman patent law is about to be made that Prince Bismarck has been investigating the code as now existing, has recognized its defects, and will shortly submit to the erman Parliament the draft of a new law he substance of which we give below. As matters now tand, the erman patent is practically but little safeguard to the foreign inventor against erman piracy, a fact we have stated in a multiplicity of connections. The govern ment itself takes the lead in "adopting" foreign device submitted to its examination under applications for pa tents, and it protects its people when they follow its exam ple. We need go no further than the Centennial Expos ion to find a striking instance of this in the Krupp guns, wherein is used the Broadwell gas check ring, an American invention, and a necessary appendage to al breech-loading cannon. This was submitted to the Merman government for trial, and was unblushingly appropriated and the inventor virtually told to go about his busines The invention is styled the Broadwell ring even in erman official reports. Krupp likewise " adopted" the invention and has used it on thousands of guns without paying the in ventor a cent. The same has been the case notably with ther American military inventions.
Of course it needs no argument to show that such a course is not merely detrimental to the interest of foreigu nventors, but also highly prejudicial to the best interests of ermany herself; and of this latter fact the astute Imperial Chancellor has doubtless become fully apprised. The main points of the new law which he suggests are that every in vention, excepting, of course, such as are opposed to law or good morals, may be patented. Inventors are not bound to give licences except where such are demanded for the public benefit. The specification must be definite, must be published at a certain time after application, and must embody distinct claims. The first applicant is considered the inven. or, disputes as to originality are to be settled by the courts, and, in obtaining patents, foreigners are placed on
that the former must appoint an attorney or representative in Germany. Patents may be declared void if insufficiently worked in the German Empire. It is considered a proof of such insufficiency if the articles patented are imported into Germany after a qualified person has offered to work the patent within the Empire. All such patents are to be forfeited if the proprietors allow importation without interfering, provided the laws of the respective patentee's native country contain similar ordinances (France, etc.). In all other respects, there is no special proof of working necessary. Patents are to last fifteen years, and in certain cases extensions may be had. Progressive taxes are to be levied. Prior publication prevents the grant of a patent, the pated. A special court is to be provided for patent suits. Patent objects are to be marked, as under the American law. ent objects are to be marked, as under the American law.
Patents may be declared void if the invention is insufficientPatents may be declared void if the invention is insufficient-
ly specified, if the foreign patentee maintains no German ly specified, if the foreign patentee maintains no German
representative, if taxes are not paid, or if the patent can be representative, if taxes are not paid, or if the patent can be
proved to have been void from the beginning. There are sonee other, minor provisions, but the above sufficiently indicate the scope and character of the law, which, so far as Americans are concerned, is but little mprovement on the present system. Of course the complete text is necessary before a just opinion of the provisions as a whole can reached, and we should prefer some experience in its working before hazarding judgment as to its fairness and efficacy as regards foreign inventors. The clauses which require inventors to "give licenses when demanded for the public benefit," those relat ing to working in the Empire, and the offer by "a qualified person" to do so in the event of the non-compliance of the inventor, seem to open the way to wide constructions adverse to foreigners, and virtually to a continuance of the present injustice. The letter of the law may, it is true, change; but when such constructions are possible, and not only this, but, as past experience shows, have been the rule in (ier-
many, it is not unreasonable to believe that those who inmany, it is not unreasonable to believe that those who incedents.

## PROGRESS OF THE MISSISSIPPI RIVER JETTIES

 We have held so firm an opinion that a triumphant suc cess awaited the carrying out of Captain Eads' plans, for opening the Mississippi river to the commerce of the world, that to read the engineer's reports of the splendid progressof the work is but to learn of the fulfilment of confident ex of the work is but to learn of the fulfilment of confident ex-
pectations. The latter report, dated August 18, is now bepectations. The latter report, dated August 18, is now beto the whole country. The channel between the jetties, we are told, is constantly increasing, and the jetties themselve are built up above mean low tide, and for a great length above average high tide. The last survey, made July 27, shows a channel extending down 11,800 feet from the upper end of the jetties, and within only 250 feet of the deep waters of the Gulf, having an average width of about 350 feet, in which all soundings are 20 feet or more in depth. The line of deepest soundings through the length of 2 miles averaged over 26 feet, and many single soundings showed over 40 feet. Some idea of the progress of the erosion going on between the jetties may be inferred from the fact that the 20 feet channel, existing on June 17, had
increased in average width nearly 100 feet throughout its increased in average width nearly 100 feet throughout its last survey
Captain Eads reviews, in some detail, various objections which the opponents of his project have urged, and devotes himself more especially to the assertion that the earth washed out of the channel would merely form a new bar outside the jetties, and thus render access as difficult as ever. To settle this matter, he had soundings made in radial lines from the end of the jetties; and comparing the results thus obtained with those gained from a like series of sound ings made in 1875, he finds that, instead of a bar being formed, there has been actually excavated, out of an area 1,100 feet square immediately in front of the jetties (which area must first be covered with deposit before a re-formation of a bar can occur) a mass of earth equal to 68,400 wagon loads. And this aggregate deepening has occurred while
nearly $3,000,000$ cubic yards of earth have been taken up, nearly $3,000,000$ cubic yards of earth have been taken up,
from the bar between the jetties, by the river current, in from the bar between the jetties, by the river current, in
excess of the ordinary burden of sediment, and transported over this area out into the Gulf of Mexico. If the mass had been deposited over the area mentioned, it would have cov ered the space to the depth of about 18 feet. In fine, $i t$ is conclusively proved that a general deepening bas occurred in 490,000 square yards of the area in front of the jetties, comprising the outer slope of the bar and the track of the river discharge, and thus the report of bar advance and shoaling in front of the jetties is shown to be without any real foundation. Captian Eads admits that this favorable phenomenon of deepening immediately in front of the phenomenon of deepening immediately in front of the
jetties was unexpected to all the advocates of his sysjetties was unexpected to all the advocates of his sys-
tem, and he ascribes it to the sea current which is induced tem, and he ascribes it to the sea current which is induced
by the prevailing winds, which blow almost constantly from petween the northeast and southeast. The current resulting is driven westwardly beneath the river discharge, and excavates more room for itself as the volume from the jetties becomes gradually stronger. Captain Eads reports in conclusion
"In seventeen months after the passage of the act, and
within fourteen months from the commencement of the work, the jetties have solved the problem presented at the mouth of the river. In their unfinished condition, they have withstood with but trifing injury two very severe storms, one surpassing in violence any known in the locality for
ontrol the river discharge; they have not been overturned by mud lumps, nor swallowed up in quicksands, nor under-
mined by the river current: and although largely over 3,000 , 000 cubic yards of earth have been swept out from between them into the Gulf, and the channel across the bar has been deepened from eight or nine totwenty-one feet, no evidences
of a re-formation of the bar have yet to justify the belief that of a re-formation of the bar have yet to jus,
any extension of them will be necessary."

## steam engine slide valves.

Some of our correspondents seem to have a difficulty in deciding as to the comparative merits of engines with single slide valves, and engines with separate cut-off valves Take the following letter as a specimen:
"Can you explain clearly and definitely the difference in
ction between an engine with a single slide valve and one action between an engine with a single slide valve and one
having two slide valves, one being a cut-off valve, there be having two slide valves, one being a cut-off valve, there be
ing a throttle in the steam pipe? And what are the advan ing a throttle in the steam pipe $\%$ And what are the advan-
tages of the more modern cut-off engines. in which the govtages of the more modern cut-off engines, in which the gov
ernor acts upon the cut-off valve directly I I cannot find the information in any book, and none of the men in our shop seem to have precise information upon it."
If, with a single slide valve, sufficient steam lap is given to the valve to enable it to cut off the steam earlier than when the piston has traveled about three quarters of its stroke, the exhaust becames cramped at the cylinder exhaust port, as ex
plained in volume XXXII, page 101. Hence, to economize fuel by using the steam expansively during a greater portion of the stroke, the cut-off valveswere added ; and at the same time, to avoid the loss of steam due to long steam passages the latter were placed at the ends instead of in the middle of the steam chest. This necessitated the employment of two steam valves and two cut-off valves, it being considered
that the power required to operate the valves was more than compensated for by the steam saved by reason of the shor orts.
The placing of the throttle valve in the steam pipe had the following defects: In the first place, the action of a governor takes place after the error which it is intended to remedy has actually occurred: or, in other words, the speed of the engine must be greater than it is intended to be be fore the governor balls will rise and correct the evil. So that
there is an element of time between the acceleration of the there is an element of time between the acceleration of the
speed of the engine and the diminution of the steam supply by the action of the governor and throttle valve. Now in order that the initial pressure of the steam supplied to the cylinder shall be as near that of the boiler as possible, a supply of steam is provided close to the cylinder, that is to her proper speed, chest; and when the engine is running a that in the boiler; and if the engine speed increases and the overnor closes to a corresponding degree the throttle valve which has passed the throttle, and is already in the steam which las passed the throthe, and is already in the steam of the governor
Secondly, the throttle valve, by reducing, at the necessary times, the pressure of the steam in the steam chest, corres-
pondingly reduces its temperature, inducing iu the steam pondingly reduces its temperature, inducing iu the steam
chest a certain amount of condensation of the re-entering ull pressure steam,admitted when the throttle valve reopens wide. When, however, the governor is attached to the cut. off valve direct, the pressure (and temperature) of the steam in the steam chest is not affected by the governor, and conadvanta therefore, to be nearly that ore readily perceived if we suppose that the throttle valve is the steam pipe, and that, the engine load having suddenly lightened, the throttle partly closes, thus reducing the pressure of the steam in the steam chest and cylinder. If, then, the engine load
suddenly augmentr, and the throttle opens wide, the inflowundenly augments, and the throttle opens wide, the inflow
ing steam is required to restore the pressure in the chest be ing steam is required to restore the pressure in the chest be
fore it can restore it in the cylinder. In other words, the space requiring its steam pressure to be increased is the contents of the steam chest as well as of that part of the cylinder in open communication with the steam chest.
The action of a governor attached directly to the cut-off valve is that, so soon as the engine load lightens, the supply of steam to the engine cylinder is lessened by cutting it off isting, at all times, between the engine duty and the con sumption of steam, the engine speed being reduced by the extra degree of expansion employed, instead of by wire drawing the steam. In addition to these advantages, most of the modern cut-off devices are given 2, motion which opens and closes the steam ports very suddenly, inducing a greater initial pressure of steam in the cylinder and obtain ing a more sharply defined point of cut-off.

## MORE CENTENNIAL AWARDS.

Another lengthy list of Centennial awards has been published, and the New York Times has still better ground for seek for suggestion that people will before long begin to idea that the true mark of distinction lies in failing to obtain any jndicial notice whatever. Meanwhile it is amusing to notice the efforts which many of the successful exhibit ors, and most especially the sewing machine and piano men, are making to convince the public that each and every one of them obtained the first and best and highest premium. Four piano firms are lavishly advertising the fact, and rein-
forcing their assertions with extracts from the judges' reforcing their assertions with extracts from the judges' re
ports, which quotations, when considered together, show that the judges avoided an obvious dilemma by characterizing all the pianos as excellent, as doubtless they were, and leaving the rival makers to wrangle over their grammars and dictionaries in determining the exact comparative signification of the high sounding adjectives employed. Of
course (and every one who has taken the trouble to compre end intelligently the system of awards knows it) there are no "first premiums," and it is only uselessly to infer ignor nce on the part of the public to blazon forth any claim to such. The regulations of the Centennial Commission on the subject are as follows: "Fourth: Reports and award shall be based upon inherent and comparative merit. The elements of merit shall be held to include considerations relating to originality, invention, discovery, utility, quality, skill, workmanship, fitness for the purpose intended, adaptation to public wants, economy, and cost. Fifth : Each report will be delivered to the Centennial Commission as soon as completed for final award and publication. Sisth : Awards will finally be decreed by the United States Centennial Commission, and will consist of a diploma with a uniform bronze medal and a special report of the judges on the subect of the award."
The cardinal object of the system is to avoid gradation The judges simply write reports on exhibits which they deem commendable, and the Centennial Commission there upon decides which out of the exhibits so reported upon are entitled to the medal and diploma. From the length of the lists, it is safe to believe that few if any of the objects com
mended by the judges were denied the distinction : and in mended by the judges were denied the distinction : and in quiry among several exhibitors in this vicinity reveals the further fact that, in most cases, those who did not receive judicial notice and a report owe it to their own neglect and misapprehension in not entering for competition, or in failing to send in the required description to the judges, or in some other
Exposition.
We do not think that any one will regard the medals and diplomas as of any especial importance. Some system of the kind had to be devised, else exhibitors would be dissat isfied at being denied their usual stimulus. The defects of he old anonymous jury system, with its multifarious gold nd silver medals, are well known, and the present plan wa adopted as a better substitute. It gives everybody a premi m , and that is excellent, and likely to cause universa ratification. The real distinction, however, lies in the re ports; and whenan exhibitor receives a document signed by such experts as Dr. John Anderson, or Professor Reuleaux or Dr. Nordenskjold, or Captain Eads, all of whom are judges besides many other eminent gentlemen, pointing out the merits of his device, showing wherein it excels, and thus lending the weight of their high authority in his support then he has something worth any number of meaningless medais; and if he fails to publish that report, and to adver ise the fact that he has received it, and the object he re eived it for, over the whole land, he simply neglects his estinterests and throws away the greatest benefit which the ('entennial Exposition can secure to him. And this w strongly advise our readers to do: Do not claim "first pre miums," for that is nonsense ; but procure a copy of the re port (and every exhibitoris legally entitled to that), and pub ish it along with such a description of the invention that the public may see what has been accomplished, and what the accomplishment has earned.
We give below some further names of manufacturersand inventors well known to our readers, who have received fa orable reports and awards: H. W. Johns, for asbestos and its adaptations to roofing, paint making, engine packing oiler covering, cement, etc. ; Dixon Crucible Company for raphitic crucibles; Morris, Tasker \& Co., gas works ma hinery ; Charles Pratt \& Co., petroleum products; Genera M. C. Meigs, for hydrodioptric light ; Odorless Excavating Uompany, for cesspool cleaning machine; W. D. Andrews \& Brother, for centrifugal pumps ; Lathrop Anti-Friction Com pany, for lubricant; Jerome Wheelock for automatic cut off engine ; George B. Brayton, for hydrocarbon engine; and Professor R. H. Thurston, for metal-testing machine

## The fish culturists who have recently been in session a the Centennial Exposition treated themselves, during their

 stay in Philadelphia, to a fish dinner, which is certainly ex traordinary and unique in its way. The bill of fare em braced fifty-eight different kinds of fish, and in its entirety is much too long for publication here. Some of the delica cies, however,are remarkable. Under the head of hors d'euvres froids, (the meルu, by the way, is organized with the utmost elaboration) we find Norwegian pluck fish, Portuguese con ger eel, and Spanish conger eel with tomatoes, Turkish botar goes or mullet roes, Japanese shake or dried salmon, crayfish from the Cape of Good Hope, French tunny fish, Chin ese white and black shark fins, Alaskan oolachans, Portu guese sword fish and squid, Russian caviar, Chinese dried fish maws, and, most astonishing of all, "desiccated octopus eggs." Noted scientists are honored by having their names applied to the various sauces. Thus we have filet of English soles ei la Buckland, sheepsheads, Agassiz sauce, aspic of eels à la Huxley, and bisque of lobster, Seth Green style. It was a memorable feast, and taxed the culinary skill of the cooks at the Centennial to the utmost. One particular dish seems to have puzzled even the most ingenious chefs, and that was kanten (Japanese seaweed) $\dot{i}$ la Sekizawa
Akekio. The aid of the Japanese cook in the employ of Akekio. The aid of the Japanese cook in the employ of
the Japanese Commission was at last invoked, and he proved equal to its toothsome preparation.

AN agricultural society in Massachusetts, desiring to en courage tree planting and the re-foresting of poor lands in that State, have offered prizes for the best plantations of larch, pine, ash, and other trees suited to different localities and soils. The prizes range in amount from $\$ 400$ to $\$ 1000$ and special instructions are published to guide competitcrs.

