M. Lommel fixed the brass rod in a certain position, and moved the ebonite plate up and down under it, taking figures at each position. He also used an ebonite plate with an aperture, allowing the brass rod to pass through it. He shows how the various figures are related to the origina two. The cause of the Lichtenberg figures is to be found
(he thinks) in a peculiar state of motion of the air about (he thinks) in a peculiar state of motion of the air about
the conducting body, and this is simply imaged on the ebonite plate.

TURBINE WATER WHEELS.

hx s. w. robinson

A look at the numerous turbines on exhibition in Machinery Hall, and their elaborate catalogues, giving lists of the thousands which have been introduced in this country, give evidence of a thriving and extensive business; and one can hardly realize that thirty years ago the turbine was scarcely recognized as a motor.
The first wheel of this kind was made in France by Frenchman named Burdin, in 1827 or 1828, but the real me rits of the wheel were not generally accepted till some fiv years after. Soon after this it began to receive the at tention of American engineers; and the first of these wheels
of importance was constructed by Uriah A. Boyden, in 1844, of importance was constructed by Uriah A. Boyden, in 1844 and introduced into the Appleton Company's cotton mills a Lowell, Mass. Tests of these wheels gave remarkable re sults, the maximum being 92 , and the mean maximum per cent of useful effect from the power of the water.
This extraordinary figure is supposed to be due to the en gineer's extreme precaution in polishing the surfaces of the apparatus, using Russian iron guides and floats, and in giving such form to the flume as to impart to the water, as it ap proached the guides, such a spiral-like rotation as to cause it to enter the guides without resistance. The trials which gave the above percentages decided the great superiority of
the turbine the turbine over the old breast wheel, and engineers at once saw that, for perfecting water motors, their attention must be turned into a new channel.
The breast wheel was at once summarily dismissed, and the turbine adopted for reasons unmistakably in its favor, some of which are the following: 1. Increase of percentage from five to fifteen. 2. Greater compactness. 3. Perfec freedom from back-water annoyance. 4. Perfect adaptation of given wheel to all heads. 5. More convenient speed o running. 6. Much less subject to fluctuations of speed. 7 Convenience of installment, and for shipment ready made Advantages of breast wheel, none
Some of these point are self-evident, but others, such as Nos. 1, 3, 4, and 6, may not be. To help this, and also for the reason that the correct theory of the turbine wheel is but poorly comprehended, as evinced by the forms given the parts in existing ones, the following descriptive exposition of the main theory is given with the hope that practica builders may thereby receive a benefit.
First of all, water wheels must receive power from the water by reducing its velocity, and water engines by action of its pressure. These points are believed to be sufficiently evideut from observation. It is therefore obvious that, for a maximum of effect, the water should have the greates possible velocity due to head in approaching the wheel; and in leaving, the motion should be entirely destroyed. To illustrate, suppose a flat disk be placed square against an iso lated jet of water. If stationary, the water will be thrown in all directions without much change in velocity, and no power is developed because standing still. If it moves witb the water the stream is not disturbed, and also no power developed. At half the water velocity, the vane receives its greatest power, but the water is projected laterally, and for this reason the motion of water is not destroyed, and the maximum of effect is known by hydraulic engineers to be only half the power stored in the moving jet. But this is what may be styled a fair example of percussion, and hence builders of wheels who operate on this principle must ex pect low returns.
Next, suppose the vane be in the form of a hollow half cylinder, and placed so that the jet strikes it tangentially at one side. While stationary, the water is sent around the smooth surface, and escapes, with velocity unchanged, in a direction differing by 180° : and of course we have no power. iving the vane the velocity of the jet, we get no power again, but with half the velocity of the stream it receives
the water with a relative velocity, one half its absolute, and the water with a relative velocity, one half its absolute, and
passes it to issue at 180° unchanged, at which the absolute velocity of the water is zero. Now multiplying the motion of vane by the pressure against $i t$, the result is found to be equal to the whole power of the water. In this example we see that the water is delivered upon the float without shock or percussion, and leaves it without velocity, which princi ple has long been known in theory as the ne eessary condition for high percentages. As this has regard to the power of the jet only, the latter should, of course, be made the of the jet only, the latter should, of course, be made the
maximum, by giving the water the highest possible velocity maximum, by giving the water the highest possible velocity
of projection. Of the forms of orifice of projection, the one of projection. Of the forms of orifice of projection, the one
known, from experiment, to give the greatest velocity is that known, from experiment, to give the greatest velocity
formed in a thin wall, whose coefficient, or realizable per centage of the theoretic velocity, is about 97 . Rapidly converging adjutages give very nearly this, say upwards of 92 , while prismatic adjutages give only 82 per cent. Hence a turbine, whose chutes have parallel sides, can only return a percentage of 82 , provided the wheel otherwise be absolutely perfect. It is therefore evident that the form of chute is of no whit lessimportance than the wheel.
Again, in turbines there should be a certain adaptation of chutes and floats to each other, and certain forms of wheel passages and exits. The forms most consistent with theory
are best explained by aid of the accompanying diagram, which may be regarded as a side view of a Jonval turbine Let A B represent a float of the wheel, and A C a guide. Le

ter, and B F the same for the issuing water. Take A E or B G for the velocity of wheel, which must be equal, from the nature of the case. The point, D , should be found by as the first elements of the floats. Then we have $\mathrm{D} E=A$ $\mathrm{E}=\mathrm{B} \mathrm{G}$.
Now if a particle of water moves from D to A, while point on the wheel moves from E to A , the direction and elocity of the water, relatively to the wheel, will be D E nd hence will enter tangentially upon the float with en tire freedom from shock. Compared with the cylindrical
vane above, the water will move along the curved float, A B, vane above, the water will move along the curved float, A B,
without change of velocity, and issue with a velocity, B F, equal to $D E$. But as $D E=B G$, then $B G=B F$, and the ab solute velocity of the water will only be G F. If the wate could be made to issue tangentially, (F would be zero, as required for a percentage of 100 . Though in practice G F must have a magnitude, it should be reduced to the min mum. The water has also been regarded as having uniform sections through the inter-float passages should be the same at all points. Hence, that the exits be thin, requires them to be long from crown to crown. And again, in order to de iver the water on wheel in direction, D A, the last element f the guides should have the direction, D A; otherwise the orm should be favorable for high velocity of projection.
Now this diagram may be greatly varied, and still thes
principles hold equally well. It is only necessary that $D \mathrm{E}$
$=\mathrm{AE}=\mathrm{BG}=\mathrm{BF} ;$ last element of guide have direction $\mathrm{D} A$ $=A E=B G=B F$; last element of guide have direction D A ng to exit. The ve locity of wheel will be to that of the water as A E is to A D When the first elements of float, for instance, are perpen dicular to A E, the guide direction, A D, should be 45°. For float direction, A D, 60° to the right, guide direction will be 60° to the left, and A D Ewill be an equilateral triancle Indeed A D E is always an isoceles triangle.
In designing a wheel it is very important that there be no terference to free passage of water in the curbing or pen tock, or in the vent from wheel; and hence these should be large and unobstructed.-Polytechnic Revievo.

the black knot.

There are many things in Nature seemingly so insignificant hat we consider them unworthy of our notice; yet they bave the power of doing us great benefit or harm according o their habit. The mold, upon bread, cheese, and on mosi other neglected vegetable matter, is well known to be plant growth of a low order. It is a fungus, and of the same nature as our common mushrooms. The potato dis ease, which is causing so much anxiety in England and on the continent of Europe, is also the result of a fungous growth. These plants are now receiving considerable study from botanists on account of both their practical and thei cientific interest.
In this country, and peculiar to it, the black knot, as it is called, on plum and cherry trees has recently been prov en to be another fungus. Dr. W. S. Farlow, of Harvard University, has presented, in the Bulletin of the Bussey In stitution, a most important paper as the result of his re searches on this subject. The black, warty excrescences on plum trees and on all kinds of wild and cultivated cherries have been noticed by every one from early time, and have long been the bane of fruit growers. For the most part these have been attributed to the work of insects; and this has not been without considerable shadow of reason. Insects are not unfrequently found there, and in old knots insects or their remains are generally found. The curculio often pierces the knot in its young state, and deposits within it its eggs, which soon hatch out. The young live in the knot and may be found there in the various stages of their devel opment. Insects also of different species have been found ithin these knots.
But it is now conclusively demonstrated that the unsight knots are not of insect origin. Though, till very recent ly, the subject has been almost entirely neglected by botan ists, it now seems certain that they have determined its true character. The knots are not like galls, made by a known insect; and when young, they are most frequently entirely devoid of insects. Again, the fact that the insects are not all of one species, and the very same are also found on trees which are never afflicted with knot, would be quite conclusive against this assumption. On the other hand, the kno has never been found without the presence of the specific
fungus (sphceria morbosa), which is now accepted as its oriin ; and this fungus is not known to exist except in connection with the knot. The mycelial threads, however, of the fungus are found in the slightly swollen stem long before any real semblance to a knot has appeared; but the growth of these may be traced till the knot has attained its ull size, and the fungus has shown all its phases of life.
Dr. Farlow has considered the life history of the fungus, whether the disease is the same on plum and cherry trees, and the means of preventing its ravages.
The knots vary in size from a few lines to several inches in length, and average about two inches in circumference. They seldom entirely surround the branch, and often cause it to bend or twist into unsightly shapes. The vegetative portion first appears in the form of very minute threads (mycelium), twisted together and extending from the cam-bium-or inner-layer of the bark towards the outer portion of the stem. "The fungus first reaches the cambium eith er by the germination of spores on the surface of the branch or by the mycelium proceeding from a neighboring knot." Hence the Professor concludes that the growing layer of tissue is where the fungus commences its work of destruc tion. During the growing stages of the knot-which con inue to the fiowering time of its victim-it is of a greenish color and solid or pulpy throughout. When it has attained its maturity. it turns black; and in the winter it often becomes cracked, broken, worm eaten, and hollow. The outer shell contains the perithecia, which are small pits or sacs containing the sexual spores. These, always eight in number, are borne in asci or cells. These cells grow slowly du ring the winter, and the spores in them ripen from the mid dle of January to the end of February. Those ripening in February germinate in from three to five days, if sufficient y moist.
Microscopic investigation proves that the knots on plums f all sorts, and on cultivated, wild, and choke cherries, ar identical: though, to the naked eye, they differ slightly in eneral appearance, owing probably to the more favorable ircumstances for their growth in some species of the genu. runus than in others.
The remedy against this contagious disease is a very ob vious one : simply to cut off and burn the knots and swollen branches when and wherever found. This should be done in autumn as soon as they become plainly seen by the falling of the leaves. It is not sufficient to cut them off, for some of espores which do not ripen till late in the winter have bee carefully observed to ripen after the branches were cut from the tree and not afterwards burnt. Professor Farlow re commends the complete destruction of choke cherry, bird herry, and wild plum trees, since they furnish means fo the rapid propagation of the knot, and are themselves of lit le value in comparison with the cultivated cherries and plums. "Concert of action is what is needed in this mat er, and not only by attending to one's cultivated trees. bu to the wild plums and cherries that frequent our fence row and woodlands as well: as in very many instances the latte prove to be pest houses where the contagion is propagated and sent forth to carry desolation over many a thriving tree, dear to the eye of its owner." The wild plums are the most abundant in the Western States, and the wild and choke cherries in the Eastern. These, in their habitats therefore, require special attention.
This is a matter of vast importance to fruit growers; and to nstitute vigorous measures, against this destructive fungus, will be a great source of profit to fruit producers and me hants, as well as an equally great source of comfort and enjoyment to the consumer.
S. H. T.

The American Reports on the Vienna Exposition, We have received the four volumes of reports of the Uni ted States Commissioners to the Vienna Exhibition of 1873 which have just been published, under authority of Congress the Government Printing Office, at Washington, D. C The work possesses a double interest: first, in that it is tangible result of the expenditure of $\$ 200,000$ of the people's money, and of the labors of certain paid scientific commis sioners and eight practical artizans: second, in that it is valuable record of the Vienna show, edited with much abilit and discriminating judgment.
Professor Thurston devotes volume first to an introduc tory description of previous world's fairs, following which is a complete account of the organization of the Vienna Ex position. Copious extracts from the reports of the commis sioners from other nations uponthe United States exhibit ar given; and a report on forests and foresting, by J. A. War der, M. D., and one on sheep and wool, by J. R. Dodge, close the volume. In volume second are collected all the report on scientific and educational subjects. Volume third is main y occupied by the editor's own report on machinery and manufactures, to which are added Mr. William Watson's paper on "Engineering and Architecture," that of Mr. Fair field on "Sewing Machines," and that of Mr.Charles Davis on 'Hydraulic Engineering." Volume fourth contains reports on buildings, wood and stone industries, metallurgy, and a co pious general index, which greatly adds to the value of th work as a book of reference. There is a lavish profusion of maps and engravings, and the general appearance of the book is superior to the usual official productions of the gov ernment printer. We shall, as opportunity offers, lay be fore our readers such abstracts from the work as appear in teresting. Meanwhile, and in advance of the public verdict we can warmly commend Professor Thurston's labors. He has accomplished a task of great magnitude, with a thor oughness which will secure wide and favorable recognition and has given us probably the best set of reports eve based upon a world's fair.

Sclence in America.

The following passage taken from the opening address of Professor Sir William Thomson, on assuming the chair of the section of physical science at the Glasgow meeting of the British Association, will be read with interest as showing the impression made upon an English student of Science by our progress in discovery and practical science:
"Six weeks ago, when I landed in England aftera most interesting trip to America and back, and I became painfully conscious that I must have the honor to address you here today, I wished to write an address, of which Science in America should be the subject. I came home indeed vividly impressed with much that I had seen, both in the great exhibition at Philadelphia and out of it , showing the truest scientific spirit and devotion and originality, the inventiveness, the patient, persevering thoughtfulness of work, the appreciativeness, and the generous open-mindedness and sympathy from which the great things of Science come.
"I wish I could speak to you of the veteran Henry, gene. rous rival of Faraday in electromagnetic discovery; of
Peirce, the founder of high mathematics in America; of Bache, and of the splendid heritage he has left to America and to the world, in the United States coast survey; of the great school of astronomers which followed-Newton, New comb, Watson, Young, Alvan Clarke, Rutherford, Draper, father and son; of Commander Belknap, and his great explo ration of the Pacific depths by pianoforte wire, with imper fect apparatus supplied from Glasgow, out of which he fect apparatus supplied from Glasgow, out of which he
forceda success in his own way; and of Captain Sigsbee, who forced a success in his own way; and of Captain Sigsbee, who
followed with the like fervor and resolution, and made furfollowed with the like fervor and resolution, and made fur-
ther improvements in the apparatus, by which he has done marvels of easy, quick, and sure deep sea soundings in his little surveying ship Blake; and of the admirable official spirit which makes such men and such doings possible in the United States naval service.
'I would like to tell you, too, of my reasons for confidently expecting that American hydrography will soon supply the data from tidal observations, long ago asked of our government in vain by a committee of the British Association, by torting influence of sun and moon will be measured; and of my strong hope that the compass department of the Amerimy strong hope that the compass department of the Ameri-
can navy will repay the debt to France, England, and Gercan navy will repay the debt to France, England, and Ger-
many, so appreciatively acknowledged in their reprint of many, so appreciatively acknowledged in their reprint of
the works of Poisson, Airy, Archibald Smith, Evans, and the Liverpool compass committee, by giving in return a fresh marine survey of terrestrial magnetism to supply the
navigator with data for correcting his compass without navigator with data for correcting his compass without,
gight of sun or stars. I should also tell you of ' Old Prob.'s' weather warnings, which cost the nation $\$ 250,000$ a year, money well spent, say the western farmers, and not they alone; in this the whole people of the United States are agreed, and though Democrats or Republicans playing the "economical ticket" may, for half a session, stop the appropriations for even the United States coast survey, no one would for a moment think of starving 'Old Prob.'; and now that 80 per cent of his probabilities have proved true, and General Myer has, for a month back, ceased to call his daily
forecasts probabilities, and has begun to call them indicaforecasts probabilities, and has begun to call them indica-
tions, what will the western farmers call him this time next tions, what will the western farmers call him this time next
year? The United States naval observatory is full of the year? The United States naval observatory is full of the
very highest Science, under the command of Admiral Davis. If, to get on to precession and nutation, I had resolved to omit telling you that I had there, in an instrument for measuring photographs of the transit of Venus shown me by Professor Harkness (a young Scotchman attracted into the United States naval service), seen, for the first time in an astronomical instrument, a geometrical slide, the verdict on the disaster on board the Thunderer, published while I am writing this address, forbids me to keep any such resolution, and compels me to put the question: Is there in the British another safety valve so constructed that, by any possibility, at any temperature, or under any stress, it can jam? and to at any temperature, or under any stress,
say that if there is, it must be instantly corrected or removed. Can I go on to precession and nutation without a word of what I saw in the great Exhibition of Philadelphia? In the United States government part of it, Professor Hilgard showed me the measuring rods of the United States coast survey, with their beautiful mechanical appliances for end measurement, by which the three great base lines of Maine, Long Island, and Georgia were measured with about the same accuracy as the most accurate scientific measures, two meter or yard measures. In the United States tele graphic department I saw and heard Elisha Gray's splendidly worked-out electric telephone, actually sounding four mes sages simultaneously on the Morse code, and clearly capable sages simultaneously on the Morse code, and clearly capable
of doing yet four times as many with very moderate im. of doing yet four times as many with very moderate im-
provements of detail; and I saw Edison's sutomatic telegraph delivering 1,015 words in 57 seconds-this done by the long neglected electro-chemical method of Bain, long ago con-
demned in England to the helot work of recording from a relay, and then turned adrift as needlessly delicate for that.
"In the Canadian department I heard 'To be or not to be -'there's the rub,' through an electric telegraph wire but, scorning monosyllables, the electric articulation rose to
higher flights, and gave me passages taken at random from the New York newspapers: 's. s . Cox has arrived' failed to make out the S. S. Cox), ' The city of New York, 'Senator Morton,' ' The senate has resolved to 'print a thousand extra copies," "The Americans in London have resolved to celebrate the coming Fourth of July.' All this my own ears heard spoken to me with unmistakable dis tinctness by the thin, circular disk armature of just such another little electromagnet as this which I hold in my
hand. The words were shouted with a clear and loud voice by my colleague judge, Professor Watson, at the far end of the line, holding his mouth close to a stretched membrane, such as you see before you here, carrying a little piece of
soft iron, which was thus made to perform in the neighbor soft iron, which was thus made to perform in the neighbor-
hood of an electromagnet in circuit with the line motions proportional to the sonorific motions of the air. This, the greatest by far of all the marvels of the electric telegraph, is due to a young countryman of our own, Mr. Graham Bell, of Edinburgh and Montreal and Boston, now becoming a naturalized citizen of the United States. Who can but admire the hardihood of invention which devised such very slight means to realize the mathematical conception that, if electricity is to convey all the delicacies of quality which distinguish articulate speech, the strength of its current must vary continuously, and, as nearlyas may be, in simple proportion to the velocity of a particle of air engaged in nstituting the sound?
'The Patent Museum of Washington, an institution of which the nation is justly proud, and the beneficent working of the United States patent laws deserve notice in the section of the British Association concerned with branches of Science to which nine tenths of all the useful patents of the world owe their foundations. I was much struck with the prevalence of patented inventions in the Exhibi tion; it seemed to me that every good thing deserving a patent was patented. I asked one inventor, of a very good invention: 'Why don't you patent it in England? He answered: 'The conditions of England are too onerous. We certainly are far behind America's wisdom in this respect. If Europe does not amend its laws (England in the opposite direction to that proposed in the bills before the last two sessions of Parliament), America will speedily
become the nursery of useful inventions for the world become the nursery of useful inventions for the world. ought to speak to you too of the already venerable Harvard
University, and of the Technological Institute of Boston, University, and of the Technological Institute of Boston
created by William Rogers, brother of my Glasgow Univer sity colleague, Henry Rogers, the Cambridge of America and of the Johns Hopkins University of Baltimore, which with its youthful vigor has torn Sylvester from us, has util ized the genius and working power of Roland for experi mental research, and, three days after my arrival in America sent for the young Porter Poinier to make him a Fellow. But he was on his death bed in New York, 'begging his physicians to keep him alive just long enough to finish his ook, and then he would be willing to go.' Of his book, Thermodynamics,' we may hope to see at least a part, a much of the manuscript and kind and able friends to edit it are left; but the appointment of a fellowship in the
Johns Hopkins University came a day too late to gratify his noble ambition. But the stimulus of intercourse with American scientific men left no place in my mind for fram ing or attempting to frame a report on American Science."

the latest news from the sun.

There are not many persons living who, with the rever end Director of the Observatory of the Roman College, can lay claim to have minutely examined the face of the sun every ay for the past ten years. Father Secchi, moreover, as a stronomer is the peer of Lockyer, Huggins, or Young, an
s such his conclusions are worthy of the hirhest as such his conclusions are worthy of the highest respect.
The new edition of his work on the sun, which has lately been published in Paris, embodies the results of his mos recent investigations, as well as of those which have ex
tended over long periods of time, and hence it may be re tended over long periods of time, and hence it may be re physical constitution of our luminary
Father Secchi's theory of the sun spots is that they are henomena of eruption. They result from the upheavals which take place in the solar mass, and form, in the photo sphere or luminous envelope, cavities more or less regular surrounded by brilliant projecting ridges. The depth of hese cavities rarely exceeds 3,600 miles-generally it is less -and the hollows themselves are filled with dark vapor which absorb and so cut off the luminous rays emitted by he strata beneath. The physical constitution of the solar mass, and the true nature of the incessant motion of whic it is the seat, have been little understood. Now, however,
we are in possession of a spectroscopic method of distinguish we are in possession of a spectroscopic method of distinguish cerning the jets of hydrogen and of incandescent metalli apors, and observing the rose-colored protuberances which ormerly could not be studied, except during a total eclipse when the bright light of the radiant disk was intercepted. Father Secchi has determined the closest relations betwee he spots and the protuberances seen on the solar edge.
If the results of a series of observations of solar rotation e considered, it appears that the spots, the most brilliant facule, and the eruptive protuberances (those which contain netallic vapors) appear as a rule in similar regions on th and comprised between the 10th and 30th parallels of lati and comprised between the 10th and 30th parallels of lati-
tude, and that the majority of these phenomena occur at he same epochs. When a number of individual observa ions of spots and protuberances are thus compared, this conclusion is often at fault; but this is to be expected, be cause the protuberances can be seen only on the edge, while the spots and facule are visible on the face, of the sun. On omer hand, the paralielism of the three orders of phe in the becomes manifest when the results are tuberance rises on the oriental side, it is almost certain that a spot will appear next day in the same place.
tather Secchi therefore considers that without doubt the解 and protuberances are correlated phenomena, and that
revealed to us by the protuberances. It is necessary, however, to note that the latter do not always appear to be true eruptions, as they are often simple jets of incandescent hy drogen which rise from the photosphere like fires from a forge. Such flames cannot produce the absorbent vapors
which form the spots. Hence a distinction must be made which form the spots. Hence a distinction must be made between eruptive protuberances characterized by the pre-
sence of metallic vapors, and hydrogen protuberances where such vapors are not manifest; but, the author adds, traces of the metallic spectroscopic lines are almost always discerni ble at the base of the hydrogen jets. The difference be tween the two kinds of protuberances, therefore, while ex isting, is not clearlydefined. Often the metallic lines of the protuberances are visible on the solar disk,and are prolonged as far as the nucleus of a spot near the edge, affording ir refutable evidence that the metallic vapors have their origin near the nucleus. Beyond the 40° parallels, true spots and ruptions are rarely encountered.
The eruptions are probably violent crises produced by chemical combinations which occur at a certain depth below
the solar surface. The cooled products of the reactions unite in thick clouds, like those clouds arising from sul phur volcanoes, which fall by virtue of their weight when condensed, and bury themselvesin the luminous envelope while they in turn are quickly invaded by the ambient mat ter of the photosphere. From all sides tonguesof fire pene trate the interior of the spot, and, joining it together in places, divide it into segments. These luminous filaments give to the penumbra its radial structure, and then, becoming as it were dissolved in the obscure mass, lose their bril liancy by cooling. The spot then assumes quite a regular rounded form; a period of calm succeeds the fierce efferves cence and the tumultuous and discordant movements which characterize the formative processes. Above the dark nu cleus,less intense emanations occur of short and slightly lu minous flames, in which the spectroscope is no longer able to recognize the lines of metals. Then, little by little, the pot diminishes and finally totally disappears.
This theory is believed to account for all the phenomen hitherto observed; and it will be seen that Father Secchi is no adherent of the whirlwind theory, which he somewhat brusquely dismisses as a "fiction destitute of all reality." Out of several hundred spots which he has closely observed he says that but seven or eightshow a spiriform structure This even disappears in a day or two, and often the rotary movement, after becoming slower, is rendered in the oppo site direction. The motion, he affirms, is no essential pro perty of the spots.
The physical constitution of the sun, our author sums up as follows: The sun is formed of a fluid incandescent mass enveloped in a highly luminous photosphere, above which there is yet an atmosphere of less density. The photo sphere is a fiery mist, probably of gases which have become luminous through the effect of high temperature and high pressure. Immediately above this, a very thin envelope of metallic vapors mixed with those of hydrogen is encoun tered. This is the chromosphere,and its thickness is from 10 to 15 seconds of arc. Beyond the chromosphere again there is a vast envelope composed of hydrogen and of two un known substances which produce the yellow spectrum lin D_{3},and the line 1,474 ,and to one of which the name "helium has provisionally been given. During total eclipses of the un, the outer envelope becomes visible and produces the phenomenon of the corona. Finally the vast eruptions throw forth jets of hydrogen to hights equal to one fourth he solar diameter, 224,400 miles, and with such tremendou velocity that it is believed that the hydrogen may at time leave the sun and pass into the interstellar space.

Look out for Him.

A correspondent from Springfield, Mo., sends us a receipt igned R. Allen, for one year's subscription to the Scienti fic american
The writer states that the person to whom he paid his \$3.20 was a modest, retiring sort of an individual, and represented himself to be a special correspondent of the paper.
It is likely that the same party has swindled others out of It is likely that the same party has swindled others out of heir money, in Springfield and other places in the vicinity
We warn our friends in all parts of the country agains We warn our friends in all parts of the country again. subscribing and paying money to any one unknown to them, any stranger claims to be an authorized agent for soliciting subscriptions, denounce him as a swindler wherever you find him, and keep your hand on your pocket so long as the per son remains.

Naval Engineer Corps Gazette.

September 29. Chief Engineer John B. Carpenter and As sistant Engineer C. P. Howell were detached from the Uni ed States steamship Alaska, and placed on waiting orders. Passed Assistant Engineer Julien S. Ogden has been ordered to duty at the Navy Yard, New York.
October 4. Chief Engineer O. H. Lackey was ordered to duty as member of the board at Annapolis, Md., for the examination of midshipmen for promotion to the grade of ensign.
Passed Assistant Engineer Robert Crawford has been or dered to temporary duty at the Naval Academy, Annapolis, as an instructor in the department of steam engineering.

For the protection of workmen handling lead and mercury compounds, M. Melsens, of Paris, France, recommends mall daily doses of iodide of potassium. This salt, he says, dissolves the lead or mercurial compounds, and ef. says, dissolves the
fects their removal.

