SINGULAR ACCIDENT TO A TROUT

The trout shown in the accompanying engraving was recently captured in England, having come to an untimely death. Mr. Frank Buckland, the indefatigable naturalist who edits Land and Water, states that the trout was found
lying dead, on its back, with a dace fixed tight in its gills, lying dead, on its
and further says:
" The only interpretation that I can give of this accident is that the trout had rushed at the dace to eat him, and, seizing him by the head, had attempted to swallow him; the dace, objecting to this process, and possibly knowing by instinct that if be got into the trout's stomach he would never return therefrom alive, fought hard for his life; and seeing a possible way of escape through the aperture of the gills, he used his best efforts to pass through: fate, however, was against him, and the unfortunate dace was against him, and the unfortunate dace
became wedged among the gills of the trout, became wedged among the gil
and both fish thus perished.
"When we consider the delicate structure of the swallowing apparatus in all animals, ourselves included, it is really wonderful that more accidents by choking do not tak place. In our own persons the apparatus for preventing accidents of this kind are, indeed, most marvellous. The trachea or windpipe is situated immediately in front of the cesophagus, and every morsel of food and fluid we swallow has to pass over the opening of the trachea, which is in fact not unlike the slit of a money box, before it can get into the œsophagus or gullet. The pain and irritation caused by even a crumb or a drop of water getting by accident into the trachea
is very great. We cannot, therefore, suffiis very great. We cannot, therefore, suffi-
ciently admire the wonderful valve which ciently admire the wonderful valve which
the Creator has placed upon the top of the the Creator has placed upon the top of the
trachea. The valve is self-acting, and luckily for us does not depend upon any volition of our own. If it were not so, a person's whole time might be taken up in watching every morsel of food he put into his mouth. By a beneficent arrangement, the act of swallowing is quite as independent of the volition of ourselves as is the action of the heart, the power of thought, and the machinery of the human system in general. The same state of things that is found in the structure of the inhabitants of the land prevails also in the structure of the creatures which live in the water, and among them, as among land animals, an ac cident is very rare; the above drawing is therefore the more interesting, inasmuch as it shows that even fish are some times choked by the living prey on which they subsist.'

Conrespoudeuce.

The Tripartition of an Angle.
To the Editor of the Scientific American
Dividing an angle in two parts is one of the easiest opera tions ingeometry; but the division of an angle into three equal parts is considered a difficult and an impossible one. Let it be supposed that the angle, A B C, is divided into three equal parts by the lines, B D and BE; then draw the arc, A C, and its chord; next draw the lines, A D, A E, DE D C, E C, resulting in two isosceles triangles, A E D and D CE. Studying the properties of these triangles, we find that their altitudes are the division lines. These lines, therefore, must divide the base lines in two halves, and stand rectangular upon them. Therefore, if A D is really equal to $D E$, then $A F$ must $=F E$, and $D F$ be perpendicular to $A E$; and if $D E=E C$, then $D G=G C$, and $G E$ is perpendicular to D C.
The following is the construction and solution of the problem: The angle, A B C, is to be divided into three equal parts: 1. Draw the arc, A C, with any radius. 2. Draw the chord, A C. 3. Divide the angle, A B C, in two parts by he line, B H. 4, 5. Draw the lines A H and H C. 6, 7. Draw semicircles, A F B and B G C, over each side of the given angle. These semicircles have the property of dividing all lines (chords) drawn from A or C to the periphery, AH C, into two equal parts, because each of their radii is half that of A B C. 8. Draw B I perpendicular to A H. 9 . its middle, and B M perpendicular to A H. 9.
Make L I=B K. 10. Draw, with radius H I, Make L I = B K.
the arc, H G C. Draw, with radius H I,
11. Draw B Ethrough the point, G, where the arc, H G C, intersects the semicircle, $B \in C$, and the same on the other side of $B H$, where $B D$ is drawn through the intersecting point, F .

If the arc, A H C, is divided into a convenient number of equal parts, 8,16 , or so, of which M and K arc two, draw $M C$, and $K N$ perpendicular to $M C$; then N is the nadir of the altitude of the triangle, M C K. In the same way more points are found, all lying in same way more points are found, all lying in
Both conditions are really complied with; $C G=G D$ and Both conditions are really complied with; CG G $=G D$ and
E is perpendicular to D ; the triangle, D C E,is isosceles, E G is perpendicular to D C ; the triangle, D C E, is isosceles,
and $\mathrm{D} \mathrm{E}=\mathrm{EC}$; and further, $\mathrm{A} \mathrm{D=D} \mathrm{E}$.Therefore we and $D E=E C$; and further, A $D=D E$. Therefore we
have $A D=D E=E C$, and angle $A B D=D$ B $E=E B C$. have $A D=D E=E C$, and angle A B D=D B E = E B C.
It remains to show that triangle D C E is the only isos It remains to show that triangle D C E is the onl
celes triangle that answers both of these conditions.
M K C cannot be an isosceles triangle, because we mad $C K=H K=H M=A D$, and therefore $C K$ is not equal to K M. In every triangle in consideration, one side must be parallel with the chord of the given angle, as M K, A C, DE

Only one isosceles triangle fulfils this and the other condiions, and this is the one sought for
In a similar way I tried to find the law for dividing an angle into n equal parts, when n is a prime number; but I am obliged to confess that I did not succeed. Nevertheless there is some law in these divisions. I found that the semicircle, A F B, is intersected in $\frac{n-1}{2}$ points by as many circles, the positions of which I cannot find, and there are as many parallel lines connecting the points of division. So 3 parts has 1, 5 parts 2,7 parts 3,11 parts 5,31 parts 15 . If n is an even number, for instance 6, then the problem is to be reduced to tripartitions, which must be made in each half. The semicircle is intersected in $2 \frac{1}{2}$ points, that means

A TROUT CHOKED BY A DACE

that one of the dividing radii goes through the points wher the two semicircles cut each other, thus dividing the angle Ropo parts.
W. Thiese.

Rochester, N. Y

A New Photographic Test Plat

Mr. William A. Brice, of London, England, the inventor of the improved portable photographic apparatus illustrated in these columns not long ago, has patented through the Scientific American Patent Agency, September 12, 1876, novel testing plate, which will enable photographers to de termine with considerable certainty the quality of the chemi cals employed, the quick or slow working of the lens, and to define whether the presence of "fog" or want of clearnes in the picture is attributable to impurities of the chemicals, alkalinity of the bath, diffused light, over-exposure to light or to other causes.
The invention consists of a frame with a sliding glass plate, to which are applied fixed pieces of transparent ma terial superposed in layers of one, two, three, and more, in egular succession, to produce a greater or less obstacle to he passage of the light. This is set up between the lens and the sensitized plate, and the picture is then taken in the usual manner. The result is a picture which produces the the light shade or shadow of the object to be photographed with the chemicals and lens, and with light of more or less the same actinic quality, intended to be used for the picture to be taken. When the picture is developed on this plate t is, while visible, wholly divided into sections of unequal ntensity, being more or less distinct according as the ligh has passed through one or more layers. The absence of fog where the light has been transmitted through several sheet of transparent material indicates that the chemicals ar pure, that there is no diffused light, and that the nitrate bath is of proper acidity. If at that section details of the

cals used. The second section of the testing plate, where form with those above described.
the light passes through a less number of layers, gives more or less the same information, but indicates more learly whether the exposure has been adapted to existing conditions or not. The next section indicates, if properly developed, what time, chemicals, etc., are to be used for the picture to be taken; while the middle or uncovered section indicates by the evident over-exposure that the lens is good and rapid in action, that the chemicals are in good condition, and that the light is sufficient in actinic power to produce good pictures with rapid exposure. The device is one which
slow current of perfectly dry carbonic acid gas is allowe reased to reort. The temperature is then slowly in Fah., and may, towards the end of the opera to 428 or 482 Fah. About an hour after the gh the of the operation, carbolic acid will begin to distil, mentioned tess may be considered finished, if, at tistils. It will be found that the distilled carbolic acid amounts to ust one half of the original quantity employed. The residue the retort is basic salicylate of soda which is dissolved, and which, on acidifying with an acid, yields a brownish colored crystalline precipitate of saliculic acid.
With regard to the purifying of the crude acid as obtained by the process given above, Rautert's method is usually mployed ; it is as follows: The crude acid is placed in a re tort and strongly heated to 338° Fah., when a current o team at a like temperature is injected into the retort. In the presence of the superheated steam, the acid distils a once; and after a short time, nothing remains in the retor but a trace of a black resinous mass. The apparatus mus e arranged in such a manner that the neck of the retor may be kept free from crystals, as, for instance, by an in erted movable wire.

The Literature of Manganes

Dr. H. C. Bolton of this city has been ransacking the litera ure of the past and present to learn what has been said and written about manganese, its ores and its compounds. In a communication to the Lyceum of Natural History, in No rember last, he detailed all the sources of information on his subject. The results of his patient labors have re cently been published in the Annals of that society, and also eprinted in pamphlet form under the title of "Index to the Literature of Manganese." In this little pamphlet of 44 ages are contained 400 distinct references to manganes minerals, extending from 1596 down to 1873 , and 1,700 re ferences to chemical papers beginning with Pott's " Exame chymicum magnesic vitriariorum, Ger manis Braunstein," published in Berlin, in 1740. The value of an index of this kind, to a person wishing to examine the literatur of or study any of the compounds of manga nese, can scarcely be over-estimated. Th references are arranged in chronological order,and give the name of the investigator, subject of the paper, and list of all the jour als into which it has been copied with num ber of volume and page.
Nor is this the first work of the sort done by this chemical antiquarian. In 1870, Dr. Bolton published a similar index to the lit erature of uranium, from its discovery by Klaproth in 1789 to 1869.
We hope that other chemists, who have prepared extensive lists of reference on subjects that they were investigating, will be induced to put them in print for the benefit of othersthat may come after, in a style uni-
photographers will doubtless find labor-saving and of much general assistance.

The Preparation of Salicylic Acid.

Cahours obtained salicylic acid in 1844 , from methyl-sali cylate, or oil of wintergreen (gaultheria procumbens). Pro fessors Kolbe and Lautermann in 1860 brought out their method of obtaining the acid from carbolic acid; but it was not until within the last year that Kolbe discovered its peculiar preserving and disinfecting properties. The manne of obtaining the acid from carbolic acid is as follows: The saturating capacity of a carbolic and also that of a soda lye is determined, and both are then mixed according to equiva lents, so as to form sodic carbolate. The solution thus ob tained is carefully evaporated to dryness, taking care that the dry mass sticking to the bottom of the vessel is constantly removed by scrapers, and that the mass itself is also constantly crushed, with a pestle or other tool, t facilitate its drying out, until at length the carbolate remains as a perfectly dry pow der of a rose-red tint. Excess of carboli acid gives always an inferior dark-looking residue, which, when it undergoes the final process of treatment with carbonic acid gas gives far less salicylic acid than is in ac cordance with the amount of carbolate cal culated in the mass. The dry carbolate is then either put into the retorts at once, or it may be kept for further treatment by putting it, while hot, into vessels whic may be hermetically sealed. The fac that sodic carbolate is very hygroscopic ex plains the necessity of this manipulation. After the carbolate is put into the re After the carbolate is put into the re torts, the contents are slowly heated to 212 ah.,and when this temperature is reached

Electrical Dust Figures in Space

A brass rod pointed at one end, and with a ball at the ther, is laid horizontally on an ebonite plate supported on wood; receives sparks from an electric machine ; is discharged by touching, and removed; and the plate is then sprinkled with fine powder. The author gives drawings of the negative and positive figures obtained. Conceive these turned about their axes, and we have the electrical dust figures in space, of which the ordinary Lichtenberg figures are merely sections.

