Scientific gamtricau.

HgTABLIEHED 1846.

MUNN \& CO., Editors and Proprietors.
 PUBLISHED WERELIY AT

NO. 87 PARK ROW, NEW YORK.
o. D. MUNN. A. E. BEACH.

TERMS FOR THE SCIENTIFIC AMERICAN. One copy, one year, postage Included...
One copy, six months, postage included

LT The postage is payable in advance by the
ooriber then receives the paper free of charge.
noriber then receives the paper free of charge.
Nort..-Persons subscribing will please to give their fall names, and Poos Office and state address, plainly written. In case of changing residence tate former address, as well as give the new one. No changes caa be made unless the former address is given.
Scientific American Supplement.
A distinct paper from the Scientific Amerions, but of the same size, and published sima TER MB.

One year by mall. Bcimstrifo AMER I

-..............
$\underset{\substack{\text { Bingle Cop pes... } \\ \text { The safest was } \\ \hline}}{ }$
The safest was to remit to.. 18 Co., 37 Parl Row, N. F

NEW YORK, SATURDAY, SEPTEMBER 16, 1876.

THE sCIENTIFIC AMERICAN BUPPLEMENT
Vol. MI., No. 38
For the Wok ending September 16, 1876 .
With 67 Figures.

 v. LESSOOS IN MECHENICAL DRA WING, by Professor MAOCORD.

The Bolentile American supplement

MUNN \& CO., PUBLImerers

alerion oontmbutions to

The address which has hare of attention, out of the many learned essays delivered the recent meeting of the American Association for th Advancement of Science, is Professor E. L. Morse's master ty summing up of all that America has done to promote the growth of the development theory. Professor Morse is an ardent evolutionist, a naturalist of great learning and abib ity, an indefatigable investigator, and, like most prominent men in the scientific world, has no hesitation in assuming the offensive in support of doctrines of the truth of which he is deeply convinced. Hence there is nothing resembling rimming in his discussion of the evolution question, the opponents of which receive scant mercy at his hands; bu very many of those whose scientific faith is thus at possesses thong the Professor's warmest as instructive, al ways original, and of lifting his topics out of the slough of technical pedantry in which too many of our learned scion fists seem over inclined to bury modern acquisitions to our knowledge, especially of natural history.
Professor Morse tells us that the first clear premonition of the doctrine of natural selection came from an American William Charles Wells, borne at Charleston, South Cairo lina, in 1757. In 1813 Wells read a paper before the Royal Society, in which he attempted to account for the color o dark-skinined races of men by citing the changes of ant mals under domestication, showing that varieties of men and animals were occurring, not exceptionally, but constantly and that different breeds of animals were thus obtained by man's selective supervision. Hence he argued that a mimi lar selection among men had been effected by the compara five immunity from certain diseases of those who had dark skins. This is substantially a part of the theory of natural selection now expanded by Darwin and credited wholly to him; but the verdure of originality, it seems, must now fade from the English naturalist's laurels. The honor belongs to an American inventor, who, like hundreds of his brethren since his day, has furnished the thoughts whence have sprung some of the most noted of foreign "discoveries. This is unquestionably the most important fact broughtfor ward in Professor Morse's paper, and it will provoke uni versal comment.
Classifying the work of various American investigators, Professor Morse tells us that in producing new evidence for the doctrine of natural selection, Drs. Burt G. Wilder Englemann, and W. K. Brooks and Professor Charles V. Riley have borne distinguished parts. Professor Riley's proof of the interdependence of flower and insect in the case of the yucca moth is a scientific triumph. The late Professor Def fries Wyman completely ruined the beautiful theory that the cells of bees were of such construction as to use space and material to the best possible advantage. He found by close study that the cells of all cell-making insects are o all grades, from shapeless masses to those which approach but never reach perfection. The late Professor Chauncey Wright also did admirable work in showing that the ar rangement of leaves of plants along their axis, was due to circumstances of growth, and was not a circumstance of blind law.
Professors S. F. Baird, J. A. Allen, and Robert Ridgway mammy have found that marked differences in bus fo example, Western birds have longer tails than Eastern ones of the same species, and on the Pacific coast birds acquire a darker hue. Large numbers of like changes, when tabulalent with ra is a geographical chart, wo for coinci dent with variations already ascertained in the amount of
rainfall in the different regions. The total number of species of birds was reduced about one fifth by these investiga tons, and the number of species of squirrels decreased one half or more.
As evidences of the transmutation of species, Mr. Jame Lewis has discovered that a truncate form of mussel, which, from another form, takes its peculiar shade from the cir cumstances to which it had been exposed, namely, the abra sion of its edges and consequent retarding of its growth in the rapid currents of the Mohawk River. Mr. A. G. With erby has called attention to changes in snails under like conditions; and Dr. Cooper and Messes. Stearns, Bland, and Birney, have all described instances in which changes in anmars have followed altered circumstances of hat or moi are. Among the examples of the survival of forms by adaptation to changed environment, the discovery by Mr Ernest Ingersoll of marine mollusks and living salt water crabs, high up on the Rocky Mountains, is the most remark able. Professor Marsh has made a series of brilliant re searches concerning the siredon, an animal of the salaman der kind, that loses its gills, and becomes, when removed from its natural habitat, one previously recorded under an direly different genius (amblystoma). The researches of Prs. Packard and Putnam have overthrown Agassiz' theory ted in their present condition by showing that a whole se rises of fishes, ranging from those with perfect eyes to those without any, including between them various deficiencies of vision, have been found in American caves and secluded wa tors. The discoveries of Professors Leidy, Marsh, and Cope,
among the tertiary mammals of the West, have filled wide gaps between older and existing forms, showing all the in termediate animals, so that we have nearly the whole ances try of the horse, back to the five-toed animal, not larger than a for, in the eocene period.
The remainder of Professor Morse's admirable address
sets forth the present theories of Darwin and the evolution school, and more especially dwells upon the gradual devel opment of the intellect of animals. The earliest mammals had the smallest brains; and as we go upward in the strata, the size of the brain gradually increases. Its development in the monkey tribe was regarded as the means by which these animals were enabled to escape from the carnivora which formerly abounded; and intellect even in that early ora thus proved its superiority to brute force.
In his conclusion, Professor Morse showed how perfectly the evolution doctrine accounts for the fatalism of the Turks, the cruelties of savages, and the outrages general ty among civilized people, attributed to the total depravity of humanity. He considers all such manifestations as simply relapses to the savage nature which we all inherit from and al progenitors ; and that where such relapses in any individual become constant, it is the duty of society to treat that individual practically as it would a dangerous beast, and so govern him as to prevent his propagating his kind.

the coming explosion at hell gate.

General Newton has recently stated that the great explo sion at Hell Gate will take place during the latter part of September. The excavations have been complete for some time past, but delays in passing the appropriation bill by Con yes checked further operations, and for this reason the blow-up did not occur on the th of July, as for a long perood was contemplated. Those who expect to witness a gigantic column hurled hundreds of feet into the air, or look forward with some trepidation to the effects of fearful con cussion on adjacent buildings, will hardly find their antic pations realized. The mine will be flooded previous to the potions realized. The mine will be flooded previous to explosion; and with the possible exception of jets forced through seams in the rocks, there is no reason to believe that any very remarkable exhibition of the tremendous
force of the explosives will be manifest. From a scientific point of view the occasion will be of considerable interest, a the earth in the vicinity will be shaken by the communicant d vibrations, which are likely to travel over a long distance. An opportunity will thus be afforded for measuring the re locity of sound waves through earth, and preparations are being made by scientific men to observe the same at points at distances 200 and 300 miles away
The arrangements to guard against any possible danger are being perfected, in utter disregard of the desires both of hose who hope to see the great blast, and those who aspire to se who f pecuniarily through the popular curiosity. Steam oats and other craft will be warned away, so that a vie boats and other craft will be warned away, so that a vie
from the river will be out of the question; the authori from the river will be out of the question; the authori
ties have been requested not to grant passes to would -be spec ties have been requested not to grant passes to would-be spec
tatars on Ward's Island, the best point of observation; and taters on Ward's Island, the best point of observation; and a bluff of earth and the buildings near the works prevent
seeing the operations from the rear, so that the expectant seeing the operations from the rear, so that the expectant
populace will probably have to satisfy themselves with distant view from the high land on the New York shore.
How much powder, etc., will be burnt is not yet definite y stated. An approximate idea of the quantity may be gathered from the fact that there are about 4,000 drill holes, each 3 inches in diameter, and varying from 7 to 13 feet in depth. Each will be charged with a separate canister of dynamite, vulcan, and rend-rock powder, and the simultan yous explosion will be effected by the current from a battory of 800 cells. About two pounds of powder are used to tory of 800 cells. About two pounds of powder are used to
one of dynamite, and the charges are inserted in the 172 piers of rock and in the roof supported thereby. It is astimated that 30,000 cubic feet of broken rock will be left un der water, and this will have to be removed by dredging so as to secure a channel 26 feet in depth. The total length o tunnels, galleries, etc., excavated, is $7,425 \cdot 67$ feet. The mount thus far expended is $\$ 1,686,841.45$.

cheap coal.

The breaking up of the coal combination and the conse quant throwing upon the market of half a million tuns of coal is a welcome event. The whole coal trade of the East has, for several years, been under the absolute control of a monopoly which has signalized its sway by unwaveringly maintaining high prices, without regard to the demand first, or the depressed condition of all business affairs. It is characteristic of the patience of our people that no means have been tried to mitigate this condition of things ; but now that the crisis has come, it is like a gleam of sunlight through the black shadows which have fallen across the prosperity of the industrial world. When coal is once more subject to the natural laws of trade, and not until then, will its traffic rest on a sound basis; and when this comes to pass, then we may look for a revival in iron manufacture, and in all the industries in which steam is used. Too many people are undergoing the effects of long existing business stagna ion not to watch eagerly for any sign, however faint, inddative of better times, and therefore the gratification felt and openly expressed, at the collapse of the combination, undeniably great. One public sale of 500,000 tuns will not affect the whole winter's trade, however, any more than ne cold day represents the whole winter's weather: but a natters now appear, the present event is only a beginning and predictions are freely hazarded that we shall see still lower prices.
The fall in rates at the late auction seem to have aston shed every one, and none more than the coal dealers them selves. The reduction from the combination schedule for august averages about $\$ 2.10$ per tun, and average prices ranged from $\$ 2.20$ for Philadelphia \& Beading chesnut to $\$ 3.86 \frac{5}{10}$ Delaware \& Hudson stove. The Vice-President of the Pennsylvania Coal Company asserts that it would cost $\$ 500,000$ more to mine the coal than the prices fetched at
the sale amount to. The agent of the Delaware \& Hudson Canal Company counts up the various expenses of handling, mining, commissions, etc., and claims that a tun of coal costs at tide water $\$ 4.15$, while the average at the sale was but $\$ 2.42$. In the coal regions, the operators say that either tolls and labor must be greatly reduced or they must suspend operations. Miners' strikes are feared, and altogether the prospects are gloomy for both laborers and owners.

THE SCIENCE OF MECHANICAL MOVEMENTS

There are numerous treatises devoted to descriptions of greatinventions and discoveries, and discussions of the processes of reasoning by which they were worked out. It has long, too, been recognized that there is such a thing as scientific invention, in which the mechanic, having definitely determined the result which he wishes to attain, proceeds to achieve it by a series of systematic steps. It is true that the genius for making discoveries, with which some men are endowed, gives them a great advantage over their fellows; but it is equally true that genius, properly directed, is far more certain of success than if it acts without a guide. This is sufficient to account for the great interest which has been taken in the matter by professional writers, and the number of treatises relating to it that have been published. Few of these works, however, go farther than to show the nature of inventions that have already been perfected, and to give discussions of the motions that are produced. It is a great advance when a writer offers to the public a method which is capable, not only of analyzing all existing mechanical movements, but also of furnishing the outlines of any movement that may be desıred. This is the claim made by Professor Reuleaux in his "Theoretische Kinematik," a work cently been translated into English. Professor Reuleaux' method of analysis possesses the merit of great novelty, and a description of its nature may be received with favor by readers of an inventive turn of mind.
The reader whro is familiar with analysis knows that the discussion of an equation is a very thorough method of deermining all the conditions and variations of a given question. The well known problem of the lights, which is to be found in most elementary treatises in algebra, is a good example of this kind; and still better illustrations will occur to the reader in the discussions of some of the equations deduced in what is commonly known as analytical, but more correctly as general, geometry. A somewhat similar plan is adopted by Professor Reuleaux in his Kinematik. All ideas of force and time are disregarded in the consideration of a mechanism, and he merely concerns himself with the motions that are produced. The geometrical methods of determining changes of position are explained; and the nature of simple mechanisms and the manner of compounding them are fully illustrated. This part of the work may be compared with the introduction to the study of algebra, in which the idea of generalization is first presented to the student. Then the notation by which mechanisms are to be represented is introduced. The system adopted, which is entirely novel, cannot be properly explained in a limited space, but some of its characteristics may be noted. The different elements of a machine, such as screws, prisms, cylinders, cones, etc., are indicated by appropriate letters, accented in such a manner as to show whether they are hol low or solid. Letters connected by a dotted line indicate that the two elements are joined by a link, a comma shows connection by contact, an underscoring of a dotted line stands for a fixed link, an elastic link or spring is marked by a wavy line over the dotted one, etc. The notation is by no
means complex, and can be mastered in a short time by any means complex, and can be mastered in a short time by any
one who is accustomed to the use of algebraic symbols. It will be a surprise to many to find that the elementary parts of mechanism are comparatively so few in number. The use of the notation having been illustrated by numerous examples, properly graded, the author proceeds to the final analysis of mechanisms, or discussion of the expressions given by the notation. This is, of course, the object of the whole work, to which all that has preceded has been only prepar cannot fail to see that the method seems to show the possi bility of a thorough analysis of any mechanism that can be included in the notation. Those who feel an interest in ro tary engines (and few engineers have not designed at least one of these machines) will find that this class of machines
has been pretty thoroughly analyzed by Professor Reuleaux. The work is by no means exhaustive in every field of me chanical movements, but is rather intended to furnish the investigator an instrument which he can use in his own ex plorations. Even those who do not care to study the work thoroughly can scarcely fail to gain some useful ideas from turning over the pages and inspecting the sketches of the various movements shown.

SOME NEW LIGHT ON THE ORIGIN OF THE TRUFFLE. The truffle is a species of underground fungus largely used in French cookery to give a peculiar rich flavor to meats. It comes principally from France, where it is always found in oak or beech woods, and can only be gathered through th agency of the keen scent of dogs or pigs especially trained to hunt for it. Both from the difficulty of obtaining the fungus, and from the fact that it is a delicacy highly prized by epicures, it brings in all markets a large price; and thus truffle hunting has long been a remunerative calling for the srench and Italian peasantry. In appearance, the truffle is a blackish mass, covered with protuberances and weighing from an ounce to several pounds; when cut open it presents a marbled appearance, and its reproductive portion (it is sex less) is found in the veins in the shape of minute sacs which

ver open, each containing severa

Numer honeycombed surfaces. Numerous attempts have been made to cultivate these
fungi, but with little or no success. Regarding their early development, comparatively nothing has been known, and the spawn or vegetative portion, which, in the case of the mushroom, is readily obtained, allowing the cultivation of that fungus to any degree, has not yet been definitely found in the truffle. Sprinkling the earth with water, in which the parings of truffles have been steeped, has resulted, it is stated, in producing them; and they have likewise been obtained by the slow process of planting calcareous soil with acorns and waiting for the saplings to reach a few years growth,when the truffles could be gathered among the roots. Still no practical method of cultivating the truffle is in existence; and since they are found completely isolated from anything which could produce them, we are left in the dark as to how they are originated, or at best with merely the supposition that,at an early period of their development,they are parasites of the tree roots, or the theory that, like oak galls, they are due to the stings of insects. This last conjecture, however, arising from the fact that truffles are attacked by dipterous insects, like other nitrogenous cryptogams, has been refuted by the entomologists.
A very curious and recent experiment by M. Brefeld throws some new light on the subject, and may lead to the long sought method of cultivatlon. The penicillium glaucum is the well known green mold which appears on bread and cheese, and which owes its name to the fact that, in free air it consists of chaplets of spores, in brush form, connected to a stem or pedicle. The mode of reproduction of this mold depends on the medium in which it exists. Now, by placing the penicillium in a closed vessel with very little air, M. Brefeld has obtained nodules which, after being buried in moist sand, fructify with internal asci which do not open. That is to say, they are produced in a manner analogous to truffles. The asci, we may explain here, are the little sacs in which the spores are contained, and are found in many
complex forms of fungi, which build up a special organ called the peridium to hold these sacs.
It will be seen from M. Brefeld's discovery that he has noted two forms of green mold, one aerial, or penicillium, the other existing when partially deprived of air, or tuberaceous. The truffle through its subterranean location is always in confined air, present besides in limited quantities, and in that state is sexless. Now it remains to find its aerial form, to discover the peculiar penicillium, which placed under the conditions noted will produce, for its nodule, a truffle.

IS BROTHER JONATHAN SO VERY SLIM ?

In our examination of the newly published medical sta tistics of the Provost Marshal General's Bureau of the late war, with regard to the relative hight of American men, we had the pleasure of showing, the other day, that the native born among our citizens and soldiers stood first in point of stature; while in every instance the foreign born exceeded the stature accorded them in the statistics of the nations they represented. We not only raise the tallest men, but draw from foreign countries, by emigration, men of mor than average stature
The artists are therefore quite right in always depicting the typical American, Brother Jonathan, as very tall. But hey also make him very slim; and theorizing traveler ave never hesitated to give a reason for his being long-leg ged and lank. One blames the climate, another, tobacco another, bad cookery; another, his excessive "push" and
eagerness in business; while the extra scientific Buchner was sure that the continent was altogether unfavorable to the European type of man, and would allow us no alterna tive but extermination or a speedy approximation to the In dian type. But is the average American really so slab-sided and lean?
Let us see what answer our statistics give. How do we compare with other nations in girth and weight? As statis ics of mean weight have but little value apart from meas urements of hight and girth, and age, we will first examine the records with regard to the degree of maturity of the several racial clements of our armies.
From the statistics gathered by the Sanitary Commission Gould found the mean age of $1,012,273$ men of all nativi ties, mostly volunteers, to be 25 years and 10 months. As careful analysis of statistics of physical development shows
that American born white men do not attain their full growth hat American born white men do not attain their full growt until between thirty and thirty-five years of age, it is obvi ous that the results obtained from these statistics will un der rather than over rate the average dimensions of American men. It will be seen, too, from the following table of men enlisted toward the close of the war, when the average age of recruits was highest, that, with the exception of a small number of Canadian recruits, the native born element of the army was the youngest.

Nativity.	Number.	Tean Age.	
United States.	196,980	26.955	ars.
British Possessions	14,954	25.352	
England.	10,103	27.855	"
Ireiand.	30,412	27.216	"
Germany.	30,943	31.029	"

Unfortunately the instructions to enrolling surgeons did not direct them to record the weight of the men examined. Only the more energetic officers took the trouble to make their work complete in this respect ; consequently the statistics on this point are less full than could have been desired. Still an idea of the relative bulk of the men of the five principal nativities may be had from the following ta bles, showing the relation of hight, girth of chest, an ex
pansion of chest to increasing weight in over 10,000 men of all ages from 18 to 45 years. The
measured, were invariably naked
measured, were invariably naked.
WHITE NATIVES of THE UNITED STATES.

Weight.	$\begin{gathered} \begin{array}{c} \text { Number } \\ \text { men } \\ \text { men. } \end{array} \end{gathered}$	$\begin{gathered} \text { Mean } \\ \text { Milight. } \\ \text { tucles. } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Mean girth } \\ \text { of ofteet } \\ \text { ofplition } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Mean } \\ \text { expan- } \\ \text { sion of } \\ \text { conest. } \end{gathered}\right.$
Under 100 pounds.	14	64.000	$29 \cdot 714$	$3 \cdot 071$
100 and under 120	991	$65 \cdot 191$	$30 \cdot 468$	$3 \cdot 146$
120 and under 140	2,968	66.856	$31 \cdot 997$	$3 \cdot 238$
140 and under 160	1,894	$68 \cdot 424$	$33 \cdot 642$	$3 \cdot 289$
169 and under 180	427	69.920	$34 \cdot 988$	$3 \cdot 289$
180 and ov	65	70\%215	36.554	$3 \cdot 269$
Total and mean of total.	6,359	67\%297	32-491	$3 \cdot 242$
BRITISH AMERICANs.				
Under 100 pounds.	2	64.000	$30 \cdot 000$	$3 \cdot 500$
100 and under 120	38	$64 \cdot 211$	$30 \cdot 737$	3•184
120 and under 140	304	66.546	$32 \cdot 020$	3-247
140 and under 160.	198	67.848	$33 \cdot 606$	3-298
160 and under 180	41	$69 \cdot 512$	$34 \cdot 439$	3•402
180 and ove	6	$69 \cdot 333$	35.333	$3 \cdot 333$
Total and mean of total.	589	67.059	32.666	3.272
nglishmen.				
Under 100 pounds.	0			
100 and under 120.	56	$64 \cdot 067$	$30 \cdot 893$	$3 \cdot 107$
120 and under 140	243	$65 \cdot 835$	$32 \cdot 453$	3-154
140 and under 150.	128	67•625	$33 \cdot 609$	$3 \cdot 242$
160 and under 180	25	$68 \cdot 480$	34-960	$3 \cdot 380$
180 and o	2	69.000	38.000	$3 \cdot 500$
Total and mean of total.	454	$66 \cdot 348$	$32 \cdot 749$	$\overrightarrow{3 \cdot 187}$
IRISHMEN.				
Under 100 pounds.	3	$62 \cdot 667$	30.667	$2 \cdot 167$
100 and under 120.	158	64.532	31.519	$3 \cdot 215$
120 and under 140.	724	$66 \cdot 119$	$32 \cdot 715$	$3 \cdot 181$
140 and under 160.	450	$67 \cdot 609$	$33 \cdot 916$	3.233
160 and under 180	74	$69 \cdot 270$	$35 \cdot 357$	3.338
180 and over.	8	$69 \cdot 000$	36.750	$3 \cdot 250$
Total and mean of total.	1,417	66.589	$33 \cdot 119$	3-208
germans.				
Under 100 pounds.		$63 \cdot 333$	$30 \cdot 000$	$2 \cdot 833$
100 and under 120.	168	$64 \cdot 167$	$31 \cdot 357$	3.262
120 and under 140.	675	65.532	32.601	3-226
140 and under 160	389	66.905	$33 \cdot 969$	$3 \cdot 231$
160 and under 180.	104	$68 \cdot 346$	35.192	$3 \cdot 221$
180 and over	4	$69 \cdot 000$	36.000	3.500
Total and mean of total	1,343	65.985	33.047	$3 \cdot 2$

Taking into account the relative youth of the American element of our armies, and the probable inferior age of the Americans furnishing the foregoing measurements, their slightinferiority in girth of chest is not at all remarkable It certainly does not indicate any excessive lankness in the natives of this country
Dr. Baxter has compiled a table exhibiting the mean re sults of a great number of sets of observations by various uthorities. Most of them are too fragmentary to be of us in this enquiry; but such as are complete as regards age, hight, girth, and weight, we have brought together in the followingtable: Though not sufficiently complete to warrant any sweeping generalization in regard to Brother Jonathan's physical qualities, it carries evidence enough at least to sat isfy one that the typical American is a fair specimen of humanity, in bulk and weight, as well as in stature.

It will be seen that the average American compares very favorably with the best specimens of the race, the English and the Scutch, as regards bulk and weight. The most exensive series of observations on this head ever made in Ireat Britain are those of Dr. Beddoe, who collected measurements of over 17,000 civilians and soldiers, between twenty-three and fifty years of age. From these he calculates the mean hight of Englishmen to be 5 feet $6_{10}{ }^{6}$ inches, and that of Scotchmen 5 feet $7 \frac{1}{2}$ inches. From the careful measurement of one half a million men, little and big, sick and well, by the Provost Marshal General's medical staff, it appears that the average hight of the men of eight of our Northern States exceeds 5 feet 8 inches. In sisteen States, the average exceeds that of the Scotch; and in one State only (Connecticut) does it fall so low as that of the average Englishman.
In the matter of bulk,the comparison, as we have seen, is not less favorable to Brother Jonathan. He is as heavy as the heaviest even inhis youth : and the apparent slimness of his immaturity, due to his superior hight, is fairly made up for by the time he reaches his full development.

Artificial Teeth.-Mr. Merrick Bemis, of New Haven, Conn., desires us to state, that his patent (which we quoted on page 106, volume XXXV, and which states that the plates are intended to fit over natural teeth, and in which teeth are described as all molars) covers the application of the invention to all teeth.

