Srientific Americaut.

EBTABLISHED 1846

MUNN \& CO., Editors and Proprietors.

published wrekly at

NO. S'Y PARK ROW, NEW YORK.

O. D. MONN.

A. e. beach.
terms for the scientific anierican. Ono copp, one year, postage tncluded....

Ten coples, one year, each 8270 , postage Included
Over ten coples, same rate each, postage trcluded
er ten coples, same rate each, postage ticluded......................2 $\mathbf{2 0}$ scriber then recelves the paper rree of charge.
Nort.-Persons subscribing will please to give their full names, and Pos Oafte and State address, platily written. In case of changing restdence
state tormer address, as well as glve the new one. No changes can be made state former address, as well las IVe
anlese the former address 19 given.
Scientific American Supplement.
snd pubilished simultaneously with the rexular edition.
TERMS.
One year by manl.
Bocrintricic AMRR
Single Coppes....
Tne
aqeet
he safest was to remit is by dratt............................... 10 Addres MCNN \& Co., 57 Park Row, N. Y.
the newa agents.
VOLUME XXXV., No. 11. [New Series.] 7hirty-first Year
NEW YORK, SATURDAY, SEPTEMBER 8, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 37.
Wor the Week ending September 9, 1876
With 83 Figures and Engravings:
table of contents.
The international exhibition of 1876, with githuatrationa. Thi Life-Saring Sericie Apparatu, 3 engravings.-Life Signals.-Life and Surf Baats. - Life Boat Station Houses. - The Ball Puzzle, 5 figures

- A Tour through the Boliter Houses.--The Galloway Boller.-Green' Fuel Economizer.-Pearn's Pump.-Corliss Bollers.-Exeter Boiler.

 Plerce Rotary Tubular Boller.-Anderson Boiller.-Armstrong Heater
and Lime Catcher. -Exhblt of Carrages, 19 figures. - Exhhblt of Woodand Lime Catcher.-Exhblt of Carriages, 19 Agures.-Exhblt of Wood-
working Machnnes, 9 figures.-Bert's shingle Machlne, Boult's MoldWorking Machnes, 9 figures.-Bert's Sunngle Machne, Boult's Mold
Ing Machine.-Mactine for Dresesing Heads.-Carving and Molding MaIng Machine.-Machine for Dressing Heads.-Carying and Molding Mas
chine, engrating. -Door and Blind Machine.-Waiker's Scroll Saw.

11. ENGINEERING AND MECHANICs. With 5 engravings.-Driling Ma. ENNINEERING AND MECHANISS. WIIn -Rallimy Locomotl|
What Makes It Turn.
III. TECRNOLOMT. With 28 illustrations.-How, to Butla Cheap Boats, No. 6.-The Fiffeen. Dollar Whitehall Row Boat, 2 engravings.- SImple
Rules for the Management of sal Boats.-Architecture in Terra Cotta, Rules for the Management or sall Boats.-Architecture in Terra Cotta,
by EDMTND SHARP, 5 engravings, -Platt Church, near Manchester.-
 Proper Structure of steel for Successiul Forging.-Microscopic Appearances of Steel Crystals.-Steel Crystalized by Over-Heating.-How
to Produce Fine-Grained Steel.-Tests of Spectmens.-Steel-Making Immlgrants from England.-New Iron Process.-Flour Mills of the Unted States
. lessons in mechanical deawing, by Profesoor MacCord, 11 figures.
v. MIscellaneocs.-The A. B. C. Process for Sewage.-Free suluca
taken up by Plants, 1 engraving.-Best Nursery Frut Trees. Names.taken up by Plants, 1 engraving
New Chalk Fossilis, 1 engraving

The scientific American supplement

MUNN \& CO., Publibarbis,

THE GREEN FIELDS OF THE MOON.

When the moon is at the full, the unassisted eye readily distinguishes on her face certain dark gray spots more or less sharply separated from the brighter portions. Through the telescope these spots appear as broad level spaces, re took them for seas, and by that name (Latin, mare) they ar known to this day, They are not seas, however, but ancient sea beds, now probably nearly, if not quite, destitute of wa ter: vast arid basins like the Sahara, or the great interio tah basin of our own continent.
Examined more closely, these dried-up sea beds-to which Neison applies the irregular but convenient plural maresare seen to have a rolling surface like some of our western raines, or to be traversed by numerous long riages, , and pem ling the wave-like sand hills which give so marked and pe the leveler portions being dotted with low mounds interspersed with small crater pits. In many places formation of an apparently alluvial character abound, while the an cient coast lines show distinct traces of water action. Two of these lunar plains-Mare Humorum and Mare Chrisium-
are walled in completely by lofty mountains, presenting are walled in completely by lofty mountains, presenting
stupendous precipices to the vanished sea. The larger mares are more like ocean beds. They run together as ter restrial oceans do, and sometimes merge into the brighter continental regions, without a distinct line of demarkation. In other places they show a rugged coast line, rising into cliffs and peaks, and pierced at times by valleys and ravines.
One of the most conspicuous of these lunar ocean beds, also one of the deepest, is known as the Mare Serenitatis. Its area is nearly 125,000 square miles. Within its dark gray border, from thirty to eighty miles wide, is an exten sive inner plain which at times presents a fine clear light green tint with a central streak of pure white, the gree area lying lower apparently than the gray exterior. Th green tint is difficult to catch, except under favorable conditions, and is much weakened by the effect of numerous small white round spots and gray ridges.
Another of the moon's green plains was discovered by Mädler in the Mare Humorum, already mentioned. This is ne of the smallest as well as most distinc $1 \mathrm{l} y$ bordered of the dark gray plains. Its area is 50,000 square miles. The greater portion of its interior is distinctly tinged a dusky green, sometimes very marked, affordivg a strong contras with the pare gray of the borders and high enclosing ridges. the mare, but elsewhere, as in the Mare Serenitatis, it is separated from the border by a narrow darker gray fringe, except on the northwest, where the gray and green areas merg nsensibly into each other
Still another area of green is observed in the Mare Chrisi um, one of the most conspicuous of the moon's dark plains. It is completely enclosed and is, perhaps, the deepest of the lunar mares. Its area is 78,000 square miles. Its general tint is a gray mixed with an unmistakable tinge of green,
especially under high illumination. This verdant hue is seen to best advantage for several days hefore and after the moon is full.
These and other color changes on the face of the moonas, for instance, the darkening of the great ring plain of Plato with increasing light, and like changes in certain lon winding lunar valless-led Beer and Müdler to suggest that hey would indicate vegetation, were vegetation possible o the surface of the moon. But having accepted Bessel's con cusion that there could be neither air nor water on the lu nar surface, and consequently no life, those much respected
selenographers could not entertain the hypothesis of lunar selenographers could not entertain the hypothesis of
vegetation, however strong the evidence might seem.
egetation, however strong the evidence might seem.
But Bessel's opinion, as our readers already know, is in consistent not only with the conditions on which he base his calculations, but also with the results of more recen studies of the state of the moon's surface. So far from be ing an airless, waterless, unalterable desert; a changeless mass of dead matter, like so much volcanic scoria, th moon is now known to have an atmosphere of c nnsiderable olume and density, to present abundant evidence of phys cal activity and change, and to have in all probab.
enough to make life easily possible on its surface.
The moon is dying, but very far from dead.
uch smaller than the earth it has run its dead. Being so dly but is still the earth, it has run its course more rap dly, but is still a good way off from that goal of ultimat eadness to which so many astronomers have theoretically assigned it. There is not the slightest adequate evidence Neison says, of the popular view, and "its truth would be admitted by no astronomer who had devoted sufficient attention to selenography to enable him to thoroughly realize the probable presentcondition of the moon.
Such being the case, the hypothesis that the moon's green plains derive their color from vegetation ceases to be impos sible or absurd. The evidence is not of a character to jus tify a positive assertion that the mythical man in the moon may have abundant pasturage for his cattle; but his case ceases to be absolutely hopeless when a thorough-going se lenographer can say, as Neison does, that the moon may ossess an atmosphere that must be regarded as fully capa ble of sustaining various forms of vegetation of even an
advanced type; that it does not appear how it can justly be questioned that the lunar surface in favorable positions may yet retain a sufficiency of moisture to support vegetation of many kinds; and that in a very considerable portion of the entire surface of the moon, the temperature would not vary sufficiently to materially affect the existence of vegetable wife.
may not follow the plan of the African tribe which Living stone tells of, and keep himself and his cattle in extensive lunar caverns, where the temperature is uniform and water abundant ; driving them forth upon these great green fields for a fortnightly feed when the sun is up for its long day and the grass in good condition" Jules Verne ought not to neglectso inviting a field of exploration.

WORKMEN AND THEIR TEACHERS

For examples of the lack of definite knowledge upon sim ple practical subjects, by those who act as judges of work manship, we need not look far. For instance, if we find in a mechanical newspaper a discussion on the proper manner o putting wheels upon axles, we shall perhaps read as follows Make them parallel and bore the hole parallel. We hav ried that, and we had more wheels come loose than we d now when we put them in taper," says another. The truth is hat " make them parallel" is correct for good workmanship ad "make them taper" is suitable for inferior workmanship Who ever heard of a properly designed and constructed par ITel axle becoming loose in its wheel, unless from a fracture of the one or the other? If the boring and turning were ither out of parallel or out of round, if the tool marks were eft too deep, or if the sizes had not allowed the prope mount for shrinkage or the hydraulic pressure, as the case may be, the parallel shaft will come loose; but these defect have no business to exist, and can only exist from a lack of either surveillance or practical knowledge on the part of those in charge of the work.
Another cause for the common ignorance of certain and ac curate methods is the unwillingness of a great many of ou expert mechanics to impart their knowledge to others. Thi undoubtedly exists to a deplorable extent, and we have heard it defended upon the plea that business men are no in the habit of bruiting to the world any advantages they may happen to possess in their business facilities; and why should mechanics do so in their business? This is in eed a difficult question to answer upon a business basis, and brings us to the main question, which is how to utiliz he knowledge possessed by our most expert artisans, and, y imparting it to our apprentices for their guidance, mak superiority and rapid workmanship the rule and not the ex ception. Much effort has been expended in this direction by various publications, but we regret to say that we very rarely find a book in a machine shop; and need we look far or the reason, which lies not in the backwardness of the ress in utilizing the materials at hand, but in the quality of he materials themselves, which do not as a rule commend hemselves to those they are intended to benefit? The rea ons for this are that, as we have before remarked in thes pages, we must look for the science of practice to those wh are known from their practical skill; and this course w have endeavored to take in the Scientific American and he Scientific American Supplement, which have drafted into their service the best known talent in each branch of practical education upon which they have treated. That our efforts have been appreciated is attested by the freedom with which the scientific newspapers of both the United States and of England have drawn upon our columns.
Of the importance of imparting to others the results of he experience of the skilled workman, we will cite the fol owing: Some four years ago there was introduced, from England, a special tool steel, possessing the peculiarity that t did not require any hardening. It was however difficult o forge, since it would crumble to pieces if heated to mor than a bright red, and also if hammered at a very low red heat. The writer was one of the first men in this country to try it, and found no noteworthy advantage possessed by it for light lathe or other work. It had no advantages, in act, as a finishing tool, and but very few for such rough ing purposes as the shop in which it was tried afforded its cost, too, being sometimes as great as that of ordinary tool steel, its use was not considered advisable. A year afterwards it became known that a certain printing press manufactory had adopted this steel, and had speeded up its machinery faster in consequence of the superiority of the new steel. A visit to the establishment failed to elicit from its manager any data or opinion; but first the speed and feed of some of the tools, communicated to the writer by workmen, disclosed that there was "nothing in it," as me chanics say, and a tool made of that steel and at the manu actory in question, lent by one of the artisans to the writer showed upon experiment that its superiority was confined to heavy cuts on hard metal,circumstances sufficiently unusua to show that the steel was suitable for special purposes only and hence it was no surprise to learn that its general use had at that factory been discontinued at a subsequent date. How ever, it was tried, at the suggestion of the writer, upon pul leys, by Messrs. Laffan and Edgar, of New York, who, find ing it served excellently well, applied it to turning shaft ng, and they were so well pleased with its adapta bility to their purposes as to adopt it and recommend it to others. On another occasion, the writer was requested to visit one of the United States navy yards to see the excel lent results obtained from a certain brand of American tool steel, for which universal merits were claimed; but on in spection, he found the cutting speed on small work to be only about 25 feet per minute, and that on larger work to range between 9 and 12 feet per minute; so that in neithe case was the duty obtained from the tools sufficient to form any criterion of their cutting value.
If we turn to written instructions, we shall find tha for no kind of iron work is a speed of more than 25 feet per minute recommended, while in most cases 23 feet per minute is not exceeded. On small work, however, 35 feet per minute is easily attainable, and is by far the most economical. Two
out of every three " authorities" give the cutting speed for cast iron as being less than that for wrought iron, whereas the exact contrary is the fact. Now wherein does the fallacy lie? We have been asked that question by expert workmen, many times over, and we could find no reasonable answer, except that they did not properly forge or temper their tools. No doubt that, in many cases, defects in the shape of the tools may have had something to do with it ; but be the cause what it may,one thing is painfully apparent, that the author of the information was ignorant of his subject : as ignorant as the mechanical correspondent who visited Sheffield in England, and came back and exposed his mechanical ignorance a few weeks ago by writing a long article upon the want of progressive ideas among Sheffield manufacturers, instead of rolling them, all unconscious of the fact that to the forging belonged a superiority of quality that can under no circumstances be attained by rolling processes.

Is RaRE beEf dangerous?

For several years past hygeists and pathologists have been closely studying the progressive invasion of the trniodea or tape worms in the human species, in order to discover all the causes which lead to the presence of these terrible parasites and the means of preventing them. While versy, it has been demonstated that we are attacked by the versy, it has been demonstated that we are attacked by the (tenia medio canellata or inermis), that the germs of these (tania medio canellata or inermis), that the germs of these
two entozoa are introduced into the intestinal canal through two entozoa are introduced into the intestinal canal through
Hlesh food,and that the germs of the first usually come from Hesh food,and that the germs of the first usually come from
pork and those of the second from beef and mutton. It pork and those of the second from beef and mutton. It
has furthermore been pointed out, by M. Regnault, that while the number of attacks of the armed tenia has not no tably augmented, those of the non-armed worm are becoming more and more frequent.
The cause attributed to this increase is first the thera peutic use of raw beef, and second, the habit of eating degree than the former), in a very rare state. Both beef and mutton contain morbific germs, which might well escape the scrutiny of a much more rigid inspection of market food than obtains here: and these, lodged in some organ of the body, speedily develope into the mature worm. Cooking the meat through thoroughly is a sure safeguard; but on the other hand, there are many who have no relish for well done beef or mutton, and, among the Germans especially, the meat is prepared in various ways without being cooked at all. We have frequently seen raw beef steak served and eaten with the simple accompaniments of pepper, salt, and vinegar. Butchers in New York city chop finely the good meat which is trimmed from joints or bones, and sell it in its hashed state, at a low price. to the poorer classes, who likewise eat
it raw, and thus save the fuel required for cooking. As indicated above, physicians often prescribe raw meat to the weak and debilitated, and it is no very uncommon thing to see infants sucking tonder pieces of raw steak. Of course all this is dangerous,and the fact,we have reason to believe, is not entirely unknown to those who favor the practice; but on the other hand, there is a general idea that if meat be cooked ever so little, merely warmed through, all peril is obviated. That this is a subtle error will be clear from brief consideration of the cooking process.
The rationale of broiling is the subjection of a large sur face of meat to a sudden high temperature. Coagulation of the exterior albumen succeeds, and the juices are pre vented from escaping, so that they are cooked with the fibrous part of the meat, enclosed as it were between two shells. Roasting, or rather baking, as it is practised in this country, is virtually the same process, the hot oven being substituted for the coals. Frying accomplishes the same
end by the action of highly heated fat. Boiling is just the reverse, as the heat in that case is applied gradually, so that the albumen can be coagulated uniformly through the mass. Now albumen coagulates at 142° Fah., and further heat reduces it to a firm transparent body, so that a piece of beef duces it to a firm transparent body, so that a piece of beef
which is left "unbasted,"that is, unmoistened, during the which is left "unbasted," that is, unmoistened, during the
cooking process, and its exterior temperatures not thus kept down, or a steak allowed to cook slowly over a slow instead of a brisk fire, is likely to become encased in a close crust, not inaptly termed "leathery." which tends to prevent the further penetration of heat. It will readily be perceived that thus,although the meat has been subjected to cooking a proper length of time,and although its exterior may appear overdone, a part of its interior may be practically raw, and may never have reached the temperature of 140°, beyond such portion of the meat thus prepared, the germs are none the worse for their warming, and enter the body in an active state.

It does not follow,however,from this that we are to interdict that most noble of all dishes, the rare cut of sirloin, but it does follow that we should exercise some greater care in its preparation. And in this respect we have a very
safe and simple guide in the two temperatures noted above, or rather in their close approximation. Everybody knows the difference in color and general appearance between meat nearly raw and meat cooked, and is capable of observing the glairy, flabby condition of the former as compared with the firmness of the latter. In one case the albumen has not coagulated. in the other it has. But in the latter instance we know that a temperature of 142° has been attained, and that that is two degrees higher than the germ death point, viated, on simple inspection of the condition of the meat which still is rare enough to satisfy any healthy taste.

It is not difficult to perceive that the ravages of that other It is not difficult to perceive that the ravages of that other
fearful parasite, of the hog, the trichina spiralis, have been fearful parasite, of the hog, the trichina spiralis, have been
the cause of greater care in the preparation of pork; and as the same thorough cooking which destroys the trichina likewise destroys the tænia germ, both evils are obviated at once. Hence we find another cause for the diminution in cases of armed tænia noted by Régnault, while the prevalent neglect of precautions regarding beef and mutton may
likewise account for the spread of the affliction attributable to those meats.
It is a curious fact in this connection that a prominent French medical journal (the Abeille Médicale) strongly recommends horse flesh to be used raw therapeutically, and asserts that it is much more nourishing than either beef, mutton, or pork. We doubt whether this last assertion will meet with general acquiescence; but if it appears, as our contemporary states, that the horse is not subject to the para sitic affections common to the cattle now used as food, there can be no question but that, from a sanitary point of view, the food value of our superannuated chargers is preatly enhanced. At all events, for some reason the consumption of horsefesh in France is rapidly increasing, as recent statistics show that nearly 30 per cent more of the animals have been
slaughtered, for the markets in Paris, during 1876 than were killed last year.

THE " THUNDERER" EXPLOSION.

It will be remembered that, in our recent account of the disastrous boiler explosion on board the new English war vessel Thunderer, we stated, on the authority of the Lon don Times, that the casualty was owing to the gross care lessness of not removing the wedges which had held down the safety valves during a previous hydraulic test. Such negligence seemed almost inconceivable, and therefore we are glad to welcome the flat contradiction given by Engineer ing to the Times report. The valves were not wedged down, and the similar valves in the unexploded boiler were all in working order when tested cold. Our contemporary points out that the valves of the burst generator, when cold, were $\frac{1}{1} \sigma$ inch free in their seats. Around the latter, except a
the steam connection, there is a broad flange not heated by direct contact with steam, its under surface being in contact with the air of the fire room, and its upper surface forming the inside of the bottom of the valve weight box. This cool flange, therefore, tended to prevent the expansion of the cast iron chamber. So that the brass valve seat must hav had an increased radial expansion inwards. Now taking in to consideration the dimensions of the parts, the temperature of the steam, and the coefficient of expansion of brass,
it is found that the valve, after the seat had expanded in wards, would be 0005 inch larger than its seat. The valve were thus obviously fitted too nicely, and through the un equal expansion they set fast. In addition to this the stop valves were shut, and it is known that the steam gage was badly out of order, and these three causes are, in Engineer ing's opinion, amply sufficient to account for the explosion

LIGHTNING RODS.

" Professor Wise, the balloonist, who has had rare opportunities for studying and observing storms as well as calms has repeatedly expressed his convictions that lightning rods
are useless in electrical storms but that metal roofs are an absolute protection. He says that during a recent storm several flagstaffs were shivered down to the point of contact
with the metal roofs, when the damage ceased, the fluid diswith the metal roofs, when the damage ceased, the fluid dis-
peesing over the expanse of metal. This corresponds to persing over the expanse of metal. This corresponds to
hundreds of other cases that he has examined; and he de clares his conviction that ' the lightning rod, as a protection
in itself, is of no more value than a bodkin would be to ward of the ball fired from a Columbiad.'"-American Architec and Building Newos.
A metallic roof may, in some cases, avert damage to an tricity to the structure, to the water leaders, etc., down which the lightning may pass to the earth; a well wetted wooden roof may as sist to the same result. Hundreds of unrodded houses, with and without metal roofs, have been struck, and not seriously damaged. But it is nonsense to assume that a good lightning rod, properly connected with the roof and with
the ground, has no value. Although unrodded buildings may by chance escape, they are always in danger, and the lives of inmates are in jeopardy.
On the other hand, all experience, the world over, from the year 1752, when rods were first invented by Franklin, to the present time, has shown that conductors are an essential means of safety in thunderstorms, that they preserve human life, and prevent the destruction of property whenever pro perly applied.
Formerly, when ships sailed without rods, the loss of life and property at sea was appalling. Nearly all vessels now carry rods, and such an occurrence as serious damage to a rodded vessel by lightning is almost unknown. If like ships, our dwellings and buildings could have th broad expanse of the sea for their rod terminals, they would be as universally exempt from injury by lightning.
We except, however. buildings and vessels containing petroleum, or other substances from which inflammable
gases exude. The latter mix with the surrounding air and form an explosive atmosphere of large extent, often reach ing aiove the points of the electrical conductors; and such mistures will be set on fire by the electricity on its way to and before it can reach the conductor.
In nearly all cases, our house rods are defectively con nected with the ground. They are simply stuck down for five or six feet into dry earth; whereas they should be soldered to a water or gas pipe, or be connected with sume large extent of conducting material placed underground.

The following valuable and practical hints, as to the oper arrangement of lightning rods, are given by Mr John T. Sprague, in his excellent treatise upon "Electri city ; Its Theory, Sources, and Applications :"
'It must be remembered that lightning is not a mere thread of flame, or confined to the visible line; a large space all round the line takes part in the discharge, and gives up the force previously accumulated in it as tension.
"These principles settle conclusively all questions as to the construction of lightning conductors. Their object should be to connect to earth every portion of a building ; and as this is actually possible only with metal buildings, they should connect every salient point and as much of the surface as possible, so as to extend around the building the area of low tension, or artificial "earth" surface opposed to the cloud. Chimneys require especial attention, because they are tubes lined with conducting material, containing warmer air: and if with fires, then extending a compara tively good conducting column of warm air towards the cloud and so inviting a discharge ; hence it is that lightning almost always enters a house by the chimneys. All doors and windows causing currents of air should be closed during a thunderstorm.
'The prime essential is a good connection to water; wate and gas mains provide the best if the conductor is well se-
cured to them; next to them is the metal shaft of a good pump, in a well constantly supplied by springs ; then ponds or ditches. What is required is a large metal surface ter minating the conductor, and in contact with a stratum of moist earth, so that a hole sunk into wet gravel, into which the conductor is led, and surrounded with a quantity of coke to increase its surface of contact, will answer, but dry clay, or rock, is not safe. This connection should, if possi ble, surround the building by means of rods from its various corners, either led to different earths or else continued by a rod round the house to one earth connection. Every piece of metal work above the building should be utilized, such as ridge caps, guttering, and water pipes. They cannot be trusted as conductors because of the joints in them, which offer great resistance, and therefore prevent reduction of tension, but they will help to form a protecting network around the building. especially if strips of copper are soldered across each joint. For the same reason a connection should be led from the bottom of the down pipes from the gutters to the nearest suitable earth, though a very good but variable earth connection is set up from these by the water itself during heavy rain. The lower parts of the bell wires may also be advantageously connected to an earth such as the nearest gas or water pipes, as several accidents have occurred from their having either received a direct charge through the walls, or having a violent current in duced in them
"The terminals should be attached to all high or salient points, most particularly chimney stacks ; if these are wide,
and contain several chimneys, it is safer to have two points, and contain several chimneys, it is safer to have two points, though usually one is sufficient; but the kitchen chimney, or any one commonly used,and therefore lined with soot,and containing warm air, should be specially attended to. The points may be made of rods of 1 -inch iron drawn out to a point, rising 2 or 3 feet above the building; they are better also for galvanizing. There is no advantage in any of the ancy points, patented or otherwise. The conductor depends upon the size and hight of the building. A factory chimney or church steeple should have a copper conductor of at least inch section, either as a rod or as a wire rope, well pro ected against injury; for smaller buildings, iron rod may be used instead of copper. In ordinary cases galvanized iron wire of about ${ }^{2}$-inch diameter (such as is used for telegraphic purposes) will answer perfectly, if led separately from various salient points, and carried down the different sides of the house and connected as above described, to the guttering, etc., but for a single conductor at least $\frac{1}{2}$ inch rod should be used. Solid rod is best, as it exposes least surface to rust, for it is the mass or weight of metal which conducts, not its surface, as some suppose ; but every joint must be carefully made and soldered, to secure metallic con inuity and low resistance.
"It will be seen that conductors should never be insulated from the building, but, on the contrary, as much of the sur face as possible should be connected to the conductor. Elec trometers, etc., are often surrounded with a cage of wire
connected to the earth or to the negative pole of the active connected to the earth or to the negative pole of the active
source of electricity, in order to prevent them from being source of electricity, in order to prevent them from being affected by external electric disturbances. That is exactly what we require to do with our buildings; an iron house well connected to earth would not only be perfectly safe, but itsinmates would scarcely feel any of the effects usually produced on the nervous system by "thundery" weather, except so far as these are due to heat. The object aimed at in a lightning conductor should be to approach that condition as nearly as possible ; to obtain an enclosed area within a conducting envelope provided with points and connected to earth."

The on the Earth.

Professor P. G. Tait, of the University of Edinburgh, in his lectures on recent advances in physical science, lately
published, considers the question how long life has been possible on the earth. He concludes that ten millions of years is "the utmost that can be allowed from the physical point of view for all the changes that have taken place on the earth's surface since vegetable life of the lowest known form was capable of existing there." Opposed to this is the view of the most eminent modern geologists, that at least three hundred millions of years have passed away since ter restrial life began.

