Srientific Americaut.

EBTABLISHED 1846

MUNN \& CO., Editors and Proprietors. pUBLISHED WRERLY AT NO. ST PARK ROW, NEW YORK.

O. D. MONN.

A. e. beach.
terms for the scientific american. One copp, one year, postage tncluded.
$\underset{\text { \&2 } 70 \text {, postage facluded }}{\text { Club }}$
Ten coptes, one year, each \&2 70, postage Included.
Over ten coples, same rate each, postage ncluded................. $\boldsymbol{2} \boldsymbol{\gamma 0}$ triber then recelves the paper free of charge.
Norz. - Persons subecrling will plese to
Nort.-Persons subscribing will pliage to give their full names, and Pos
Nate Offce and state address, pilinlly written. In case of changing restdence state former address, as well 1 s give
unleses the former address 18 given.
Scientific American Supplement.
snd pubilished simultaneously with the rexular edition.
TERMS.
One year by manl.
Botrentriot AmRRI
Single Coppes....
Tne
aqeet
he safest was to remit to.................................. 10 Addres MLNN \& Co., 57 Park Row, N. Y.
the newa agents.
VOLUME XXXV., No. 11. [New Series.] 7hirty-first Year
NEW YORK, SATURDAY, SEPTEMBER 8, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. Vol. II., No. 37.
Wor the Week ending September 9, 1876.
With 83 Figures and Engravings:
table of contents.
The international exhibition of 1876, with githuatrationa. Thi Life-Saring Sericie Apparatu, 3 engravings.-Life Signals.-Life and Surf Baats. - Llife Boat Station Houses. - The Ball Puzzle, 5 figures

- A Tour through the Boliter Houses. - The Galloway Boller.-Green' Fuel Economizer.-Pearn's Pump.-Corliss Bollers.-Exeter Bonlier.

 Wilcox Tubular Bonler.-Harrison Boller.-Andrews' Boller.-Rogers \&
Black Boller.-Lynde's Boller.-WIegand Boller.-FItermich's Boller.Plerce Rotary Tubular Boller.-Anderson Boiller.-Armstrong Heater
and Lime Catcher. -Exhblt of Carrages, 19 figures. - Exhhblt of Wood-
 working Machnee, 9 Agures,-Bert's Stungle Machine, Boult's Mold-
Ing Machnne.Machine for Dresesing Heads.-Carving and Molding MaIng Machine.-Machnne for Dresesing Headd.-Carving and Molding Ma-
chine, 1 engraving. - Door and Blind Machnne.-Waiker's scroll saw.

11. ENGINEERING AND MECHANICs. With 5 engravings.-Driling Ma. ENNINEERING AND MECHANISS. WIIn -Rallimy Locomotive
what Makes It Turn.
 No. 6.-The Fitten. Dollar Whitenall Row Boat, 2 engravings. - Slmple
Rule for the Management of Sall Boats.-Architecturetn Terra Cotta, by EDicND SAARP 5 engravings. - Platt Church, near Manchester.-
 pearances of Steel Crystals.-Steel Crystallzed by Over-Heating.-How
to Produce Fine-Grained steel.-Tests of Spectmens.-Stell-Making Immitgrants from England.-New Iron Process.-Flour Mills of the Unted states
. lessons in mechanical deawing, by Profegsor Maccord, 11 figures.
v. MISCELLANEOCS.-The A. B. C. Process for Sexage.-Free Sulce
taken up by Plants, 1 engraving.-Best Nursery Frut Trees. Names.taken up by Plants, 1 engraving,
vew Chalk Fonsills, 1 engraving

The scientific American supplement

MUNN \& Co., Publibrabs,
${ }_{37}$ Pars Row,

THE GREEN FIELDS OF THE MOON

When the moon is at the full, the unassisted eye readil distinguishes on her face certain dark gray spots more o less sharply separated from the brighter portions. Through the telescope these spots appear as broad level spaces, re sembling terrestrial seas. Indeed the earlier observers mis. ook them for seas, and by that name (Latin, mare) they are known to this day, They are not seas, however, but ancien sea beds, now probably nearly, if not quite, destitute of wa-
ter : vast arid basins like the Sahara, or the great interior tah basin of our own continent
Examined more closely, these dried-up sea beds-to which Neison applies the irregular but convenient plural maresare seen to have a rolling surface like some of our western prairies, or to be traversed by numerous long ridges, resemling the wave-like sand hills which give so marked and pe cliaran appearance to the deserts with low he leveler portions being dotted wit persed with small crater pits. In many places formation of an apparently alluvial character abound, while the an
cient coast lines show distinct traces of water action. Two of these lunar plains-Mare Humorum and Mare Chrisiumare walled in completely by lofty mountains, presenting stupendous precipices to the vanished sea. The large mares are more like ocean beds. They run together as ter restrial oceans do, and sometimes merge into the brighter continental regions, without a distinct line of demarkation
In other places they show a rugged coast line, rising into diffs and peaks, and pierced at times by valleys and ra vines.
One of the most conspicuous of these lunar ocean beds, also one of the deepest, is known as the Mare Serenitatis. Its area is nearly 125,000 square miles. Within its dark gray border, from thirty to eighty miles wide, is an exten ive inner plain which at times presents a fine clear ligh green tint with a central streak of pure white, the gree rea lying lower apparently than the gray exterior. The green tint is difficult to catch, except under favorable condi tions, and is much weakened by the effect of numerous small white round spots and gray ridges.
Another of the moon's green plains was discovered by Mädler in the Mare Humorum, already mentioned. This is one of the smallest as well as most distinctly bordered of the dark gray plains. Its area is 50,000 square miles. The greater portion of its interior is distinctly tinged a dusky green, sometimes very marked, affordivg a strong contras with the pare gray of the borders and high enclosing ridges. On the west the green area extends nearly to the edge o arated from the border by a narrow darker gray fringe, except on the northwest, where the gray and green areas merge cept on the north west, whe
insensibly into each other.
Still another area of green is observed in the Mare Chrisi m, one of the most conspicuous of the moon's dark plains. It is completely enclosed and is, perhaps, the deepest of the lunar mares. Its area is 78,000 square miles. Its general
tint is a gray mixed with an unmistakable tinge of green, tint is a gray mixed with an unmistakable tinge of green,
especially under high illumination. This verdant hue is seen to best advantage for several days before and after the moon is full.
These and other color changes on the face of the moonas, for instance, the darkening of the great ring plain of Plato with increasing light, and like changes in certain lon winding lunar valless-led Beer and Müdler to suggest tha hey would indicate vegetation, were vegetation possible o he surface of the moon. But having accepted Bessel's con cusion that there could be neither air nor water on the lu nar surface, and consequently no life, those much respected
selenographers could not entertain the hypothesis of lunar selenographers could not entertain the hypothesis of
vegetation, however strong the evidence might seem.
But Bessel's opinion, as our readers already know, is in consistent not only with the conditions on which he based his calculations, but also with the results of more recen studies of the state of the moon's surface. So far from be gg an airless, waterless, unalterable desert, a changeles mass of dead matter, like so much volcanic scoria, th volume and density, to present abundant evidence of physi cal activity and change, and to have in all probability water enough to make life easily possible on its surface.
The moon is dying, but very far from dead. Being so dly smaller than the earth,it has run its course more rap dly, but is still a good way off from that goal of ultimat eadness to which so many astronomers have theoretically assigned it. There is not the slightest adequate evidence Neison says, of the popular view, and "its truth would be admitted by no astronomer who had devoted sufficient atten tion to selenography to enable him to thoroughly realize the probable presentcondition of the moon.
Such being the case, the hypothesis that the moon's green plains derive their color from vegetation ceases to be impos sible or absurd. The evidence is not of a character to justify a positive assertion that the mythical man in the moo may have abundant pasturage for his cattle; but his cas ceases to be absolutely hopeless when a thorough-going se enographer can say, as Neison does, that the moon ma possess an atmosphere that must be regarded as fully capa-
ble of sustaining various forms of vegetation of even an ble of sustaining various forms of vegetation of even an
advanced type; that it does not appear how it can justly be questioned that the lunar surface in favorable positions may yet retain a sufficiency of moisture to support vegetation of many kinds; and that in a very considerable portion of the entire surface of the moon, the temperature would not vary sufficiently to materially affect the existence of vegetable wife.
may not follow the plan of the African tribe which Living stone tells of, and keep himself and his cattle in extensive lunar caverns, where the temperature is uniform and water abundant ; driving them forth upon these great green fields or a fortnightly feed when the sun is up for its long day and the grass in good condition" Jules Verne ought not to neglect so inviting a field of exploration.

WORKMEN AND THEIR TEACHERS

For examples of the lack of definite knowledge upon sim ple practical subjects, by those who act as judges of work manship, we need not look far. For instance, if we find in a mechanical newspaper a discussion on the proper manner o putting wheels upon axles, we shall perhaps read as follows " Make them parallel and bore the hole parallel." "We hav tried that, and we had more wheels come loose than we do now when we put them in taper," says another. The truth is hat " make them parallel" is correct for good workmanship nd "make them taper" is suitable for inferior workmanship Who ever heard of a properly designed and constructed par allel axle becoming loose in its wheel, unless from a fracture of the one or the other? If the boring and turning were ither out of parallel or out of round, if the tool marks were eft too deep, or if the sizes had not allowed the prope amount for shrinkage or the hydraulic pressure, as the cas may be, the parallel shaft will come loose; but these defects have no business to exist, and can only exist from a lack of either surveillance or practical knowledge on the part of those in charge of the work
Another cause for the common ignorance of certain and ac Arate methods is the unwillingness of a great many of ou xpert mechanics to impart their knowledge to others. Thi undoubtedly exists to a deplorable extent, and we hav heard it defended upon the plea that business men are no in the habit of bruiting to the world any advantages the may happen to possess in their business facilities; an why should mechanics do so in their business? This is in eed a difficult question to answer upon a business basis, and brings us to the main question, which is how to utiliz the knowledge possessed by our most expert artisans, and y imparting it to our apprentices for their guidance, mak uperiority and rapid workmanship the rule and not the ex ception. Much effort has been expended in this direction by various publications, but we regret to say that we very rarely find a book in a machine shop; and need we look far or the reason, which lies not in the backwardness of the ress in utilizing the materials at hand, but in the quality of he materialsthemselves, which do not as a rule commend hemselves to those they are intended to benefit? The rea ons for this are that, as we have before remarked in thes pages, we must look for the science of practice to those wh are known from their practical skill; and this course w ave endeavored to take in the Scientific American and he Scientific american Supplement, which have drafte into their service the best known talent in each branch of practical education upon which they have treated. That our efforts have been appreciated is attested by the freedom with which the scientific newspapers of both the Unite States and of England have drawn upon our columns.
Of the importance of imparting to others the results of he experience of the skilled workman, we will cite the fol owing : Some four years ago there was introduced, from England, a special tool steel, possessing the peculiarity tha t did not require any hardening. It was however difficult to forge, since it would crumble to pieces if heated to mor than a bright red, and also if hammered at a very low red heat. The writer was one of the first men in this countr o try it, and found no noteworthy advantage possessed by it for light lathe or other work. It had no advantages, in act, as a finishing tool, and but very few for such rough ing purposes as the shop in which it was tried afforded ts cost, too, being sometimes as great as that of ordinar tool steel, its use was not considered advisable. A yea afterwards it became known that a certain printing press manufactory had adopted this steel, and had speeded up its machinery faster in consequence of the superiority of the new steel. A visit to the establishment failed to elicit from ts manager any data or opinion; but first the speed and feed of some of the tools, communicated to the writer by workmen, disclosed that there was "nothing in it," as me chanics say, and a tool made of that steel and at the manu actory in question, lent by one of the artisans to the write showed upon experiment that its superiority was confined to heavy cuts on hard metal, circumstances sufficiently unusua to show that the steel was suitable for special purposes only and hence it was no surprise to learn that its general use had that factory been discontinued at a subsequent date. How ever, it was tried, at the suggestion of the writer, upon pul leys, by Messrs. Laffan and Edgar, of New York, who, find ing it served excellently well, applied it to turning shaft ng, and they were so well pleased with its adapta bility to their purposes as to adopt it and recommend it to others. On another occasion, the writer was requested to visit one of the United States navy yards to see the excel lent results obtained from a certain brand of American tool steel, for which universal merits were claimed; but on in spection, he found the cutting speed on small work to be only about 25 feet per minute, and that on larger work to range between 9 and 12 feet per minute; so that in neithe ase was the duty obtained from the tools sufficient to form any criterion of their cutting value.
If we turn to written instructions, we shall find tha for no kind of iron work is a speed of more than 25 feet per minute recommended, while in most cases 23 feet per minute is not exceeded. On small work, however, 35 feet per minute is easily attainable, and is by far the most economical. Two

