Srixutifir बhmoritam.

MUNN \& CO., Editors and Proprietors. published weerly at
NO. BT PARK ROW. NEW YORK.
O. D. MUNN. A. .e. BEACG.
ne copy, one year, postag TERMS
Ten coptes, one year, each Clubleates
1
Ten coptes, one year, each $\$ 2$ 70, postage included
Over ten coples, same rate each, postage included.....
the subscriber then recetves ti.e paper free of charge
Notr.-Persons subscribing will please to give their full names, and Post office and State address, plainly written, and also state at which time thes the recetpt of the order. When requested, the numbers can be supplite from January 1st, when the volume commenced. In case of changing rest dence, state former address. as well as glv
be made unless the former address 18 glven
be made unless the former address is glven
If any of our readers fail to receive their
tion is not planly written ;if premineir numbers regularly; if the drec tion is not platnly written; if premiums are not received; or if there ts
tany sort at this office, we will thank our friends to send card complaints, and repeat the same, if need be, until the remedy is effect. ed. Do not hesitate to complain. We desire

VOLUME XXXIV., No. 9. [New Series.] Thirty-first Fear
NEW YORE, SATURDAY, FEBRUARY 26, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT. For the Week ending February $26,1876$. table of contents

 Chemistry
Richardson
Lesd, with 10 engravings
Cor
VII. AR MHITECTURE, Withes of Iron in Buiding. engravings.-Lodges and Cottages in EngiiII. NATURAL HISTORT.-The Polar Bear.-Insects in Amber X. CHEMISTRY. METALLERGY, ETC.-Reduction of Iron Ores.-New
Frocesfor Iron and Steel.-Apparatus for the Estimation of Tannic
Acid, 1 fig.

 COMBINED RATES
Ay and SED RATE
 MUNN \& CO., Publishers,

What the coming man may be.

Clever writers have frequently amused themselves and their readers by forecasting the future, and prognosticating the condition of humanity centuries hence. They have ma humad, so to speak, the dreams of to-day, and p. In all these Utopias, however, the people, though better morally, more happy socially, more fortunate politically, and more powerful through easily predicted increase of knowledge, powerful through easily predicted increase of knowledge,
are yet substantially the same as the people of the present are yet substantially the same as the people of the present.
It is assumed, apparently, that the future progress of man is to be measured by changes in his condition, not by changes in himself: that, supposing progress to go on in the futur as in the past, the men of 5876 will differ from us in thei personal development.
A writer of sufficient knowledge and liveliness of imagin ation might plan a more marvelous and, it is hardly too much to say, more probable Utopia from the standpoint of psychical rather than material development, picturing a time when the average man will be intellectually as superior to us as we are superior to the less developed man of five thousan years ago. That there has been a similar increase of human brain power during the past few thousand years is as certain as that there was a steady increase of brain bulk throughou the animal kingdom during the geological ages just preceding and there is no physiological or other reason for believing that man may not go on perpetually increasing in menta
Measure the intellectual gulf between the Australian savage, barely able to count his fingers and having no numeral above two, and a Newton or a La Place, or even the average equal interval : then suppose the whole race advanced an the average man would be a Michael Angelo! The basis for such an estimate of the powers of the coming man is found, strange to say, in certain idiots.
Idiocy is commonly marked by the non-development of the physical powers, but sometimes by the non develop ment of all but one, in which cases a single faculty appears to receive the whole of the force evolved, and to develop enormously at the expense of all the rest. Thus we may account for the marvelous power in one direction shown by idiotic prodigies like Blind Tom, whose psychical power is wholly musical. The idiot painter known as Cat Raphael illustrates the same perversion of force in another direction He drew and painted cats and kittens of every sort, shape, and shade, in every possible position and condition, and painted them wonderfully well, yet could do nothing else. Ln like manner we have calculating idiots, able to make the able to explain the mental operations involved. Other idiots, without reference to clock or watch, and without conception of the object or meaning of divisions of time, are able to tell the hour and minute at any time, night or day. Still others show an extraordinary development of verbal memory, unaccompanied by other mental power. Though unable to read or to understand the meaning of many words, they will re
peat by sound hundreds of verses, lists of words, everything, in short, that they may hear. Then there are historical pro digies, who, though ignorant of history in any just sense, can give the date of every great battle or other event, repeating them as isolated facts, devoid of interest and meaning Sim-
ilarly there are mechanical idiots, or rather mechanical genilarly there are mechanical idiots, or rather mech coars ago there was exhibited in England a beautiful model of a sinip, pronounced by competent judges to be a perfect specimen of naval architecture, every detail being proportioned and finished with the nicest exactness. It was made by the im becile son of a gardener in an interior county. Up to that time, it is claime, he had never seen the sea or a ship, his pattern leing a printed ship on an old pocket handkercbief When his work was nearly finished, he visited a dockyard,
and made a few changes in his work. Four years were spent on this, his second attempt at shipbuilding, his first having failed through ignorance of the fact that wood could be bent after immersion in hot water, a trick which he is said to have
discovered by himself. He was taught to copy drawings which he did with surprising exactness; yet after all, at the age of twenty-four he was described as a small headed, large pupilled idiot. So we might go over the whole list of human faculties, finding illustrations of enormous developments of each combined with the total lack or non-development of a other mental powers. The entire force of such ind
seems, as we said, to be turned into a single channel.
Imagine an organism capable of sending an equal amount of force to each and all the faculties: a type of humanity in which the average man should have the memory of some idiots, the swift and certain calculation of others, the lin guistic, musical, constructive, and artistic faculties of others. Such a type of man is by no means impossible, by no means improbable. There have been prodigies in memory,
in calculation, in music, in inventive power, who were up to in calculation, in music, in inventive power, who were up to
the average in all other directions. However excessive the development of their faculties in one direction, it did not greatly impoverish them in the rest. And as, during the milleniums past, the human race has been slowly lifted from the low intellectual level of prehistoric savages, so we may reasonably infer that the race will go on increasing in mental power, until those prophetic hints of what man may be are all achieved and overpassed.

A MAN'S WORK

How best to utilize human labor, and at the same time to produce the least fatigue, is one of those interesting problems in industrial mechanics which every inventor of ma chines based on man power as a motor is called upon to
consider, and to which every employer of men for the sake of their brute muscular strength is obliged to give some at tention. It is a common error to believe that, in order to pro duce a given amount of work, a man always expends a given amount of power, and to recognize this is the first step toward a correct estimation of a man's muscular capability Appropriate rests are absolute necessities to the human ma and it is by intermittent not continuous, effort best work is produced. One man laboring ten hours and taking intervals of repose will produce more force and ac complish more work with less fatigue than another la boring eight hours with shorter or less frequent rests, the ctual time spent in working in both cases being equal. Bu on the other hand, during the periods of absolute work regu larity is a necessity, a fact clearly shown by the govern ment of soldiers on long marches, where the drum to which the feet keep time is a wonderful agent for repressing fatigue simply because it ensures regularity of motion. So also in rowing in a long race experience has proved the advantage of a clock work regularity of stroke with a brief breathing spell between each pull. In fact it appears that men wil naturally fall into this cadence, as witness the blows deliv ered by laborers with sledge hammers upon rock drills, and the peculiar timed "hup" which each will aspirate as his implement falls, or the tendency which sailors have to break into a cadenced singsong when pulling a standing haul on a rope. A more curious instance in this same regard is found in the power of dancing; nothing but the repeated rests and the regular movements will explain the ability of women, to whom ordinarily a walk of a mile in length is a severe task to dance during a period of five or six hours, and this at a time when Nature is most exhausted, owing to deprivation of sleep.
The best application a man can meke of his power is through his legs, for the muscles of those members are not only absolutely but relatively stronger than those of the arms. In other words, after work, the fatigue produced in both sets of muscles being equal, the leg muscles will have performed more useful labor than those of the arms. And further, the nearer we imitate a natural movement the better do we apply the power, therefore a walking motion of the legs, at a velocity equal to that of an ordinary gait, and ap plied to levers, is probably the most efficacious application of human force for steady work.
As to the absolute power of a man, expressed in pounds to be lifted or in similar terms, exact data are obviously impos sible, even foran average individual. An interesting series of experiments were conducted on this subject some time ago in France, and these, we believe, give a fair approximation. The heaviest load a man of strength can carry for a short dis tance is placed at 319 pounds. All a man can carry habitu ally-as a soldier his knapsack-walking on level ground is 132 pounds, and this is an extreme load, we should judge Or he can carry an aggregate of 1,518 pounds over 3,200 feet as a day's work, under like circumstances. If he ascend ladders or stairs-as do hod carriers-then he can carry but 121 pounds continuously, and his day's work cannot exceed 1,232 pounds raised 3,200 feet high. With regard to the effort and the velocity which a man can produce by pulling or pushing with his arms, it has been found that, under the most favorable circumstances and for continuous work, an effect exceeding from 26.4 to 33 pounds raised from 1.8 to 21 feet per second can not be gained, and this is equal to about $\frac{1}{8}$ horse power

THE OIL RESOURCES OF AFRICA.

It is hardly possible to study the progress which has been made during late years, in the art of utilization of previously wasted substances, without being impressed with theanoma lous course which the world has followed, relative to the vast natural products of Africa. To the economist the ques tion may well suggest itself whether an energy and skill akin to that which scientific men have expended in discovering sundry of these utilizing processes, if devoted to devis ing means for developing the resources of the great and al most unknown continent, would not have yielded results far more valuable to mankind in the increase of raw materia placed at its disposal. A striking instance is found by comparing the labor devoted to the extraction of fatty matters and grease of all kinds-labor (including the long voyages of the whaler, the sinking of wells in the oil-bearing earth, and the manifold operations known to chemistry) dependent on countless varying circumstances-with the fact that for miles along the West Coast of Africa, extending between Cape Blanco and St. Paul de Loando, there are vast forests of palms, the oleaginous fruit of which has for centuries rotted unused upon the ground. The palm forests back of the coast line between Cape Palmas and Elmina are said to be practically inexhaustible; and so also, in the neighborhood of Fernando Po, immense tracts are covered with the trees. The total export of the palm oil to Englan I exceeds, it is said 50,000 tuns, or a value of $\$ 10,000,000$ per annum; but it will readily be seen that this represents an exceedingly smal commerce compared to what might be the case were the enormous resources fully or even moderately utilized. The Fernando Po oil crop, as an example,seldom equals 400 tuns per annum, although 4,000 might easily be produced.
The difficulties in the way of the development above in dicated are the unbealthiness of the country, and the mo nopolies controlled by slave dealers. One of the latter buys the entire right to a large and valuable region by paying the King of Dahomey $\$ 10,000$ a year. The iniquity of this monopo ly is increased, says a recent writer, by the king binding all he traders to give palm oil to this trader at a price fixed by this king himself, without reference to market prices. The pen alty of non-compliance with the king's command is decapita-
tion. TRade is carried on by the most primitive means. In

Bonny, which is now the greatest palm oil market on the West Coast,the manila.a bronze coin from Birmingham, Eng laud, not unlike a bracelet in shape and size, is the current medium for money, in Old Calabar, the currency is copper
wire and brass rods,about three feet in length and bent douwire and brass rods,about three fest in length and bent dou-
ble; on the Guinea coast, gold dust is used, and one tribe uses strips of iron tied up in bundles of eight or ten pieces. The fruit from which the oil is obtained grows in the form of a large cone, about the size of a man's hat. It is covered
with long spines which protect the nuts, the latter being with long spines which protect the nuts, the latter being
about the size of a large olive and of a deep golden color. The palm tree forests, in the midst of which most of the factories exist,are said to be very picturesque. The trees, which tower to an enormous hight, are as thick as it is possible for them to be, forming in some places large and impassable clumps, and in others opening in wide and tortuous ristas. The trunks are often covered at the lower part with tufts of lovely fern, the emerald green of whose long fronds, as they droop gracefully to the earth,forms a beautiful contrast to the
somber brown of the trunks which they ormament. In the somber brown of the trunks which they ornament. In the open spots in the forests, the factories, mere collections of
huts, are built. In Dahomey, the nuts, when gathered, are huts, are built. In Dahomey, the nuts, when gathered, are
thrown into a trough formed by marking off a small area thrown into a trough formed by marking off a small area about six feet square, beating down the earth to form a floor
and enclosing it in a wall about 18 inches high. Into this receptacle the husks are thrown, to be trodden under foot by women until the husks and the oil which exudes together form a kind of putty. The mass is then thrown into vessels of hot water, when the oil rises to the top and is skimmed off. In Fernando Po, it is the practice to let the nuts rest in heaps until almost putrefied; hammering with stones follows, and then simmering of the pulp in a kettle, after which the women squeeze out the oil with their bands.
The men do not engage in the manufacture, their labor endThe men do not engage in the manufacture, their labor end-
ing with the climbing of the trees and sbaking down of the ing with the climbing of the trees and shaking down of the
fruit. It will be observed that the outside of the nut only enters into the process. The kernel separately yields a socalled black oil, and forms the staple of a trade with England, where the hard portion is subjected to the action of powerful crushing machines.
Oil from the palm nut, is, however, by no means the only fatty product to be obtained from rank African vegetation. No one has ever estimated the vast resources of this description, which abound in the countries bordering on the river Niger; and it is only in the shape of experimental and comparatively small exports that we get a glimpse of them. From Senegambia and uinea come Fouloncuma oil, used by the uatives for anointing their bodies, and for burning in
lamps, and Galam oil, a natural vegetable butter very much lamps, and Galam oil, a natural vegetable butter very much
used in Africa for preparing food. The castor oil splant grows wild with great luxuriance in Senegambia; and throughout West Africa there is an immense yield of pea or ground nuts, which already has given rise to a large commerce. In the northern part of the continent and especially Algeria, there are enough olive trees to supply, if fully developed, the demand of all Europe. The province of Kabyle is one enormous olive tree forest. The cocoanut palm grows in immense forests in Zanzibar, where its fruit is exported to France and Evgland, for making stearine for candles. The trichilia capitata on the Zambesi produces small black seeds which contain a large quantity of solid fat. The "forna" nut of Central Africa yields an excellent oil for culinary purposes, and is cultivated by the natives. A tree discovered by Dr. Kirk on Lake Nyassa also gives a rich oil, which even the natives have not utilized.
There is no doubt but that in the gradual progression of commercial colonies for the development of the resources we
have indicated, the most rapid means for opening up the have indicated, the most rapid means for opening up the
interior of Africa, will be found. Such expeditionslas that of Stanley and of other isolated explorers, though they may add to our knowledge of other resources, do nothing toward their utilization, but rather only show us how great is the task which civilization sooner or latter must accomplish, in
ANOTHER NEGLECTED INDUSTRY - -.MUSHROOM RAISING
We have never been able to understand why mushrooms are such an expensive delicacy in this country. Every variety of the toothsome fungus-even the Italian mushroom, the most delicious of all-grows wild in our pastures or can be raised in our climate with very little care. And yet, those who most use mushrooms, the hotel and restaurant
proprietors, buy the French canned goods, save for a short time in the autumn when a small supply of fresh mushrooms are obtainable. French musbrooms cost all the way from 50 cents to $\$ 1$ for a little can, at retail; and to buy a small basket of fresh mushrooms, even in our large markets, is rather to overtax the average pocket. Still we have picked them by the pailful in Connecticut cow and horse pastures but the natives looked askance at our eating them; and as to cultivating the " toadstools," the idea to their mind was preposterous.
Now, with all due deference to our excellent farmers who think as above, we venture to affirm that, if a few of them would set about this cultivation on a large scale, and offer the products in the cities, they would find a ready sale, and realize quite a large profit. Occasionally a florist makes a mushroom bed in his greenbouse, and lovers of the delicacy sometimes cultivate it in a small way in their conservatories
and cellars: but with the exception of the effort made by and cellars: but with the exception of the effort made by
the late Professor Blot, that prince of French cooks, who came to this country as a missionary to reform us from dys-pepsia-breeding pie and fried meat. we know of no attempt being made here at their cultivation on a commercial scale. The professor built wooden structures under ground, and they decayed; then he grew tired of his project and let it
die through neglect, before any of its results, good or bad, could be seen. Near Paris, Blot had seen immense cases, from 20 to 10 in deph, 11 ed with musbroon beds, the length of all of which beds together in one year aggregated
over 21 miles; and he knew well that often a single building over 21 miles; and he knew well that often a single building stone quarry, in the excavations of which the beds were lo-
cated, sent 3,000 pounds of mushrooms daily into the French metropolis. No wonder, then, seeing the utter absence of the fungus from our markets, that he perceived an opening for a lucrative business in its cultivation.
The reader who may wish to try mushroom culture in a small way-which he bad best do as a beginning-will find his cellar, if he dwells in the city, or any convenient outhouse, if in the country, a suitable place for a few beds. The material required is horse manure, which must be sweated by gentle and careful fermentation for a week or fortnight, until most of the rank straw and grass is decom osed. Turn over the mass every two days, and by the end of about a fortnight it will be partially fermented, no longer
offensive to smell, and in fact sweet enough to be placed in offensive to smell, and in fact sweet enough to be placed in
the cellar of a dwelling. An average depth of a foot or eighteen inches makes a good bed, which should be about a yard wide, with its contents well packed. The shape is imma terial. It is useless for the cultivator to prepare his own spawn, as it can be purchased very cheaply from nurserymen, at from 15 cents to 25 cents a pound. The quality, however, is important. Good spawn can be told by the minute white threads which permeate it in all directions, and thes the right kind. The spawn is first broken into bits about $1 \frac{1}{2}$ inches or so in cubic contents, care being taken that each piece has the white threads running through it. These frag. piece has the white threads running through it. These frag.
ments are planted in the manure at a depth of 3 inches, and ments are planted in the manure at a depth of in inches, and placed about 4 inches apart. Then the bed is firmly ram-
med down with a spade or mallet, and about ten inches of med down with a spade or mallet, and about ten inches of
good loam packed hard and smooth on top, the surface lastly being covered with hay or straw. Care should be taken that the cellar or outhouse selected is sufficiently sheltered, so that a constant temperature of from 55° to $60^{\circ} \mathrm{Fab}$. is main tained in it. The mushrooms will appear in about six weeks, and the beds will bear for from one to three months, according to the quality of spawn, strength of manure, etc. Water ure of the water should not be below $60^{\circ} \mathrm{Hab}$.
In plucking the mushrooms pull out the stalk, as, if left, is is liable to decompose and injure succeeding crops. Instead of beds as described, the manure can be packed in boxes or tubs to within 2 or 3 inches of the surface, and loam added above. The difficulty with box culture is, however, that the heat does not remain constant, though this may be compen sated for by plunging the boxes up to the rims in decompos ing manure during the preliminary stages of the growth within. Mushrooms have been grown well on a warm shelf in a kitchen, and excellent crops have been obtained from beds made on shelves in a stable where the heat of the
animals supplied the needed warmth. In summer it is onl animals supplied the needed warmth. In summer it is only necessary to make a bed in the coolest and shadiest portion of the garden; this should be covered, to keep it moist and to rotect it from the ravages of rats, mice,
There are some valuable treatises on mushroom culture extant, from which those who contemplate extended cultivation can obtain full instructions. The cultivation, however, is so simple that very little skill is required to conduct it Some years ago, the Royal Horticultural Society, in Eng and, made strenuous efforts topopularize the mushroom, and offered prizes for collections of fungi, and gave numbers of excursions and dinners in which the mushroom was substitu-
ted for meat. But little success attended these efforts, mainIy on account of the difficulty found in distinguishing th genuine and safe mushroom from the dangerous and poison ous fungi, and also on account of a popular prejudice which looks upon any fungus as a mere sign of noisome decay. Of course whenraised from reliable spawn, danger from eating he mushrooms is not to be apprehended; but it is unsaf to collect from pastures fung

can we protect our bank vaults?

Sevarmed men recently entered the house of the cash or of the Northampton National Bank, at Northampton Mass., and compelled that officer at the muzzle of the pisto to reveal the combination of his safe vault. Then they
bound and gagged him and his entire family of seven perons, quietly waited until the bank's night watchman had de parted, opened the vault and safe, and stole $\$ 750,000$ in cash and securities. The annals of crime can show few more audacious robberies than this, nor do we know of one which has excited a wider spread feeling of insecurity or a more general distrust of all modern burglar-proof devices. Certainit is that no lock, however intricate, is safe so long as the means of opening it is in the hands of any one person; for o man, hace on brave, can withstand the persuasions of night attack on his family and of a cold pistol barrel pressed
ggainst his templesin order to make him hand over his keys gainst his templesin order to make hin hand over his keys if divulge the informationdemanded. I may well be asked
if seven men can plan and successfully carry out such scheme, whether twice seven men could not perpetrate even
a more gigantic robbery; and when we consider the matterin more gigantic robbery; and when we consider the matter in and their intimate knowledge, which they spend weeks in ac quiring, of a marked point of attack (all detailed recently by convict captured in a similar undertaking), it is but natural at first to doubt the safety of any bank or strong box. But on the other band, it is reasonably certain that, if the North mpton baek people had been as vigilant as the thieves, the
robbery could not have occurred; and it seems to us that, if the means which Science offers for protecting our valuables were fully used, such robberies wonld be impossible, or at the least be very difficult, of perpetration. Suppose, for in stance, a chronometer lock had been in action on the North amption safe. Then what would bave availed the binding and gagging of the family of the unfortunate cashier, and an assault on his person, since he would have been as power less as the thieves to enter the stronghold? At a certain time enst day, when all the employees of the bank would be a their desks, the safe could be opened ; until then, if properly made, nobody could stir its doors. Rendering it the duty of two bank officers, one as a check on the other, to assure themselves that that lock was in working order at the las thing before closing the bank for the night, would prevent any tampering with the mechanism; and should the lock be inoperative, the very circumstance would instantly sugges extra vigilance during the night and until the difficulty could be remedied.
Another safeguard is found in never trusting the means of opening the safe to a single individual, a plan frequently adopted in banking institutions in cities. There might be for instance, three locks to a door; and the key or the com bination which throws back each could be in the possession of a different officer, so that no one of the trio could enter alone. Tbis would necessitate the robbers intimidating tbree per sons instead of one. Or the knowledge of a combination might be kept a secret, by the president, for example, and the cashier possess only a key to be used in connection with the combination.
There is much safety to be found in properly constructed lectric devices. Why, for example, has not somebody in vented a thief catcher-a couple of metal knobs which must necessarily be turned in attempting to open a door? A night, lead a powerful interrupted battery current to those knobs. When the burglar grabs them they will grab him for he cannot let go, as every one knows who has tried to re lease the handles of the simple magneto-electric machines from which itinerant scientists at country fairs offer to ad minister shocks for a penny or two each. The burglar, be sides, will get so thorough a shaking that he would convert himself into an alarm, and yell loud enough to awaken any somnolent neighborhood. Electric wires might be laid from every door in the bank to convey an alarm, say to a police station or any other desired point; and if those wires were so placed that cutting them in advance could quickly be told through the breakage of the circuit, tampering with them could be found out in time and proper precautions taken.
It has been suggested that the next advance of the thieve will be a day attack on a bank, through the use of an ex loding shell tossed in among the clerks, and a rush for the funds in the confusion. For this, the only remedy appears to constant watchfulness, or the encasing of the people hand ling money in a separate armored room, and not dividicg them by a mere wood and glass partition from the crowds which often congregate outside the tellers' windows. We have some banks in our mind whose counting rooms are ver poorly suited to withstand an attack of the above kind.
We think that there is abundant ingenuity in this coun try to provide means of frustrating the smartest and most audacious of burglars; and that if inventors will set about it, devices much more efficacious even than those which hav occurred to us can be produced. At any rate it is hardly time to suggest the abolition of banks, as does a daily contempo ry of this city, and thus admit that weare outwitted by ras als, until we have seen what the inventors can do, and cer tainly not before we have fairly tried the safeguards with which we are already provided.

remartable pumping engines.

We publish in this week's Scientific American Supple ment (No. 9) two pages of engravings illustrative of the re markable steam pumping machinery, lately completed a Hammersmith, England, by Messrs. Gwynne, for the drain age of the Ferrara Marshes, Northern Italy
The tract to be drained covers an area of 200 miles. The machinery we allude to is calculated to discharge 456,000 gallons of water per minute, or $656,640,000$ gallons per day bing about six times the capacity of the Croton Aqueduct of his city, which is able to deliver $110,000,000$ of gallons pe day. The water delivered by these remarkable pumps forms stream 103 feet wide and 4 feet deep, having a speed of two miles an hour; one day's delivery would fill a reservoir on mile square to a depth of 3 feet 9 inches. In view of the completion and successful operation of gigantic and economi al machinery like this, the drainage of the Zuyder Zee, in Holland, which is about to be commenced, is rendered a com paratively easy task. The Zuyder Zee area to be drained is 759 square miles. Splendid models of the abovementioned the Centennial Exhibition.

Improved Lantern Galvanometer
In the arrangement recommended by Professor Nipher, an static system of needles is used, supported by silk fiber. The distance between these is four inches, and the system is pleced over the lens of a vertical lantern. The image of the
lower needle is thrown upon the screen. The upper one is lower needle is thrown upon the screen. The upper one is
out of focus and is invisible. The needles are deflected by wo coils situd is invisible. The needles are deflected by of the field of ried to any desired extent to adapt the instrument to the different currents. The connections are such that the instru ment can be instantly used in measuring electrical resistan ces. The resistance can be diminished in working with the thermo-currents, or increased with ordinary galvanic currents.

