## a WEEKLY JOURNAL 0F PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES,

| I. XXXIV.-No. [NEW SERIES.] |
| :---: |

NEW YORK, FEBRUARY 12, 1876.


THE NEW TELESCOPE IN THE PARIS OBSERVATORY.
An immense reflecting telescope, equaling in size the similar instrument located at Melbourne, Australia, has lately been constructed under the supervision of M. Leverrier, at the Observatory at Paris, France. The reflector, which is 46.8 inches in diameter, is mounted in a tube 23.3 feet in length, which is composed of a central cast iron cylinder. to the extremities of which two smaller tubes, $9 \cdot 6$ feet long each, are secured. The end tubes are formed of four rings of wrought iron connected by 12 longitudinal bars of like material. The whole tube steel, and weighs $5,280 \mathrm{lbs}$ At the lower extremity is af fixed the cast iron barrel which holds the reflecting mirror; at the upper end circle, movable on the open orifice of the telescope, sup ports a plane mirror which reflects sideways the cone of rays previously reflected by the large glass, and directs them into the fleld of the eye piece.
It will be seen from the above that the telescope is constructed on the Newtonia system, and differs from the system, and differs from the Melbourne instrument in tha the latter is built on the Cas segrainian plan. The weight of the huge reflector in it barrel is $1,760 \mathrm{lbs}$., and th eyepiece, with its accessories, aggregates the same. The poising of the mass is so per fect that even in the most un favorable positions the mir rors are exactly concentric and not the least deflection is perceptible. For the accom modation of the observer a carriage running on rails, as shown, is used, which sup ports a lofty balcony. The latter is sufficiently elevated to allow easy access to the eyepiece, which can be ad justed at any point around the orifice of the instrument
The equatorial meunting turns on an axis of cast iron and steel, the direction of which is parallel to the axis of the celestial sphere. The telescope can be inclined more or less on this axis by turn ing around a second steel axis which traverses the first a rught angles, and participat right angles, and participate mo mem of rolion The two axes taken togethe are a marvel of mechanica accuracy. With the telescope they weigh $22,000 \mathrm{lbs}$., and yet so perfect is the machinery that the great tube follows the movements of the heavenly bodies, in obedience to the regulation of a chronometer with as much certainty and delicacy as move the hands of the timepiece itself.

The optical portion of the telescope is as perfectas the adjusting mechanism. Both mirror and eyepiece are fault less, and the former, it is stated, reflects fully nine tenths of the light received. With an instrument, there fore, uniting in itself so many highly important advantages, it may be hoped that valuable discoveries will be made.
M. Wolf, the well known astronomer, to whom has been confided its care, proposes to begin with the study of the planets and their satellites, with the view of investigating many unsolved questions relative to the rotation of the worlds fur thest removed from our own; and at the same time, an ex tended series of spectroscopic and photographic studies of the fixed stars will be prosecuted.
coveed mit tuins slouts of $l$
童


Treatment of Horses in Winter
A writer in the Baltimore Trade Review is of the opinion that horses that have been in the habit of runring in the pastures during the summer suffer very much during the winter, for the want of green food to which they have become accustomed. They give evidence, he says, of this by the loss of appetite, by becoming hide-bound, and losing the glossl appearance of their coats. When the coat of an animal loses its gloss and assumes a dry, dull appearance, it is a sure indication that that animal needs green food or medicine capable of supplying the place of green food. Green
two or three times a week to horses standing in stables during the winter, they keep them in good condition, supply to a great extent the need of green food, increase their appetite, and prevent their coats from becoming dry, dull, and hard. Horses are very fond of them. When the weather is dry and not very windy, horses that are not much used should, in town, be taken out for exercise daily, and, in the country,
should during the day be allowed to run at large in the fields, or they will become cramped and stiff from long standing.
of Rivers. The Vienna Academy of Sciences is occupied with a question which concerns al quantity of water in springs, quantity of water in springs,
rivers, and water courses. rivers, and water courses.
A circular, accompanied by a very instructive report, has been addressed to the scientific societies of other countries, inviting them to undertake observations which, in time, may yield useful results. The Acade my callsattention to the fact that during a certain number of years there has been observed a diminution in the served a diminution in
waters of the Danube and other large rivers, especially other large rivers, especialling
since the practice of felling since the practice of felling
forests has become common forests has become common.
The Austrian Engineers' and Architects' Union are also oc cupied with this question and have appointed a hydrostatic commission to collect facts and prepare a report The Danube, the Elbe, and the Rhine have each been assigned to two members, while two others will be oc cupied with the metereology relating to the same subject and with the influence tha glaciers and Alpine torrents may exercise on the general result. The commission con siders the question urgent and $r \in$ commends the imme diate adoption of measures to remedy the evil. Accord ing to the Revue des Eaux et Forêts, it is unanimous in de claring that the prime cause of the disastrous decrease of the water is the devastation of the forests.-Nature.

## Remarkable Locomotiv Accident.

The Rochester Democrat and Chronicle, of January 20, states that on January 17, states that on January 17 while a train, bound for At tica, on the Buffalo division was nearing the river bridg about a mile west of the vil lage of Avon, an accident oc curred which was most sin gular in itself and serious in its results. The iron network over the top of the swokestack on the locomo. tive became clogged up with cinders, etc., in such a manner that the gas generated could not escape from it; con sequently it was pent up consequently it was pent up soon as the fireman loosened

## THE GREAT TELRSCOPE AT PARIS, FRANCE:

food is much to be preferred, for an animal in such condition, to medicine for two reasons, partly because it is cheaper and leaves no bad after effects, and partly because it is better, being the remedy provided by Nature, and Nature is always more skilful than art in providing natural remedies for na any paste imitation. A couple of carrots, chopped up very small and mixed with the feed of horses, has upon them a very beneficial effect. They are slightly cathartic, and, given
the fastening of the door to open it an explosion occurred, the flre being blown with great force out into the cab, en veloping the persons in it in a sheet of flame. The freman, William Russell, who was nearest the door, was flung backward with great force. His leg was broken and his body was badly burned. William Farnum, the engineer, was not so badly hurt. His left hand was burned in a painful manner, and the whiskers of the left side of his face were burnt off. M. Breen, a brakeman, who happened at the time to be
in the cab, was very seriously injured. His face and shoul ders were terribly burneã, and his eyes were so injured that it is thought he will be blind for life.

## Srientific Ammeriant.

MUNN \& CO., Editors and Proprietors. poblished weenilat
NO. BY PARK ROW, NEW YORK.
o. D. MONN.
A. R. BEACB.

TERMS.
One copy, one year, postage included.
One copy, six months, postage include

Ten coples, one year, each $\mathbf{z 2 7 0 , \text { postage included... }}$
the subscriber then recelves tte paper free of charge
Notr.-Persons subscribing will please to give their full names, and Post
Offce and State addresa, plasnly written, and slao state at wish their subscriptions to commence, otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied from January 1st, when the volume commenced. In case of changing restdence, state former address. as well as give
be made unless the formeraddress ts kiven.
If any of our readers fall to receive their
tion ts not plainly written; if premiums are not recelved; ; if the direc tault of any sort at this office, we will thank our friends to send us posta card complaints, and repeat the same, if need be, until the remedy is effect ed. Do not hesitate to complain. We desire
ourselves and patrons right and satigactory.

VOLUME XXXIV., No. 7. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, FEBRUARY 12, 1873.

the scientific american supplement.
For the Week ending February 12, 1876. table of CONTENTS







 vil GEOLOGT, MINERALOGY, NATURAL HISTORT.-CelestalliteVIII PROCEEDINGS OF BOCIETIES. -Academy of Sclences, San Fran-
IX. MEDICAL-Physiology of Fatige -Curloug Bra


## eron Graphic eron Tin Aric

 dewi dealers throughoit the country.
COMBINED RATES.

MUNN \& CO., PUblishers,
10 centa. Single coples of supplexersi sent to any addreas on recelpt of

## RE-DISCOVERIES AND RE-INVENTIONS.

The investigator who thinks he has hit upon some new an important fact, but finds, on publishing his discovers to the world, that he has merely re-discovered an old and long known phenomenon, is very much in the position of an in ventor who has spent months in perfecting some machine which he believes to be new, but which, as the Patent Office examiners tell him, was patented years ago: perbaps it was used and abandoned before he was born. The airy castles each has been building are dashed to the earth, and dire dis appointment destroys the searcher's peace of mind. Unde these trying circumstances, it is difficult for him to sit pa tiently down and feel that the experience gained while prose ating his work is a sufficient reward for his time and toil Yet such is frequently the case; and but for the fact tha most inventors and investigators are dependent on their daily labor for the bread they eat, they could in all cases feel tha an honest, conscientious labor in the pursuit of a noble end whetber successful or not, is its own sufficient reward Failure is to some minds a spur to greater exertion; it incites them to increased care, and thus proves more beneficial than success would have done. That man (or crew) that comes out of a race second best is generally confldent of his ability to win next time; and he goes into training with eagerness for another chance to test his power. To another class of minds, failure is very discouraging. They bave not perse verance enough to try again; or if they stand the shock of a ontinued ill luck, as they call it That " nothing is so suc ensful cessin as success is not more true than that no aning is
more appointment fall, in a greater or less degree, to the lot o every man in every undertaking, we would first offer such balm as we may to heal the bruises, and then prescribe some
preventives that will reduce the number of failures, especially those of re-invention and re-discovery, to the minimum number
We bave already hinted at the manner in which we would have the unsuccessful investigator regard his labors. The searcl r for truth can no more measure the value of his labors by their results, than can the competitors in our inter ci i.fgiate contests, wheth 3 r literary or athletic, measure the bene6t they derive from the training by the value of the prizes conferred. A school boy of ten or fifteen diligently pursues the study of some subject, for which a beautifu prize is offered, with that prize and its inherent honor as his sole object and incentive. The prize was offered for the
purpose of teaching the boy perseverance, of imparting to him the habit of study, and, in some cases, of putting him it possession of the knowledge thus acquired. The competitor who has laboredindustriously for the prize, but failed to ob tain it, is benefited quite as much by the training he has received as the one who is successful, provided only that disap pointment does not breed discouragement. While boys may strive for prizes with no higher end in view, it is beneath that aim only. Work undertaken in the proper spirit is never without benefit to him that doss it; and although it does not yield the expected fruit, it has been all the while conferring other benefts, more lasting, if less pleasing. There i a astory, no doubt familiar to most of our readers, about an ild man, who, when on his death bed, told bis sons tha treasure had been buried somewhere on his farm. Eager for gold, they explored every field, digging over every foot of it to a considerable depth. Of course, they found no gold ; but
the increased fertility of the land amply repaid their labor. Parallel cases are abundant, wherein the object sought was never found, but where incidental results proved of immense importance. The old alchemists worked with but two aims before them, to transmute the base metals into gold, and $t$ find the elixir of life. They succeeded in neither, but they gave us many substances more valuable than ellere Me pared or discovered by them, and their experiences have been woven together to form the foundation of the science now called chemistry. Unfortunately, however, their selfish jealousy induced them to conceal rather than promulgat their discoveries, and many of their most important secrets were buried with them. It is only recently that men have
begun to observe and carefully record the little incidental begun to observe and carefully record the little incidental
discoveries. These little facts, trifing and disconnected as they are, may some day find a place of importance in the science, or they may become the seed which, falling on the fertile soil of some other active brain, will there spring up in new and unexpected form.
Reader, if you are an experimenter, carefully record al your experiences, and publish such as are new, for you know not which of these tiny sparks will start a huge conflagra tion, or which trife will be to some active mind what the falling apple was to Newton, or the oscillating chandelier to Galileo.
To give such directions as would aid the investigator to save his time and energies, on subjects already thoroughly examined, and in repeating well known experiments, is not difficult. Scientific men of the present century have been careful to record in permanent form most of their investigations, and hence it becomes possible for a person, before beginning vided he has access to ju wood scientific library such as the Astor or the Columbia College Schoul of Mines Libraries in this city, both of which are free to all and possess excellent catalogues and obliging librarians. The method of study will be somewhat as follows: Suppose a chemicel student is abou He may first, if he chooses, make use of the excellent dic He may first, if he chooses, make use of the excellent dic-
tionaries of chemistry published in each of the principal lan.
guages, for our student ought to read French and German with some fluency. The best works to consult are Watts, Wurtz, and Fehling, but every accessible work should re ceive attention. Having obtained a general idea of the sub ject in hand, he next proceeds to search the scientific jour nals one by one, from volume I to the latest number. Among the most important of these we would mention the 4 merican Journal of Science and Arts, 1818 to date, 110 volumes. The task of examining these numerous volumes is not so very great, since every tenth volume contains an inder to everything in that and the preceding nine, so that only 11 ndices have to be consulted. Poggendorff's Annalen now mbraces over 230 volumes. from 1799 to date, but the titles of all the articles are registered in half a dozen indices. Din ler's Polytechnisches Journal, now in its 218th volume, ha 3 indices. The Annales de Chimie et de Physique, which now number 275 volumes, beginning as far back as 1789 , have several index volumes. The same holds true of most of the scientific journals where original papers are to be looked for Comptes Rendus is an unfortunate exception to this rule.
Before beginning this search, a suitable note book should be procured, and so arranged that every reference can be quickly recorded as soon as found, either chronologically or in some other systematic order. Or the references may be taken do wn in a blotter, and subsequently posted in the order desired, care being taken to give date, subject, name of au hor, and name of journal, with page and volume. Such an index of a subject, carefully carried out, will be found in valuable. The student now has a guide book which will di rect him at once to the spot where just such information as he seeks is given. From these, it is easy to ascertain just what has been accomplished, and bence it is almost impossi ble to repeat un wittingly what another has already done.
The inventor may not find it quive so easy to learn what has been attempted in his line, as inventors usually jealously guard their ideas as invaluable secrets. The patent records of different countries, however, afford material for quite an atensive search, and, as in the case of the chemist, will be great assistance in preventing a waste of time in re-in enting old things.
Let no one say that it takes too much time to make all these preliminary examinations, for it will prove a saving in the end, not only of time and labor, kut of good nature and onthusiasm. If those who can afford the time would join in preparing reliable indices of the whole literature of differen ubjects, and permit them to be published by the Smith sonian Institute or other scientific body, they would be valua biecontributions to Science, and great aids to their fellow laborers of today and of the future; and they would serve o perpetuate the compilers' own memories.

## FELTING AND ITS USES.

The employment of felt for other purposes than hats, which use was described in a recent number, has created several other branches of industry. The most common pro ducts are felts in flat layers like cloth, and the most usual mode of manufacture is a kind of wadding (by means of a machine similar to that used for the same purpose in cotton mills) and to submit this to the felting process, often felting several layers together so as to obtain great thickness With improved modern machinery, such wadding may be made of considerable dimensions. A special and peculia rticle of this kind, and of great comparative value, is the felt used for the covering of the hammers of pianofortes. Th best material for this purpose is derived from the wool of sheep found only in Hungary. They are called the Ester hazy flock; and the wool gives a more elastic felt, resisting better the cutting effect of the strings, which soon wea therkinds of felt away. These felts come in the trade in longated pieces, very thick at one end and quite thin at the other, so as to suit the requirements, which are that the hammers striking the bass strings sbould be covered with thick felt, the substance being gradually diminished for the higher ones, so that the hammers striking the strings producing high tones have a very thin covering. The pianoforte maker have then only to cut those felts into strips to have all the eeded assorted degrees of thickness, it being a first requisit of the pianoforte, and in fact of every other musical instru mert, to attain equality of tone, avoiding sudden changes in power when passing from one tone to another of the scale.
Other felts are manufactured into carpets, and printed with fgures, forming the so called rugs, and others, well known are blankets and materials for cloaks, women's skirts,socks slippers, insoles for boots and shoes, etc. Some kinds of fine felts are saturated with varnish or paint, and changed into a material not unlike patent leather; this is used for the shades of caps, by carriage makers, etc., being much more tenacious and elastic than pasteboard, in which the fibers are not interlaced, and only are held togethar by a simple adhe sion originated by great pressure during the process of man ufacture. We must also mention the use of felt for roofing for which purpose it is saturated with asphaltum, coal tar, pitch, or other equivalent waterproof material ; and felt is also used in shipbuilding, as a layer below the copper sheet ing, and on steam cylinders, conduits, and boilers as a non conductor of heat, for which purpose it is often prepared with various ingredients, intended either to make it less com bustible or to increase its capacity for retaining heat. A modern industry of this kind sprang up during the late war. Contractors, in order to increase their gains, had blankets and even soldiers' clothes made from felts of which the hai was not of the proper kind, but consisted of the offal of woolen factories, fibers too sbort to be spun, but which, by felting, could be made to hang together and form an appar felting, could be made to hang together and form an appar.
ently woven fabric; which, however, coon showed its tra

