to the inch. The boiler is horizontal, with 24
threeinch iron tubes; and itis 10 feet in length by 3 feet in diameter,and well bricked up. Steam pipes, etc., are well covered with asbestos. When burning coaldust, I use a blower running about 3,000 revolutionsperminute. About half an hour before shutting down (ake over fire and oclock in the afternoon) on the grate : when in fresh dust, and shut all drafts, and at 6 o'clock the next morning I have from 30 to 40 lbs. steam; and then all I have to do is start the blower, and in half an hourI can have a guod fire and plenty of
steam. A. You make a very favorable showiug steam. A. You make a very favorable showiug.
If you can contrive to measure the amount of water evaporated in a given time with each kind of parison. If you do this, we would be glad to know the result
(21) C. H. A. says: After reading Mr. Edi-
son's experiments on the " etheric force", I tried his method of producing it with a printer: and found that, by forcing the press up against the type wheel (first cutting out the main battery) and breaking the circuit between the instrument and
battery on the negative wire, it would cause a most beautiful and intense spark, and give a very the stove, as Mr. Edison did, it produces similar ef fects, giving off a spark when touched by a metalic substance. I am more interested in the pheno menon of the shock, as Mr. Edison says nothin in this particular it resembles inductive electri ity; and it being somewhat iew to me I write to ask if this mode of producing electricity to give a shock is new to electricians? A. The socalled "etheric force" is nothing more than the when the battery circuit is opened and closed ome facts connected with it, however, led to well acquainted with this method of producing shocks.
(22) A. F. O. asks: What must I do with hefluid of the Grenet battery after it is played more of the salts, be restored, or must it be throw away? A. Throw it away
(23) R. asks: 1. I have a pair of polished skates, recently nickel plated, and I find on
using them that the nickel begins to flake off. Can I prevent this in any way? Can I have the plating remored from the whole skate or any part fkates replated with more care
(24) C. H. N. says: You state that the earth received its motion during lts formation, and you
compared it to the velocity of a railroad train running half a mile after the steam is shut off That being true, is it not the cause of the remarkable difference between the age of man in the day of the deluge and at the present time? The earth must in olden times have revolved faster and made the days and nights shorter. A. The perio of 4,00 years is mill when turies ago, she obtained her motion; untold centuries went on duringthe different periods of change as revealed by geological researches, until at last, some 150,000 or 200,000 years ago, man appeared The oldest records of man go only back some 4,00 to 6,000 years; but we know that during this time the velocity of the earth'srotation has not change he reported age of the patriarchs, we must consider that, at a time when people had no chronology nor almanacs, they did not count the years a correctly as wedo, and could not know themselves how old they were. We may add to this the veneration in which the oldest people were held, which led every old man to boast of his great age and so they probably made
older than they really were.
(25) B. B. asks: Will it damage flax straw for manufacturing purposes to thrash it with Yes, it very nearly spoils it. Treading out the seed
best.
(26) A. D. says: It is generally conceded fixed pathway, and that the plane of the orbit which has an obliquity of $23^{\circ} 28^{\prime}$ to the plane of the sun's equator, probably at one period had a still greater obliquity, which would extend the warm er zones into higher latitudes. And again, the or and theearth will revolve on the plane of the sur equator; and the intimation that the orbit of the earth is gradually assuming a circular form, if true, would be the best evidence that this chang s now in progress. Then the poles of the earth with the sun vertical over the equator only, and there would be no change of seasons. Are these pathwes of probable? A. You confound the with the inclination of her axis on the ecliptic his inclination may change, while the pathway plane in which she moves remains essentially the ome. Some in the far future the supposed that, a some time in the far future, the inclination will minish, and at last disappear. But this time is so remote that the earth will then have cooled, and the internal heat have become so dissipated that the interior of the earth's crust will no more poswill be unfit for vegetation, and consequently also Por animal life. The earth will then be as the moon
(27) W. H. S. says: You state that the moon rotates on its axis and in its orbit in the
same time. What is that time? A.27 days, 7 hours, 43 minutes, 42 seconds.
(28) T. P. M. asks: 1. Will zinc do instead copper as a plate for a ground wire connection
a telegraph? A. Yes, but it will not last nearly o long. 2. What size of plate is necessary for a he one quarter of a mile long \qquad . For a line hat length you will get better results by using a eturn wire. Plates four or five feet square will answer
wire.
(29)
(29) M. M. asks: How many feet of com mon illuminating gas made from coal can I compress in an iron tank or gas holder of 50 cubic feet the inch ? A. About 333 feet.
(30) R. K. asks : How can I tell how many ibs. weight are necessary to produce a given velo ity, as described in Z. D.s query as to the tension a a cord over a pulley? A.To calculate the weigh required to produce this velocity,assume a time o he proper substitutions in the formulas below. It will be easy for any one to see what assumption is mulas also so tained, and yet be correct. Our readers wil oubtless observe, further, that these formulas ar he same that are employed for calculations conhat the case proposed by Z.D. is similar to prob lems that are solved with the above apparatus. Let $x=$ weight required to give the weight of 1,000 ibs. a velocity of 10 feet per second. $S=$ distance in seconds in which this velocity is acquired. g cceleration due to gravity. $f=$ acceleration du
the weight. Then $f=g \times \frac{x-1000}{x+S}=\frac{50}{f}$; and
$x t=10$. This also answers M. B.
(31) A. H. T. asks: 1. How is the heat cal A. See p .123 (14), vol 33. by comprissing air is such a great loss of power by compressing air to high densities? A. The principal source of loss, in general, is due to the fact that the power required to compress the air is not afterwards iven out by allowing the air to expand as much logarithms hold compressed. 3. Do hyperboli ogarithms hold good in calculating the mea to represent the initial and terminal pressures as a . The ford triangle, and calculate the area of it pplicable in with hyperboliclogarithms is oni he cylinder is case the temperature of the air (32) J. G. B. asks: At what rate is the wa er falling over Niagara Falls wearing the rock way yearly? A. The action is not uniform, the time. It is estimated, however, that, for long periods, the average wearing away has been about
(23) 2 .
(33) Z. D. says: In reply to my query as swer 1,550 lbs. A orer a pulley, you give the anthe tension of the cord is exactly the same, name ly, $4,000 \mathrm{lbs}$., whether the weight is raised at th it is motionless. He acknowledges that the ten sion is above $1,000 \mathrm{lbs}$. when the first pull is given, before the welght attains its uniform speed. Ah other gives as his answer a number somewhat over lbs. ? A. Our answer was possibly misleadin from the fact that all the data upon which it de pended were not stated. Really, the tension o
the cord, required to give the weight a velocity 10 feet a second, can have an inflite number of values, subject to the following conditions: 1 . It nust be greater than $1,000 \mathrm{lbs}$. 2. The time and velocity in which the weight attains the required than the time and distance in which a heavy bod falling freely under the influence of gravity would acquires the given velocity, it will continue to move uniformly with that velocity, under a ten sion of $1,000 \mathrm{lbs}$., if there is no friction or othe prejudicial resistance. See answer to \mathbf{R}. K., on this page.
(34) G. B. K. says, in reply to T. D., who
asks how to obtain the index of an engine lathe: If you will note what thread the lathe will cut when two given gears are in place, you can easily
construct a table that will show you just what thread any two gears will cause the lathe to cu
Suppose that two 63 's cause 12 threads to the inch. Then place 12 in the space, A, in the diagram be Then
low:

$63: 56:: \mathrm{A}: \mathrm{C}\} \quad$ (direct proportion).
$63: 70:: \mathrm{A}: \mathrm{E}\}$ (Also, $56: 63::$ A:B $\left.\begin{array}{rl}70: 63:: A\end{array}\right\}$ (Inverse proportion). The spaces may all be filled except a, b, c, d, etc which it is useless to fill,as only your 63 gear is du good mathematician tofll out the table
(35) J. H. says, in reply to D. C. B.'s query
as to his hydraulic ram difficulty: The air, be-
coming exhausted in the air chamber, prevent the water from entering the chamber, when the
impetus valve closes, and the result of the working is only the dead beat of the valve in closing All well regulated rams have inserted in the lower asting (a head of the opening to the air chamber) and a small groove is fled lengthwise in it; and $i t$ is so adjusted as, when put in, to allow of water escaping when the impetus valve closes. Upon the reaction of said valve, a portion of air is drawn in through the screw, which passes upward to the hsk valve, opening to the air chamber; and at the ext pulsation of the ram the air is passed to the hed with air, during which time the valve give he lively click, which he describes, when working ell. Care must be taken not to allow the wate oback upon the sniffle, or the ram will again ease to work well.
(36) J. W. writes us from Switzerland that ing the feet over thee elcetricity there by shuf e has often done it in this country, but it will no work there. He wants to learn the reason; also wants us to corroborate the fact that electrical parks can be produced as mentioned, in this coun y. In reply we state thatin this city, in wister well warmed, dry houses, strong electrica he feet on the carpet. Loud snaps are produced by touching another person with the finger Whilea common home amusement for the young he is lo light the gas by electricity, by rubbing gas burner with the finger. In Europethe climate is more moist, and hence probably the phenome non is unknownthere. Possibly in a well warmed house on a vers cold day, upon a rug in front of a
good coal fire, our correspondent could produce good coal fire, our correspondent co
(37) J. B. J. says, in answer to C. E. B. uery as to a force on an inclined plane: Le $W=$ weight ($=112$ lbs. in this case), $A=$ angle be ween plane and horizon ($=30^{\circ}-$), $\quad w=$ force with
which W presses against the plane, $\quad L=$ force ressing in the direction of the plane. Then $F=$ \sin. A
97
lbs.
(38) J. B. J. says, in answer to J. A. R who desires to know the contents of a cylinder wart hemispherical ends: $l=$ length of cylindrica epth of liquid hemispherical ends, $h=$ hoss oc ion of cylinder, $\mathrm{C}=$ contents of cylindrical part nd $c=$ contents of hemisphere ends. $\pi=3 \cdot 141$ $\begin{array}{ll}\text { Then } \mathrm{C}=x \times l=l x & \text {. Then } c=\pi h^{2}(r-1 / 3 h) . \quad \mathrm{C}+c= \\ \text { content required. If the above dimensions ar }\end{array}$ in feet, multiply the result by 7.4762 , which will reduce it to gallons. Compute content for every foot (and fractional part) of depth, and arrange a table, when the contents will be see nat a glance The comun tation may be made for half the tank
(39) S. W.G.says, in reply to J. G. S.'s query or a remedy for cracked fingers: Into equa parts of glycerin and cologne spirits,put ten grain in the same manner asglycerin.
(40) C. C. says, in reply to W. T. W.' uery asto setting boilers: Take 6 or 8 inches o brick work away at sides and top, and 2 feet a
back end, regardless of the water line. Do no let brick touch the boiler except at front and o dome. Excavate not less than four feet unde he whole length, leaving the mud drum (if ther be one) exposed to the heat. Set the grates 4 feet from the lowest part of the shells. Build a bridg wall 10 inches (Just enough to hold the fuel) above hink of disposing of one boiler instead of addin to thethree you now have. You can get all the team you want without skillful firing, constan hard work, and waste of fuel, if you burn you uelinstead of sending it up chimney. The abov described radical change in setting of steam boil ers was made with excellent results. My boile while I increased the production of the mills th uel bills are less than before.
(41) J. S. F. says, in reply to C. B. H.' speed: Unless she be drawing a heavy running with a verylight pressure, she cannot at tain her full speed with the throttle wide ope and at full stroke, because of the contracted area of the exhaust nozzle and high state of expansion
of the steam, which cause her to choke when more than a certain quantity of steam is admitted
to the cylinder at each stroke of the piston. To to the cylinder at each stroke of the piston. To
prevent choking, the quantity of steam admitted to the cylinder should be regulated by the position of the reverse lever, or, to state it more properly,
by the travel of the valve.
Minrrals, htc.-Specimens have been r ceived from the following correspondents, anc oxamined, with the results stated:
J. S. B.-It is granular quartz.-D. R. MeM.-Th crop at suitable points exawination of the out thickness of these sandstone strata is several thousand feet. Your chance of getting water is
slight. No. 1 is iron pyrites. No. 2 is steatite. No. is indigo carmine.-A.M. - You are correct in ta king it to be a sandstone containing a hydrocar-
bon of an asphaltic nature. The bituminous schists made use of in France are somewhat dif
ferent.-S. N. F.-It consists chiefly of small percentage of alloy.-P. L. S. -It is lead.W. M. N.-It is one of the alloys of tin and lead,
the former being in preponderance.-G.F.P.-It is a piect of furnace slag.-J.A.H.-It contains no ura
nium.-R. P. -The base of the composition is hard nium.-R. P.-The base of the composition is hard
rubber.-J. H. E.-It is iron pyrites.-C. T. A.-It
men in box marked "Washburn" is graphite in quartz rock.-H. M. - No. 1 is mica in quartz. No.
2is serpentine. No. 3 is iron pyrites.-S. W. M.The serpentine. No. 3 is iron pyrites.--S. W. M.tioned in the recipe, and there is no reason why it should not act well. Try again
W. C. S. says: The following is a geomet ical nut for some of your readers to crack: The

quired the radius of the circles.--P. A. K. asks put it into practical use ?-J. D. says: I have a
valuable mare, 8 years old, which has been but lit aluable mare, 8 years old, which has been but lit e worked. Last summer she had the thrush in her fore feet, but was soon cured, and her fee
ooked well and were free from contraction. commenced driving her this winter; and her feet were at once inflamei, and quite sore for a day o two. She flinches when she puts her frog on any thing hard. What can I do for her?

COMMUNICATJONS RECEIVED.

 The Editor of the SCiENT int American ac original papers and contributionsupon the follow lng subjects:On Working Men at the Centennial. By M. M.
On Spiritualism. By J. A. C.
On Pulling and Pushing.
On the Moon. By C.J.L. C.
On SafeSavings. By By
On a Remarkable Machine. By C.E.F
On Magnetic Attraction. By A. A. A.
On the Oldest Inhabitant. ByN. V.c.
On the Oldest Inhabitant. ByN. V. C.
On Momentum. By J.A
On the New NebularTheory. By C. E.M
Also inquiries and answers from the following:

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appea ahould repeat them. If not then published, they may conclude that, for good reasons, the Edito lways be given.
Enquiriesrelating to patents, or to the patentability of inventions, assignments, etc., will not be
published here. All such questions, when initials published here. All such questions, When initials
only are given, are thrown into the waste basket only are given, are thrown into the waste baske
as it would fill half of our paper to print them all; but we generally take pleasure in answering briefly by mail, if the writer's address is given
Hundreds of inquiries analogous to the following are sent: "Who makes the best dynamometers? Where can three inch objectives for telescopes be purposes? Where isthere a firm that undertake well-boring? Where are there any works wher rickel ore can be smelted? Where can walru y? Who sells matches? Who sells alarm clocks? Who make stocks, to secure the feet of restive horses, while being shod? Who makes diving apparatus?" All such personal inquiriesare printed, as will be ob wich is specially set spart for that purpose sub Which is specially set apart for that purpose, sub column. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent of United State wero
Granted in the Week Ending
January 11, 1876.
AND EACH BEARING THAT DATE

