Wusines and wersmal.

The Charge for Insertion under this head ts One Dollar a Line. If the Notces exceed Four Lines
Dolaar and a Holf per Line will be charged.

Alden Engine, 3 cell.Com. Balance Piston,doubles powero tsteam! CIrculars free, Farrelly Alden, Pittob h.

 "Wrinkles and Recines" is the best practical valuable trade suggestions, prepared expresesll by cele.brated experts and by correspondents of the ". Sclenticic brated experts and by correspondents of the ". Sclentilic-
Amertcan." 250 pages. Elegantly bound and illustrated. A splendd Christmas gitt for workmen and
apprentices. Mailed. post pala, for 81.50 . Address H
 For Sale-A good manufacturing business, se-
cured by Patent.
Address $\mathrm{H} . \mathrm{R}$. Van Epp, Peoria, Ill. Wanted-Tools, Patterns, \&ce, of small Machine
Shop and Foundry. Must be in good condition, and cheap. Shop and Foundry. Must be tn good condition, and che che
GIlve partliculars. Nevil Whitesides, Mt. Vernon, 0 .
 develope one of the most promising patents ever p
duced. Address Lock Box 2244 , New Haven, Conn.
Our new catalogue of drawing materials will be
sent on recelpt of 10 c . Add. Keufel $\&$ Eser. New York. Wanted-Second hand Milling Machine, heavy,
Send accurate de cription, with price, to Page $\&$ LockWod, West Merlden, Conn,
Patent Rights for Sale-Small articles and cheap
for entre Rlight. Addrees Key Box 9 , spartanburg, S, C. I wish to correspond with Manufacturers of Gut-
ta Percha Articles, with a view of having our Adding Card made of that material. Marshall M. Smith, GreenLatest and Best Books on Steam Engineering.
CIrculars free.
F. Keppy, BrIdgeport, Conn. For Sale-Two Brick Maehines, "S Sargent" Pat-
ent-In use one year. Apply 27 So. Charles st, Balt...Md. Wanted-Situations, by two Englishmen, Pattern
Maker and Blacksmith, both competent workmen. Box Maker and Black
118, ciear 1 eld, Pa
Sbafing, whole or clamp. Pulleys, best style
Hangers. 5 to 8 cts. per Ib. S.E. Harthan, Worcester.Me. Small Steam Yachts, Yacht and Stationary En-
gines, Shatting, \&c. S. E. Harthan, Worcester, Ms. Wanted-For Casb, soon-2ad hand Frooring Ma--
chine. Must De modern, strong, large rolls, and cheap. send full description and price to C. A. Walker, Ken.
 Bound. Vons, 3 ot 1 14, Scientific Americad. First
Series, 1 to 3, second Series, 16 to 20 , unbound, tor sale by L. W. Rice, Greenfield, Mass
Wanted-2,000 round Wallout Rods, $11 / 4 \mathrm{in}. \mathbf{x} 6 \mathrm{ft}$. Roth's Saw File Guude, illustrated in this paper
Jan. 1, 1876, is manufactured by E. Roth \& Bro., New
 For price of Steam Yacht Machinery, from a
Row Boat to an Ocean-goling steamer, send to Clute Patentofice Reports for S. Yale-R. D. Cooke, 32
Sew Church St. New York. Centennial Scroll Saw, $\$ 2.50$. The best for ama-
teurs. J. J. Green, Boonton, $\mathrm{N} . \mathrm{J}$. Claimants wanted for Western land that has been
sold for taxes. Land Patents procured, J. Vance Lewls, late of the Govit
Wanted $-\mathbf{A}$ Bone Crusher, suitable for crushing
boneen slize of nut coal. A stamp mill preferred. P P. 0 . Bcx 3399, Boston.

 Wanted-One Heavy Drop,with $6001 \mathrm{lb}$. . Hammer,
and one Facing Machine. Addres P . O. Box 225 , New
 Abbe Bolt Headers, the best-Prices reduced;
2 sizes made. Palmer Power Spring Hammers, 10 sizes.
 Steel Castings, from one lb. to five thousand lbs. Invaluable where great strength and durabilty yre re-
quirea. Send for CIrcular. Pittsburgh Steel Casting
Use Yocom's Split-Pulleys on all Shafting, same
appearance, strength and price as andshed whole-Puleess. Shatuling Worke, Drinn
Second St., Phlladel.pha, Pa.
Blake's Belt Studs are the best and cheapest fas-
tennn for Leather or Rubber Betts. Save ten tmes
 Manufacturers! S Send for illustrated catalogue
of Best Bett Pulleys made. A. B. Cook \& Co., Errie, Pa. Fine Castings and Machinery, 96 John St., N. Y Shingles and Heading Sawing Machine. See ad-
vertisement of Trevor \propto Co., Lockport, N. $\overline{\text { r. }}$. Boult's Paneling, Moulding and Dovetailing Ma-
 Small Engines. N. Twiss, New Haven, Conn.
The Original Skinner Portable Engine (ImThe Original Skinner Portable Engine (Im-
proved), 2 to 8 H.P. L. G. Skinner, Erle, Pa. Walrus Leather \& Polishing Mater
Tweed $\&$ Co., 18 Park Place, New York.
Patent Scroll and Band Saws, best and cheapest
nuse. Cordesman, Egan © Co.. ClincInnati, Ohlo. For best and cheapest Surface Planers and Uni-
versal Wood Worreers, address Bentel, Margedar ; Co., H. milton, Ohor

Solid EmerrVVulcanite Wheels-The Original Solid
Emery Wheel-other kind tuon-Our name fo stamped in full on all our best stand-
ard Belting, Packing, and Hose. Buy that only. The

For best. Presseg, Dies, and Fruit Can Tools, Blise

For Solid Wrought-Iron Beams, ete., see adver
tisement. Address Union Iron Mills, Pittsburgh, Pa.
or llthograph $\& \delta$.
Hotechlikise $\& \&$ Ball, Meriden, Conn., Foundrymen

 American Metaline Co., 61 Warren St., N.Y. City. For Solid Emery, Wheels and Machinery, send
the Union Stone Co., Boston, Mass., for clrcular. Hydraulic Presses and Jacks, new and second
and. Lathes ana Machinery for Pollshnig and Bumng and. Lathes ana Machnnery for Polishhng and Buming
Metalis. E. Lyon, 470 Crand street, New York. Spinning Rings of a Superior Quality-Whitins-
ville Spplining RIng Co., Whitinville, Mass. For best Bolt Coutter, at greatly reduced prices,
tdrees H. B. Bromn © Co., New iaven Conn. Diamond Tools-J.Dickinson, 64 Nassau St., N. Temples and Oilcans. Draper, Hopedale, Mass.

花

W. W. W.'s queries would, with the an papermaker.-J. F. D. will find that the polishin material described on p. 57, vol. 34, will do well fo cleaning silver.-H. J. P. will find an illustrate description of a freezing process on $p .82$, vol. 33. Wehave never heardof one being used for con-
densing in a steam engine, -R. and others will find machine on p. 351, vol. 29.-M. L. H. will find dir ections for cleaning nickel-plated surfaces and
brass on p. 57 , vol. 34 .-W. F. W. Will find directions or tanningsheepskins with the wool on on p. 233 vol. 26.-J. H. can fasten metals to wood with the preparation described on p. 287, rol. 34. See an-
swer to W. F. W., above, as to swan skins.-G. P. A. can calculate the speed of pulleys by the rule iven on pp. 26, 73, vol. 25.-R. G. O. will find a re
cipe for liquid plue on p. 90 , vol. 32 .-L. J. C. is in ipe for liquid glue on p. 90 , vol. 32 .-L. J. J. C. is in
formed that his method of lacing beltsis very old C. H. will find good directions for browning gua barrels on p. 11 , vol. 32. Directions for casehard ening gun work are given in this issue.-D. H. wil
find on p. 234, vol. 30 , full directions for making fulminate for vol. 30 , full directions for makin recipe for a cement for glass on p. 379, vol. 31.-G. P. will finda description of phosphor bronze on p.
315 , vol. 30 .-C. E. F. will find directions for annealing lamp chimneys on p.42, vol. 26.-E. L. will fin directions for making erasive soap on p. 181, vo 31.-R. will find full information as to burning
coal dust on p. 379 , vol. 31.-E. C. W. will f nd dirsc tions for setting the eccentrics of a locomotive on p . 212, vol. 32.-P. T. N. Will find directions for making vinegar on p. 68, vol. 29.-T. E. M. will find
a good recipe for aquarium cement on p. 43, vol. a good recipe for aquarium cement on p. 43, vol
33.-C. W. J. will find directions for making patent leather on p. 122, vol. 27.-J. W. T. will find an an swer to his query as to a ball dropping through the
earth on pp. 158, 250, vol. 31 .-C. B. will find directions for making phosphor bronze on p. 315, vol tions for making phosphor bronze on p. 315, vol.
30.- H. E. B. will find directions for soldering cast iron on p. 251, vol. 28.-R. T. will find directions
for polishing marble on p. 283, vol. 30.-H. B. Jr. will find a recipe for artificial meerschaum on 193, vol. 26.-H. F. W. Will find directions for re moving tattoomarks from the skin on p. 331, vol
30.-J. E. M. will find an explanation of his difficulty as to the distance at which an object is visible on p. 20, vol. 34.-M. T. will find,on p.119, vol. 30, a re cipe for restoring rancid butter.-A. F. will find directions for polishing precious stones on p. 138,
vol. 30.-E. B. A. will find directions for soldering vol. 30.-E. B. A. will find direetions for soldering of all kinds on p. 251, vol. 28.-R. J. will find a de
scription of mica on p. 88, vol. 25.-J. C. W. will scription of mica on p. 88, vol. 25.-J. C. W. Wind c. Will find particulars of the New York State acanal boat award on p. 81, vol. 30.-J. C. will ind
directions for washing fiannel and other woolen fabrics on p. 267, vol. 30.-F. W. will find a recipe
for harness blacking on p. 218, vol. 28.-R. J.C. will find a description of M . Coignet's artifcial tone on p. 124, vol. 22.-R. T. can coat his pill 32.-W. W. will find detailg described on p. 59, vo plaster of Paris on p. 399, vol. 29.-J. N. will fin particulars as to the lifting power of hydrogen on p. 74, vol. 31.-F. O. can cement whalebone to wood
with the preparation described on p. 90 , vol. 30 . with the preparation described on p. 90, vol. 30.
R. F. will ind a formula for the proportions of safety valve on p. 107, vol. 31.-W. T. will find dir small animals on p. 350, vol. 30.-M. N. will find recipe for preparing muriate of ammonia for inha lation on p. 315, vol. 31.-s. T. will find a descrip tion of the process for condensing milk on p. 343 vol. 30.-N. J. will find formulm relating to the -N. K.R. will find directions for making an molia -N. K.R. Wis in arp described on p. 193, vol. 26.-M. B. T. and other are informed that the pretensions of the minera rod men are humbug.
(1) W. S. asks: How can I gild white metal
without a battery? A. Take 8 parts gold and without a battery? A. Take 8 parts gold and
part mercury; make the gold into thin plates and put them in the mercury while the latter is boil ng. Dissolve $1 / 2 \mathrm{oz}$. of this mixture in 1 oz . nitromuriatic acid. Add 2 ozs. alcohol, and apply th mixture, when the article is clean, with a sof
brush. Rinse and dry in sawdust, and polish with chamois leather.
(2) F. H. D. asks: Why is it that a stee
hod sled will draw harder on bare ground than shod sled will draw harder on bare ground than a
sled shod with iron? A. Some kinds of cast iro
and led shod with iron? A. Some kinds of cast iron
become, by friction and wear, casehardened to a high degree: and sled shoes made of it acquire (3) H. M. asks: In plating small article enough to give a shock? A. No. A single cell is enough to
sufficient.
(4) L. M. asks: How can I find the area of a section of an ellipse, namely, that part of an el
lilespe inclosed by the arc and to radius vectors when the angle subtended by the two radii an

and BE be the semi-axes of the ellipse, and B A C
the sector. Draw an arc, D F G, with B D asa radius, and through A and C draw lines parallel to B E. Join the points, F and G, in which these
lines cut the circular arc, with the center, B. Then BD:BE:: $\left\{\begin{array}{c}\text { area of } \\ \text { circular } \\ \text { sector B F G }\end{array}\right\}:\left\{\begin{array}{c}\text { area of } \\ \text { elliptical } \\ \text { sector B A C. }\end{array}\right\}$ (5) W. E. P. asks: 1. Upon what does the stability of magnetism in a horseshoe magnet de
pend? A. The purity of the steel. 2 . How shoult a magnet be tempered? A. As hard as possible 3. Is the power of a compound magnetof 4 parts each of equal magnetic strength when separate,
equal to four times the power of one part? A .
(6) H. K. F. вays: I am trying to heat a wire of about the size of Stubs' No. 70 by electric ity, but so far have not succeeded. I have an or inary Smee battery, but the zinc is not amalga mated, and bo far 1 have only used copper wire
Will oun be kind enough to tell me how to pro A. Use the large sized Bunsen bettery.
(7) E. K. M. says: 1. Please give me direc tions for putting up an electric bell, to be opera-
ted by an ordinary eight day clock, that the bel may sound the hours to correspond with the stri king of the clock. The bell is to be placed abou 100 feetdistant from the clock. Will the Meiding
er battery answer my purpose? A. The Meiding er battery answer my purpose? A. The Meiding
er, Daniel, gravity, or Léclanché batterv wiil an er, Daniel, gravity, or Leclanche batterv wiil an-
swer. 2. Will a copper wire, wound closely wer. 2. Will a copper wire, wound closely wit inton yarn and then coated with beesuax,
insulated wire suitable for the apparatus? 24 copper wire 100 feet long would answer. It is not necessary to cover it with be
(8) G. C. H. says: I intend to put up a tele rraph line of about one half mile in length, and
would like to know how much battery (Daniell ells) it would take with one wire and a ground re urn. A. Twelve cells.
(9) C.F. S. says: I do not think I have a correct conception of the meaning of the expres rgy at the surface of the negative metal, or is is the power of the battery to overcome resistance Are the numbers used, in connection with it, pro portional or comparative values;
hms? A. The electromotive force of a galvani element is the power it possesses of overcoming esistance. This force is proportional to the num ber of cells a a batery concected up in serie ,+-+-+- etc. The unit of electromoiv
foreeis calleda volt, atter Volta, while the unit o resistance is called an ohm after the German scicell is about equal to a volt, and may be practically regarded asa unit of force.
(10) G. H. C. says: I have made a magnet and put upon it 1,050 feet of cotton-covered magnet wire No. 32. I connected it with a battery that
is used to run a telegraph with fewer coils and coarser wire than mine. My magnet will not lif a shingle nail. What is the cause? A. For lifting about 100 feet in lid ha
(11) J. W. C. asks: What are the lowest a suspended copper wire? What is the mean vel city of electricity through a buried wire, an over had telegraph wire, and the Atlantic cable, re spectively? A. Electricity has no defined veloci y, but differs with the circumstances under which and disels, the size of the wire, length of the wire locity of the current on the western Union tele graph wires varies from 15,060 to 75,000 miles pe second. On the Atlantic cable, for about two
tenths of a second after contact is made with the tenths of a second after contact is made with the
battery, no effect is perceptible on the opposite battery, no effect is perceptible on the opposite
side of the ocean. After four tenths of a second Ihe of the ocean. After four tenths of a second the received current is about 7 per cent of the current will reach about half its final strength, fter about three seconds its full strength.
(12) E. T. D. asks: How many cells would thread, hot enough to light a lamp? A. A dozen Grove cells would heat such a wire red hot. 2 . How would I makean electric lamp lighter? A. You cannot light lamps with electricity unless the (13) W. P.
(13) E. W. P. says: 1. I wish to make a very small telegraph sounder to put into a watch case. The coiis cannot be over an inch long nor
more than $3 /$ in diameter; with whatsize of wire more than \%\% in diameter; with what tize of wire
shall I wind them? A. No.28. 2. On an open circuit telegraph line, can an operator at one of the line, as in the closed circuit plan? A. Yes. 3. In
running a small electro-motor, wound with coarse
wire, which will work best wire, which will worrk best, quantity or intensity
battery A. A quantity battery. 4. What is the
effect if the zinc plate in a Callaud battery becomes partly coated with a copper deposit? A. The curent is weakened. 5. Is there any way that a circuit, could be worked on the open circuit with one battery? A. Yes.
(14) A. S. G. asks: On p. 19 of your cu rent volume is an extract rom the Journal of the Telegraph, headed "The New Force.". In the sec-
ond paragraph occurs the following: "Upon an ond pararaph occurs the followig: "Upon an wound that no magnetism is produced inits corfs by the passage of an electric current." How an electro-magnet can be such without magnetism is
beyond my comprehension, andhow coils can be wound so as to neutralize each other I do not wound so as to neutralize each other I do no
know. Can you explain? A. If the two helices are so joined that the current traverses one in an pill be developed. 2 . Is the cadmium armature atracted by the peculiar magnet, and what office dhing more is said of it? A. The so-called etheric
the force accumulates upon the cadmium. A softiron rmature upon an ordinary sounder is as good as "etheric force,", with
(15) L. F. A. asks: What is the best meth od of constructing a meat cooler, large enough to put in two oxen in warm weather? A. Mare a
frame of $11 / 6$ by 4 inches uprights, set edgewise frame of $11 / 2$ by 4 inches uprights, set edgewise, cover it on the exterior with narrow tongued an
grooved boards, and in the interior with narrow rough boards with the edges neatly fitted together ine the interior with sheet zinc, and fill in the rame with dryeawdust. A covered top is bett hickness and also flled in with eawdust. Have slight opening for ventilation, protected with fine sauze wire cloth, and a swall pipe for drainage if your meat box had been placed under your ic (16) J.S. M
(16) J. S. M. asks: What size of opening does it require to keep life in 100 men, supposing
them to be shut up in a close room? A.Sup posing the =oom to be large, a much greater openir would be required at the top than if placed a the bottom, as the carbonic acta gas, which would accumulate by being thrown from the lungs of the occupants of the room, is heavier than the atmo phere, and would rest upon the fioor. The mos
favorable arrangement to ventilate the room would be that in which an opening would be pro vided at the fioor and another at the ceiling, and in thiscasethesize of the openings might be the minimum, the fresh airentering at top and be ing discharged at the bottom, except where th temperature may be so much increased as to in ducea a currentin the contrary direction. An au
thority says: "The proportion of oxygen gas in
. the atmosphere fs about 22 per cent, but after it has visited the lungs it is reduced to 16 per cent." There is, therefore, a loss of about 30 per cent of the oxygen of the air at each respiration; and the
opening should be large enough to renew about opening should be large enough to renew abou
$1 / 3$ of the air contained in the room in every 5 sec $1 / 8$ of the air contained in the room in every
onds. How large such an opening, or openings, hould be will depend upon the velocity of th current entering, whether forced by mechanica iment.
(17) E. B. G. asks: How much water should be evaporated in a room 14 feet square, to keep it the air should be entirely saturated with water Fevers are sometimes generated in consequence of doo humid state of the atmosphere. An English feet on a West Indian station by keeping his lowe decks dry with stoves in the summer season. vessel holding about 2 gallons of water placed in he air chamber of the furnace would give yo (18) A. B. asks: Is there any kind of acid
(he moisturesu want forte whole hous. orsale not withoutimpairing it.
(19) T. W. C. asks: 1. For two engines by 12 inches, and an upright boiler 8 feet high by
feet diameter, which you recommend for a boat 50 feet long by 18 feet wide by $33 / 2$ feet deep, what steam and water pipes do I require? The inspec tors do not allow upright boilers nn steamboa
here, as the law forbidsthem. Will a boiler $31 / 2$ eet in diameter and 10 feet long, with return flue do instead of the one you recommend? A. Make hesteam pipe 216 or 3 inches in diameter, and th eed pipe from $1 \frac{1}{4}$ to 13 inches. We think the oiner will answer. We would like to see the sec ton of the law that forbids the use of vertical
boilers. The only thing that we can find in the evised regulations bearing on the subject is the following paragraph : "Inspectors shall not here fter allow the use of donkey boilers of the vert ters flowing into the Gulf of Mexico." It is possibe that we may have overlooked some other paragraph in relation to the matter; and if so, we would
(20) W. E. S. says: I have been trying an experiment in burning coal dust. The first week
 in 62 hours, when using only the natural draft. The amount used was 3,118 lbs of Lebigh nut coal which, at $\$ 7$ per tun, would cost a bout $\$ 9.75$;stea averaged 45 lbs. to the inch. The second week in December I weighed the coal dust used, and then
I used plenty of livesteam for 26 hours out of 61 ours to heat 4 storiesof the shop with 1,000 feet of 3 inch pipe. I used the exhaust all the time for bs. at $\$ 2$ per tun. Steam pressure averaged 50 ibs.
to the inch. The boiler is horizontal, with 24
three inch iron tubes; and itis 10 feet in length by 3 feet in diameter,and well bricked up. Steam pipes, etc., are well covered with asbestos. When burning coaldust, I use a blower running about 3,000 revolutions per minute. About half an hour beI rake over my fre and on the grate : when I stop, in fresh dust, and shut all drafts, and at 6 o'clock the next morning I have trom 30 to 40 lbs . steam; and then all I have to do is start the blower, and in half an hour I can have a good fire and plenty of steam. A. You make a very favorable showiug If you can contrive to measure the amount of wa-
ter evaporated in a given time with each kind of fuel, you will be able to make an eachrate com parison. If you do this, we would be glad to parison. If you
know the result
(21) C. H. A. says: After reading Mr. Edihis method of producing it with a printer: and found that, by forcing the press up against the type wheel (first cutting out the main battery) and breaking the circuit between the instrument and
battery on the negative wire, it would cause a most beautiful and intense spark, and give a ver heavy shock. I find that, on connecting it with the stove, as Mr. Edisondid, it produces similar ef fects, giving off a spark when touched by a metallic substance. I am more interested in the pheno menon of the shock, as Mr. Edison says nothing aboutit. I am some what inclined to believe that
in this particular, it resembles inductive electricity; and it being someshat and ask if this mode of producing electricity t give a shock is new to electricians? A. The so-
called "etheric force" is nothing more than the extra or induced currents which are produce when the battery circuit is opened and closed: some facts connected with it, however, led to
doubts on the subject at first. Electricians are well acquainted with this method of producing shocks.
(22) A. F. O. asks: What must I do with hefluid of the Grenet battery after it is played more of the salts, be restored, or must it be throw away? A. Throw it away.
(23) R. asks: 1. I have a pair of polished skates, recently nickel plated, and I find on Can I prevent this in any way? Can I have the plating removed from the whole skate or any part of it? A. Yes; have the nickel
(24) C. H. N. says: You state that the earth received its motion during lts formation, and you running half a mile after the steam is shut off That being true, is it not the cause of the remarkable difference between the age of man in the days of the deluge and at the present time? The earth must in olden times have revolved faster and made the days and nights shorter. A. The period of 4,000 years is nothing when compared with the turies ago, she obtained her motion; untold centuries went on duringthe different periods of change as revealed by geological researches, until at last, some 150,000 or 200,000 years ago, man appeared The oldest records of man go only back some 4,00 to 6,000 years; but we know that during this time the velocity of the earth'srotation has not change the reported age of the patriarchs, we must con sider that, at a time when people had no chronol ogy nor almanacs, they did not count the years a correctly as wedo, and could not know themselves how old they were. We may add to this the venration in which the oldest people were held, which led every old man to boast of his great age and so they probably made
older than they really were.
(25) B. B. asks: Will it damage flax straw for manufacturing purposes to thrash it with Yes, it very nearly spoils it. Treading out the seed best.
(26) A. D. says: It is generally conceded fixed pathway, and that the plane of the orbit, which has an obliquity of $23^{\circ} 28^{\prime}$ to the plane of the sun's equator, probably at one period had a still greater obliquity, which would extend the warm er zones into higher latitudes. And again, the or and theearth will revolvéon the plane of the sun' equator; and the intimation that the orbit of the earth is gradually assuming a circular form, if true, would be the best evidence that this change Is now in progress. Then the poles of the earth
will be perpendicular to the plane of the orbit with the sun vertical over the equator only, and suppositions no change of easons. Are thes pathway of the earth in her vearly with the inclination of her axis on the ecliptic this inclination may change, while the pathway or plane in which she moves remains essentially the same. Some astronomers have supposed that, at
sometime in the far future, the inclination will become less and the intensity of inclination will minish, and at last disappear. But this time is so emote that the earth will then have cooled, and the internal heathave become so dissipated tha sess heat appreciable on the surface, and the latte will be unfit for vegetation, and consequently also for animal life. The earth will then be as the moon
is now-dead.
(27) W. H. S. says: You state that the moon rotates on its axis and in its orbit in the
same time. What is that time? A.27 days, 7 hours, 43 minutes, 42 seconds.
(28) T. P. M. asks: 1. Will zinc do instead copper as a plate for a ground wire connection
a telegraph? A. Yes, but it will not last nearly o long. 2. What size of plate is necessary for a ne one quarter of a mile long? A. For a line of that length you will get better results by using a nswer if it is not four or five feet square wil
re.
(29) M. M. asks: How many feet of common illuminating gas made from coal can I comress in an iron tank or gas holder of 50 cubic feet the inch ? A. About 333 feet.
(30) R. K. asks: How can I tell how many bs. weight are necessary to produce a given velo ty, as described in Z. D.s query as to the tension of a cord over a pulley? A.To calculate the weigh quired to produch the he proper substitutions in the formulas below. I will be easy for any one to see what assumption i necessary for the tension of $1,550 \mathrm{lbs}$., and the for mulas also show how different values can be ob-
tained, and yet be correct. Our readers wil oubtless observe, further, that these formulas ar he same that are employed for calculations con hat the case proposed by Z. D. is similar to prob lems that are solved with the aboveapparatus. Let $x=$ weight required to give the weight of 1,000
bs. a velocity of 10 feet In feet in which this veet per second. S=distance seconds in which this velocity is acquired. $g=$ cceleration due to gravity. $f=$ acceleration due to the weight. Then $f=g \times \frac{x-1000}{x+1000} ; \mathrm{S}=\frac{50}{f} ;$ and
=10. This also answers M. B.
(31) A. H. T. asks: 1. How is the heat cal A. See p .123 (14) vol 33, 2 . Why is it that air is such a great loss of power by compressing air to high densities? A. The principal source of loss, in general, is due to the fact that the power
required to compress the air is not afterward required to compress the air is not afterwards
iven out by allowing the air to expand as much iven out by allowing the air to expand as much
asit was formerly compressed. 3. Do hyperbolic
3. logarithms hold good in calculating the mean ogarithms hold good in calculating the mean
pressure in an air cylinder, or would it be correct ight-angent the initial and terminal pressures as A. The formula with hyperboliclogarithms is oniy applicable in case the temperature of the air in (32) J. G. B. asks: At what rate is the w er falling over Niagara Falls wearing the rock way yearly? A. The action is not uniform, th ock being detached in large masses from time to iods, the average wearing away has been about
(23) 2 D
(33) Z. D. says: In reply to my query as wer 1,550 lbs a the tension of the cord is exactly the same, namely, $4,000 \mathrm{lbs}$, whether the weight is raised at the
uniform velocity of 10 feet per second or whethe uniform velocity of 10 feet per second or whethe
it is motionless. He acknowledges that the ten sion is above 1,000 lbs. when the first pull is given, before the welght attains its uniform speed. Ahother gives as his answer a number somewhat over bs.? A. Our answe was possibly misleading from the fact that all the data upon which it de pended were not stated. Really, the tension of
the cord, required to give the weight a velocity 10 feet a second, can have an infinite number o values, subject to the following conditions: 1 . It nust be greater than $1,000 \mathrm{lbs}$. 2. The time and velocity io which the weight attains the required than the time and distance in which a heavy bod falling freely under the influence of gravity would acquire the same velocity. As soon as the weight move uniformly with that velocity, under a ten sion of $1,000 \mathrm{lbs}$., if there is no friction or other prejudicial resistance. See answer to $\mathrm{R} . \mathrm{K}$, on this page.
(34) G. B. K. says, in reply to T. D., who
asks how to obtain the index of an engine lathe: If you will note what thread the lathe will cut when two given gears are in place, you can easily
construct a table that will show you just what thread any two gears will cause the lathe to cut
Suppose that two 63 's cause 12 threads to the inch Then place 12 in the space, A, in the diagram be
low : Stud.

$63: 56:: \mathrm{A}: \mathrm{C}\} \quad$ (direct proportion).
$63: 70:: \mathrm{A}: \mathrm{E}\} \quad$ (
$\left.\begin{array}{r}\text { Also, } 56: 63:: \mathrm{A}: \mathrm{B} \\ 70: 63:: \mathrm{A}: \mathrm{D}\end{array}\right\}$ (Inverse proportion).
The spaces may all be filled except a, b, c, d, etc which it is useless to fill,as only your 63 gear is du good mathematician to fill out the table.
(35) J. H. says, in reply to D. C. B.'s query
as to his hydraulic ram difficulty: The gir, be-
coming exhausted in the air chamber, prevent the water from entering the chamber, when the
impetus valve closes, and the result of the working is only the dead beat of the valve in closing. All well regulated rams have inserted in the lower casting (a head of the opening to the air chamber) and a small groove is fled lengthwise in it ; and it is so adjusted as, when put in, to allow of water escaping when the impetus valve closes. Upon the reaction of said valve,a portion of air is drawn in through the screw, which passes upward to the ask valve, opening to the air chamber, and at the next pulsation of the ram the air is passed to the hed with air, during which time the valve give he lively click, which he describes, when workin well. Care must be taken not to allow the wate oback upon the sniffle, or the ram will again ease to work well.
(36) J. W. writes us from Switzerland that ing the fied to produce elcetricity there by shuf he has often done it in this country, but it will no work there. He wants to learn the reason ; also wants us to corroborate the fact that electrica arks can be produced as mentioned,in this coun y. In reply we state thatin this city, in wiater well warmed, dry houses, strong electrica parks may be produced by walking on or rubbing by touching another person with the finger hilea common home amusement for the your olks is to light the gas by electricity, by rubbin gas burner with the finger. In Europethe climat is more moist, and hence probably the phenome non is unknown there. Possibly in a well warme house on a vers cold day, upon a rug in front of a ood coal fire, our correspondent could produc
(37) J. B. J. says, in answer to C. E. B. uery as to a force on an inclined plane: Le $W=$ weight ($=112$ lbs. in this case), $A=$ angle be ween plane and horizon ($=30^{\circ}-$), $w=$ force with
which W presses against the plane, $\quad L=$ force Which W presses against the plane, $L=$ forc
pressing in the direction of the plane. Then $F=$ 97 lbs .
(38) J. B. J. says, in answer to J. A. R who desires to know the contents of a cylinder with hemispherical ends: $l=$ length of cylindrical part, $r=$ radius of hemispherical ends, $h=$ hight or epth of liquid, $x=$ area of immersed cross sec tion of cylinder, $\mathrm{C}=$ contents of cylindrical part, Then $\mathrm{C}=x \times l=l x$. Then $c=\pi h^{2}(r-1 / h) \quad \mathrm{C}+c=$ Then $\mathrm{C}=x \times l=l x$. Then $c=\pi h^{2}(r-1 / 3 h) . \mathrm{C}+c=$
content required. If the above dimensions ar in feet, multiply the result by $7 \cdot 4762$, which will reduce it to gallons. Compute content for every foot (and fractional part) of depth, and arrange a
table, when the contents will be see nat a glance able, when the contents will be see nat a glance, The comun tation may be made for half the tank
(39) S. W.G.says, in reply to J. G. S.'s query or a remedy for cracked fingers: Into equa arts of glycerin and colognespirits,putten grain in the same manner asglycerin.
(40) C. C. says, in reply to W. T. W. uery asto setting boilers: Take 6 or 8 inches o brick work away at sides and top, and 2 feet a let brick touch the boiler except at front and on dome. Excavate not less than four feet unde the whole length,leaving the mud drum (if ther be one) exposed to the heat. Set the grates 4 fee rom the lowest part of the shells. Build a bridg wall 10 inches (just enough to hold the fuel) abov hink of disposing of one boiler instead of addin to thethree you now have. You can get all the team you want without skillful fring, constan hard work, and waste of fuel, if you burn you uelinstead of sending it up chimney. The abov described radical change in setting of steam boil ers was made with excellent results. My boile while I increased the production of the mills, th
bills are less than before.
(41) J. S. F. says, in reply to C. B. H.'s speed: Unless she be drawing a heavy load or unning with a very light pressure, she cannot at tain her full speed with the throttle wide open
ad at full stroke, because of the contracted are the exhaust nozzle and high state of expansio of the steam, which cause her to choke when
more than a certain quantity of steam is admitted to the cylinder at each stroke of the piston. To o the cylinder should be regulated by the position of the reverse lever, or, to state it more properly,
Minetias,
-Specimens have been re eived from the following correspondents, anc examined, with the results stated
J. S. B.-It is granular quartz.-D. R. MeM.-The chickness can be told by examination of the out
crop at suitable points. In some localities, the thickness of these sandstone strata is several thousand feet. Your chance of getting water is
slight. No. 1 is iron pyrites. No. 2 is steatite. No. 3 is indigo carmine.-A.M. - You are correct in ta king it to be a sandstone containing a hydrocar-
bon of an asphaltic nature. The bituminous bon of an asphaltic nature. The bituminous
schists made use of in France are somewhat dif-ferent.-S. N. F.-It consists chiefly of lead, with W. M. N.-It is one of the alloys of tin and lead,
the former being in preponderance.-G.F.P.-It is a the former being in preponderance.-G.F.P.-It is a
piect of furnace slag.-J.A.H.-It contains no ura nium.-R. P.-The base of the composition is hard
rubber.-J. H. E.-It is iron pyrites.-C. rubber.-J. H. E.-It is iron pyrites.-C. T. A.-It
men in box marked "Washburn" is graphite in quartz rock.-H. M.-No. 1 is mica in quartz. No. The good specimen 3 is iron pyrites.-S. W. M.tioned in the recipe, and there is no reason why it should not act well. Try again
W. C. S. says: The following is a geomet ical nut for some of your readers to crack: The

quired the radius of the circles.-P. A. K. asks put it into practical use?-J. D. says:I have aluable mare, 8 years old, which has been but lit le worked. Last summer she had the thrush in her fore feet, but was soon cured, and her fee
ooked well and were free from contraction. commenced driving her this winter; and her feet were at once inflamei, and quite sore for a day o two. She flinches when she puts her frog onany thing hard. What can I do for her?

COMMUNICATJONS RECEIVED.

 The Editor of the SCIENTHTC American ac original papers and contributions upon the followlng subjects:On Working Men at the Centennial. By M. M On Spiritualism. By J. A. C.
on Pulling and Pushing. By
On the Moon. By C. J. C .
On Safe Savings. By
On a Remarkable Machine. By C.E.F. On Magnetic Attraction. By A. A. A.
On the Oldest Inhabitant. By On the Oldest Inhabitant
On the Universal Force.
On Momentum. ByJ.
On Momentum. By J.A.
On the New NebularTheory. By C. E.M
also inquiries and answers from the following:

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appea ahould repeat them. If not then published, they declines them. The address of the writer shoul lways be given.
Enquiries relating to patents, or to the patentability of inventions, assignments, etc., will not be published here. All such questions, when initial only are given, are thrown into the waste baske but we generally take pleasure in answering brief by mail, if the writer's address is given.
Hundreds of inquiriesanalogous to the following are sent: "Who makes the best dynamometers? Where can three inch objectives for telescopes be purposes? Where isthere a firm that undertake well-boring? Where are there any works wher ickel ore can be smelted? Where can walru ry? Who sells matches? Who sells alarm clceks? Who make tocks, to secure the feet of restive horses, while being shod? Who makes diving apparatus?"' Al uch personal inquiries are printed, as will be ob which is specially set apart for that purpose sub fect to the charge mentioned at the head of that column. Almost any desired information can in this way be expeditiously obtained.
[OFFICIAL.]
INDEX OF INVENTIONS
Letters Patent or
Granted in the Week Ending
January 11, 1876.
AND EACH BEARING THAT DATE

