grinutific ${ }^{-1}$ mextican.

MUNN \& CO., Editors and Proprietors.
NO. B7 PARMBREDGERLLYAT NOW, NEW YORK.
o. D. MUNN.
A. B. beaca.

TERM8.

Ono copy, one year, potage tncladed.....
One Cops,
clabRates
Ten coples, one year, each 82 70, postage Included...
Over ten coples, same rate each, postage Included.
ce By the new law, posta e ts payable in advance
the subscriber then receives the paper free of charge.
Norz.-Persons subscribing will plcase to ive their
Notr.-Persons subscribing will plesse to ive their Office and state address, plannly written. and also atate at names, and Pons wish their subacriptions to commence, otherwise the paper whll he sent from the recelpt of the order. When requested, the numbers can be sapplied from January 1st, when the volume commenced. In case of chan in realbe made unleas the former addross is civen.
If any of our readers fall to recetve their numbers regularly; if the diree thon is not platnly written; if premiums are not recelved; or if there ta
tault of any sort at thits office, we will thank our friends to send us postal card complaints, and repeat the same, if need be, until the remedy ts effect ed . Do not hesitate to complain. We desire to keep all mattera between VOLUME XXXIV., No. 5. [New Series.] Thirty fi'st Year NEW YORK, SATURDAY, JANUARY 2月, 1876.

the scientific alerican bopplemert Nor the Week ending Jeunary $2 y, 1876$. table of CONTENTS.

 chemistry asd metallergy. -tbe Net Metal Gallum

 New York.
 winter churning easy: Strain the milk into pansand set them on a pot of boiling water on the stove. Heat the milk quite hot, but not so as to scald. Set away the pans, and in 36 hours thick cream will have formed. At each skimming stir the cream well together, and, when enough for a charning has accumulated, take care, in cold weather, to have the chill taken off the cream; then scald the charn, pat in the cream, and churn gently; and if the butter does not come in less than ten minutes, you may judge that your cream is too cold.

CTEAE OH THE HOHWAY\&-TB

The State of Wisconsin has taken a very practical initis tive in the important matter of promoting the use of steam power on the highways, by offering a reward of ten thousand dollars to the inventor of any successful machine, to be test ed as stated below.
This reward appears to be intended simply as a token o the importance of the matter to the State-a sort of recog nition, merely, of the great benefit that the discoverer will be stow upon Wisconsin, to say nothing of the advantages he will confer upon the world in general.
We subjoin the text of the law, which is now in vogue having been passed at the last session of the Legislature We may add that it is to the efforts of Mr. G. M. Marshall of Big Spring, Wis., a member of the Legislature, that the passage of the law is due. Mr. Marshall is a most enter prising, intelligent, and practical man, and we could wish that many more of such gentlemen were chosen to represent the people in our various State legislatures. There is undoubtedly a vast work to be done, an astoni hing economy to be gained, by the adaptation of steam to highway traffic and we commend the subject to the serions study of our in ventive readers.
We will make but one suggestion, which is that, in the study of plans for machinery for this purpose, the inventor should endeavor to provide a practical method of increasing or diminishing, at will, the leverage of his engine upon the vehicle, so that, without changing the speed of his engine he may be able to reduce or increase the velocity of the vehicle thus enabling him to surmount bad places and heavy grades at a slow velocity, while running faster where the roadway is level and smooth.
The provisions of the law are so plain and simple, and the payment of the reward so certain, that we have no doubt there will be many competitors; while the general benefits of the competition will reach far beyond the particular object for which the reward is offered. The study which this competition induces will unquestionably lead to many new und useful collateral discoveries and inventions
It will be observed that the successful inventors of this machine are not required to surrender any of their rights in respect to patents: but in addition to the pecuniary reward, they may enjoy the patent monopoly of their inventions in all the States of the Union, and in fact in all foreign States. The following is the text of the law
The People of the State of Wisconsin, represented in Serate and Assembly, do enact as follows
Section 1. There is hereby appropriated the sum of ten Section 1. There is hereby appropriated the sum of ten
thousand dollars, out of any money in the Treasury not other wise appropriated, to be used as a bounty, and to be paid to wise appropriated, to 0 used as a bounty, and to be paid to
any citizen of isconsin, who shall invent and, after five years' continued 1 rial add use, shall produce a machine pro pelled by steam or other motive agent, the object of which is a substitute for the use of horses or other animals on the highwass or farm.
chine or locomotive, of succesaful use shall be that any ma or bounty, shall perform a journey of at least two hundred miles, on a common road or roads, in a continuous line north and south in this Scate, and propelled by its own internal power, at the arerage rate of at least five miles per hour working time.
Section 3. The said locomotive must be of such construc tion and width as to conform with or run in the ordinary track of the common wagon or buggy now in use, and be able to run backward or turn out of the road to accommodate
other grade of at least two hundred feet to the mile.
Section 4. The Secretary of State is hereby empowered and authorized, when satisfactory proof that the above conditions have been complied with, to draw his warrant on the
Treasury for the sum of ten thousand dollars, and pay the same to the inventor of the successful machine.
Section 5. This act shall take effect and be in force from Section δ. This act shall take effect
and after its passage and publication.

GALTON'S HEW THEORY OF HEREDITY

Next to the origin of life, and of far greater practical importance, the question of heredity is preẻminently the great biological question of the day. How is it that, in the higher orders of plants and animals, the offspring resembles not only the parent, but often, and in a more remarkable degree, some remoter ancestor? How are characteristics of figure, temperament, mental and moral traits, etc., carried over from generation to generation? More mysteriously, how are the peculiarities of the grandparent transmitted to the grandchild, skipping the intermediate link? And how do acquired traits become hereditary?
Like the author of pangenesis, Mr. Galton adopts the hy pothesis of organic units as the necessary basis of the science of heredity. This hypothesis almost necessarily implies : First, that each of the enormous number of quasi independ. ont units, which make up each and every organism, must have a separate origin or germ. Second, that the stirp (by which term he designates the sum total of the determining elements of the newly fertilized ovum) contains a host of germs, much greater in number and variety than the organic units of the structare to be derived from them; so that com paratively few germs are developed. Third, that the germs which are not developed retain their vitality, propagate themselves while latent, and contribute to form the stirps of the offspring. Fourth, that organization wholly depends on the mutual affinities and repulsions of the separate germs, first in their stirpal, and subsequently during all the, pro these postulates, the reader is referred to the arguments of Mr. Darwin. By means of them, and what to him appear to bo their necessary consequences, Mr. Galton explains why it is that none of the higher races admit of being long
quently the necessity of double parentage, and therefore of ser. This necessity in complex organizations is, he holds, the immediate consequence of a theory of organic units and germs.
Suppose, for example, a gardener takes the second bud of a plant and raises from it another plant,the second bud whic is used in like manner, and so on consecutively. At each successive stage there is a chance of the dying out or omis sion of some one or more of the various species of germs in the stirp; and of course when they are gone, they are los for ever. From time to time, this chance must fall unfavora bly, causing deterioration of the race. If the loss be vital the race will be extinguished at once: otherwise it will lin ger on until the accumulation of small losses becomes fatal Exactly the same argument applies to every other uniserua process, all of which lead to deterioration and final distinc tion : subject, we should say, to the contingency of an origina. tion de novo of organic units or their germs in the race. On the other hand, when there are two parents, the chance defi ciency of any particular species of germ in the contribution from either parent will be likely to be supplied by the other, and the extinction of the family indefinitely postponed. And even if a few lines do run out,the remaining families fill up, only too easily, the gap.
From the rapidity of the visible changes in the substance of the newly fertilized ovum, it is inferred that the invisible germs in the stirp are in restiess and eager pursuit of new positions of organic equilibrium, due, it may be supposed, to the unequal rates of development of some of the better nour ished germs. Segregations occur as much as aggregations, repulsions concurring with affinities, doubtless, in producing them. The probable behavior of these germs under various conditions, Mr. Galton illustrates by enalogy with political affairs. The successive segmentation of a cell is compared to the division of a political assemblage into parties, having thenceforward different attributes. Or the stirp may be compared to a nation, and the germs that achieve development to its foremost men, who succeed in becoming two nation's representatives.
The great dissimilarity frequently observed between brothers and sisters is similarly illustrated by a political meta phor. A uniform constituency will always have representatives of a uniform type; and this precisely corresponds with what occurs in animals of pure breed, whose offispring alwaya resemble their parents and each other. On the other hand, when a constituency is very varied, trifling circumstances will change the balance of parties, and therefore, although there may be little real variation in the electoral body, the character of its political choice at successive elections may change abruptly. Similarly, in mongrel breeds, the greater the mixture, the grester the variety of the offspring. In like manner Mr. Galton explains why it is that the likenesses and difterences of twins are more marked than those of ordinary brothers and kisters.
It is an essential condition in the theory of pangenesis that the developed portion of the stirp is the chief agent in maintaining the progeny of germs. Mr. Galton, on the contrary, holds that the developed part of the stirp is almost sterile, fertility residing in the non-developed residue, or rather in its progeny and representatives (whatever, or however numerous, they may be) at the time when the indi vidual has reached adult life. In this way he explains why, although hereditary resemblance is the general rule, the offspring is frequently deficient in the very peculiarity for which the parent was exceptionally remarkable. "We can easily understand," Mr. Galton remarks, " that the dnminant characteristics in the stirp will, on the whole, be faithfully represented by the structare of the person who is developed out of it; but if the personal structure be a faithful representative of the dominant germe, it must be an unfavorable representative of the germs generally, and therefore a fortion' of the undeveioped residue: nay, in extreme cases the person may be absolutely misrepresentative of the residue, the accidental richness of the sterile sample, in some particular valuable variety of germ, having drained the fertile residue of every germ of that variety." Instances of this sort frequently occur in the offspring of men of extraordinary genius, in which cases it is inferred that all the germs of genius were used up and rendered sterile in the structure of the parent, leaving the child exceptionally deficient. Another alleged result of the sterility of the developed elements of the stirp is the strong tendency to deterioration in the transmission of every exceptionally gifted race. Bs the same hypothesis, Mr. Galton explains the almost complete non-transmisaions of acquired modifications through abruptly changing conditions, education, etc.
According to the theory of pangenesis, the germs or gem mules must freely circulate with the blood. On the strength of his experiments with rabbits, showing them to breed true after large transfusion of the blood of alien species, Mr. Galton holds that Darwin's theory demands too much : he is satisfied, however, that the segmentations of the stirp are not perfectly clean and precise, but that each structure includes many alien germs, whereby the progeny of all the contenta of the residue of the stirp are distributed over the body, thus enabling the lower animals to replace lost limbs and the higher to restore wounded tissues.
Of the inberitance of non-congenital peculiarities,Mr. Galton is more than ordinarily sceptical. At most, "acquired modifications are barely if at all inherited, in the correct sense of that word." He accepts the supposition that they are faintly heritable, however, and accounts for such inhertance by a modification of pangenesis, to the effect that eacl coll may le supposed to throw off a few germs that find their way into the circulation, with a chance of occasionally find-

