

A WEEKLY JOURNAL OF PRACTICAL INFORMATION, ART, SCIENCE, MECHANICS, CHEMISTRY AND MANUFACTURES.

$\underset{\substack{\text { VNEW SERIES.] }}}{\text { Vol. XXX }}$.

NEW YORK, JANUARY 29, 1876.
$\left[\begin{array}{l}\text { \$3.20 per Annum } \\ {[\text { POSTAGE }}\end{array}\right.$

IMPROVED GAS APPARATUS.

The object of the invention herewith illustrated is to furnish private residences, country seats, hotels, railroad de pots, and all large buildings with a cheap and efficient portable apparatus for the manufacture of illuminating gas. The engraving shows a front elevation of a complete gas works based on this system. A is the generator, which consists of a furnace and oven, made of a cast iron case and firebrick lining, in which are two series of three retorts each, contrived in a simpie way, for graduating the heat the dif ferent substances, according to the progress of aimed, be re The retorts are made of cast iron, and can, it is claimed, be replaced at ref can be used alternately for all or steam, as dusired; so that should the oil retorts, by any oil or steam, as desir
chance, become obchance, become ob structed, the steam can be used to remove the obstacle im mediately. At B are shown the outside connections of the re torts, and at C C the inlets for feeding the materials of which the gas is made. The outside connections of the two series of the retorts are at D and at E is the stand pipe, connected with the valve, F, which secures and shuts off the generator from the rest of the works. There is also a connection between the two upper retorts and the valves, between which is another connection leading by a T into the generator, for the purpose of balre, F, is closed) the valve,F, is closed) the gas remaioing in the retorts, after shuttivg down, by means
of the superheate 1 steam.
Inside the ash pit is a water pan for extinguishing any spark or coals which may fall through the grate bars, as a pre caution against dan ger to the building if ger to the building if the generator is situated in one. By the pipe shown, con nection is made with
the cooler, G, from
which there is a conduit to the drip box, H, in which any condensation is collected, and passed off directly to the sewer or drain pipe, by means of a self-acting seal. The gas from the drip box is led to the gasometer, and in the pipe is a valve to prevent any gas escaping back to the inlet pipe. Should any alteration or repair become necessary, this valve is closed, and the rest of the apparatus is disconnected with out danger. The outlet pipe for distributing the ges to the arious pipes leading to rooms or streets, is also secured b various pipes loadigg to rooms or streets, is also secured by valve. leading from the outlet outlet is a branch pipe unde eal, leading from the outlet to the drip box, to collect al condensation which has not before been gathered. Connec ed with the drip box pipe is a pressure gage which shows the pressure of the generator on the gasometer when manu facturing gas. There is also a pressure gage connected with the outlet, which shows the pressure carried by the gasome ter. I is an improved jet photometer, by which the candle power of the gas is correctly shown at once. Test cocks are provided to test the hydrogen and carbon separately, and also o test them when mixed, as a fixed gas before cooling. This process, the inventor considers, may be adopted by large or small gas works throughout the country, with the result of producing better gas at less expense and with less labor it equires but one man where ton are needed in the coal gas process. The inventor also claims the process to be gas lutely and perfectly safe. There is no distillation or purif cation necessary; and during the coldest weather of 1875 the candle power was not in the least affected, and no con densation whatever found.

The apparatus needs no especial skill for its management any ordinary laboring man being able to run it with perfec safety, after three days' experience. It can quickly be taken apart and put together, and it also occupies but small space, averaging about one fourth that required by a coal gas works f the same capacity.
Patented through the Scientific American Pa'ent Agency November 16, 1875, by Mr. John H. Eichholz For further particulars apply to Messrs. Eichholz \& Green, 115 Freeman street, Brooklyn (E. D.), N. Y.

Platinum and Irldium.

MM. Saint-Claire Déville and Debray have succeeded in
preparing platinum and iridium in a state of purity hitherto
eactual flues, which have the power of carrying from the bottom of a house to the top, almost instantly How many know that the heat of a stove, even when separat ed by some little distance from wood, will, in the course of time, so char it that a spark will fire it? How many know that, under favorable circumstances, fires will smolder for hours, ready to flash into actual flame when fanned by the pening of a door, or the slightest current of air caused in any manner whatever? In brief, how many know anything of a hundred and one circumstances that will cause myste rious fires, which a slight degree of practical knowledg might easily prevent?-The Index.

A few weeks ago we published a brie editorial about work ing men's reading rooms, suggesting that it would be an excellent idea to es tablish resorts of this kind in every vil.age and town, and to fur nish them with news papersardothercheap reading and interest the men, while at the men, while, the same time, educa ting them and pre venting their wast ing their evenings in tavernsand bar rooms The seed we thus threw broadcast fell, in one instance a least, on fertile soil At a recent meeting of a Good Templar's Lodge, in Platts burgh, N. Y., a lady read our article, " little expecting," says the local journal, the Plattsburgh Sentinel " that it would lead to any immediate practical result." Th membars, bowever at once seized upo the idea; one, Mr Thomas Armstrong offered a room free of charge, and a com mittee was then and there appointed to carry out the project The Sentinel says that a cheerful, well lighted, and well warmed room, well supplied with news and iridium of the still more considerable density of 22.4 . | papers and other attractive literatare, will be provided, and Alloys of these metals have a greater density in proportion to the amount of iridium present. With 90 per cent of platinum and 10 of iridium, the donsity is $21 \cdot 6$; it reaches $22 \cdot 38$ if the iridium form 95 per cent of the whole.

Canal steaming.

The use of steam on the Chesapeake and Ohio Canal is des ined to increase the transportation facilities of that enterprise, and eventually make a larger quantity of Cumberland coal vailable. The Ludlow Patton recently made a round trip beween Cumberland and Georgetown, including lockage, in four days and nineteen hours, said to have been the fastest time ever made on the canal. The owner of the Ludlow Pat on claims that the simple and ingenious arrangement fo ubmerging her propeller has conducted largely to her suc cess. She has propring the entire season just closing, has consumed for fuel 4t tuns of coal per trip, and the re pairs to her motive power have thus far cost but 90 cents.

Mysterlous Fires.

We are now arrived at a season of the year when fires are bundant, and mysterious fires especially so. The myste y of a fire is one of three kinds-the mystery of frand, the mystery of carelessness, and the mystery of ignorance. The lat ter characterizes people of all ranks in life, and is, seeming y, as persistent as carelessness, and sometimes as culpable as raud. For instance, how many people know precisely what a defective flue is? How many know anything about spon
taneous combustion? How many know that hollow wall
in every respect rendered a congenial and pleasant resort We are very much gratified to learn of this cesult of our efforts, and congratulate the worthy Good Templars on their generosity and public spirit.

Sixty-Foot Rails

The Edgar Thompson Steel Works have filled an order for 60 foot rails. Several advantages are claimed for rails o this length. They cost no more per pound than 30 foot rails and as two crop ends are saved, the cost of production is considerably lessened-no way of using crop ends economic ally having yet been devised. The cost of laying is lessened; fewer fish plates, etc., are required; and as the hammering caused by the rolling stock in passing from rail to rail is lessened by one half, the wear and tear of rails and rolling stock must be greatly diminished. On bridges, also, the strain will be greatly reduced. The practical results of the use of these rails will be awaited with considerable interest. -Chicago Railroad Revievo

How to Grow Fat.-It is said that a pint of milk, taken every night just before retiring to rest will soon make the hinnest figure plump. Here is a simple and pleasant means by which thin, scraggy women may acquire plump, rounded figures.
A good alloy for making working models is 4 parts copper, 1 part tin, and $\frac{1}{2}$ part zinc. This is easily wrought. Doubling the proportion of zinc increases the hardness.

Srientific Ammericau.

MUNN \& CO., Editors and Proprietors. NO. BT PARKK ROW, NEW YORK.
O. D. MONN. A. B. BEACG.

TERMS

One copy, one year, pottage included...
One copy, alx monthe, potane included.,
cIabRates
Ten coples, one year, asch $\$ 270$, postage Incladed...
Over ten coples, same rate each, postage tincluded. 160

Over ten coples, same rate eacc, postage trcluded. .. .897
7
700
70 the subscriber then recelives 8 tee paper free of charge.
Notr.-Perrons subscribling will please to glve thetr foul namea, and Pos Ofllce and State address, plating written. and also state at which time they wish thetr subacriptlons to commence, otherw wise the paper will be sent from
the recelpt of the order. When requested, the numbers can be supplled the recelpt of the order. When requested, the numbers can be sappplied
from January 1st, when the volame commenced. In case of changling rostdence state former address as well as stre the nem cane of ohanging rosh be made unless the former addross 1 i kIven.
If any of our readers fall to receive their numbers regularly; if the diree. tion is not plainly written; if premlums are not recelved; or if there
tault of any sort at this office, we will thank our friends to send us postal card complaints, and repeat the same, if need be, untll the remedy is effect.-
ed. Do not hesitute to complain. We desire to keep all mattera hetween ourselves and patron right and satisfictory.

VOLUME XXXIV., No. 5. [New Series.] Thirty.first Year.
NEW YORK, SATURDAY, JANUARY 29, 1876.

THE sCiENTIFIC AMERICAN SUPPLEMENT For the Week ending Jaunary 2y, 1876. TABLE OF CONTENTS

ASTRONOMY, 5 figures. - The Dielocation of the Heavens.-Supposed
Changes of Nebule.-The Transit of Venus. The Cause of the Aurora. I. CHEMISTRY AND METALLURGY.-The New Metal Gallum

VII TECHNOLOGY-Art Works in liro
ith midich -Treatmeni or Bright's Disease, Dlet. etc., at Bellevue.

 COMBINED RATES.

New York.
10 cents.
A practical dairyman sends the following about rendering winter churning easy: Strain the milk into pansand set them on a pot of boiling water on the stove. Heat the milk quite hot, but not so as to scald. Set away the pons, and in 36 hours thick cream will have formed. At each skimming stir the cream well together, and, when enough for a charning has accumulated, take care, in cold weather, to have the chill taken off the cream; then scald the churn, pat in the cream, and churn gently; and if the butter does not come in less than ten minutes, you may judge that your cream is too cold.

STEAI ON THE HGHWAYG-TEA THOUSASD DOLLAR REWARD.
The State of Wisconsin has taken a very practical initia tive in the important matter of promoting the use of steam power on the highways, by offering a reward of ten thousand dollars to the inventor of any successful machine, to be testod as stated below.
This reward appears to be intonded simply as a token o the importance of the matter to the State-a sort of recog nition, merely, of the great benefit that the discoverer will be stow upon Wisconsin, to say nothing of the advantages h will confer upon the world in general
We subjoin the text of the law, which is now in vogue having been passed at the last session of the Legislature. We may add that it is to the efforts of Mr. G. M. Marshall of Big Spring, Wis., a member of the Legislature, that the passage of the law is due. Mr. Marshall is a most enter prising, intelligent, and practical man, and we could wish that many more of such gentlemen were chosen to represent the people in our various State legislatures. There is undoubtedly a vast work to be done, an astoni hing economy to be gained, by the adaptation of steam to highway traffic, and we commend the subject to the serious study of our inventive readers.
We will make but one suggestion, which is that, in the study of plans for machinery for this purpose, the inventor should endeavor to provide a practical method of increasing or diminishing, at will, the leverage of his engine upon the vehicle, so that, without changing the speed of his engine, he may be able to reduce or increase the velocity of the vehicle thus enabling him to surmount bad places and heavy grades at a slow velocity, while running faster where the roadway is level and smooth.
The provisions of the law are so plain and simple, and the payment of the reward so certain, that we have no doubt there will be many competitors; while the general benefits of there will de many competitors; while the general denefis of
the competition will reach far beyond the particular object the competition will reach far beyond the particular object petition induces will unquestionably lead to many new and petition induces will unquestionably lead to
useful collateral discoveries and inventions.
useful collateral discoveries and inventions.
It will be observed that the successful inventors of this machine are not required to surrender any of their rights in respect to patents: but in addition to the pecuniary reward, they may enjoy the patent monopoly of their inventions in all the States of the Uninn, and in fact in all foreign States. The following is the text of the law
The People of the State of Wisconsin, represented in Senate and Assembly, do enact as follows:
Section 1. There is hereby appropriated the sum of ten Section 1. There is hereby appropriated the sum of ten
thousand dollars, out of any money in the Treasury not otherwise appropriated, to be used as a bounty, and to be paid to wise appropriated, to we used as a bounty, and to $\begin{aligned} & \text { any citizen of } \text { isconsin, who shall invent and, after five } \\ & \text { and }\end{aligned}$ years' continued trial and use, shall produce a machine propelled by steam or other motive agent, the object of which is a substitute for the use of horses or other animals on the highways or farm.
Section 2. The test of successful use shall be that any ma chine or locomotive, entering the lists to compete for the prize
or bounty, shall perform a journey of at least two hundred or bounty, shall perform a journey of a l least two hundred
miles, on a common road or roads, in a continuous line north and south in this State, and propelled by its own interna power, at the average rate of at least five miles per hour, working time.
Section 3. The said locomotive must be of such construc tion and width as to conform with or run in the ordinary
track of the common wagon or buggy now in use, and be able track of the common wagon or buggy now in use, and be able other vehicles in passing, and be able to ascend or descend a grade of at least two hundred feet to the mile.
Section 4 . The Secretary of State is hereby
Section 4. The Secretary of State is hereby empowered and authorized, when satisfactory proof that the above conditions have been complied with, to draw his warrant on the
Treasury for the sum of ten thousand dollars, and pay the Jreasury for the sum of ten thousand dollars, and pay the Section 5. This act shall take effect and be in and after its passage and publication.

GALTON'S MEW THEORY OF HEREDITY

Next to the origin of life, and of far greater practical im portance, the question of heredity is preëminently the great biological question of the day. How is it that, in the higher orders of plarts and animals, the offspring resembles not only the parent, but often, and in a more remarkable degree, some remoter ancestor? How are characteristics of figure, temperament, mental and moral traits, etc., carried over from generation to generation? More mysteriously, how are the peculiarities of the grandparent transmitted to the grand-
child, skipping the intermediate link? And how do acquired child, skipping the intermediate link? And how do acquired
traits become hereditary? Like the author of pangenesis, Mr. Galton adopts the hypothesis of organic units as the necessary basis of the science of heredity. This hypothesis almost necessarily implies: First, that each of the enormous number of quasi independ. ent units, which make up each and every organism, must have a separate origin or germ. Second, that the stirp (by which term he designates the sum total of the determining elements of the newly fertilized ovum) contains a host of germs, much greater in number and variety than the organic units of the structure to be derived from them; so that comparatively few germs are developed. Third, that the germs which are not developed retain their vitality, propagate themselves while latent, and contribute to form the stirps of the offspring. Fourth, that organization wholly depends on the mutual affinities and repulsions of the separate germs, first in their stirpal, and subsequently during all the, processes of development. For proofs of the reasonableness of Mr. Daruiates, the reader is referred to the arguments of be their necessary consequences, Mr. Galton explains why it is that none of the higher races admit of being long carried on by any system of unisezual parentage: conse.
quently the necessity of double parentage, and therefore of ser. This necessity in complex organizations is, he holds, the immediate consequence of a theory of organic units and germs.
Suppose, for example, a gardener takes the second bud of a plant and raises from it another plant,the second bud which is used in like manner, and so on consecutively. At each successive stage there is a chance of the dying out or omis sion of some one or more of the various species of germs in the stirp; and of course when they are gone, they are lost for ever. From time to time, this chance must fall unfavora bly, causing deterioration of the race. If the loss be vital, the race will be extinguished at once: otherwise it will lin ger on until the accumulation of small losses becomes fatal Exactly the same argument applies to every other unisexual process, all of which lead to deterioration and final distinc tion : subject, we should say, to the contingency of an origina. tion de novo of organic units or their germs in the race. On the other hand, when there are two parents, the chance deficiency of any particular species of germ in the contribution from either parent will be likely to be supplied by the other and the extinction of the family indefinitely postponed. And even if a few lines do run out, the remaining families fill up, only too easily, the gap.
From the rapidity of the visible changes in the substance of the newly fertilized ovum, it is inferred that the invisible germs in the stirp are in restless and eager pursuit of new positions of organic equilibrium, due, it may be supposed, to the unequal rates of development of some of the better nourished germs. Segregations occur as much as aggregations, repulsions concurring with affinities, doubtless, in producing them. The probable behavior of these germs under various conditions, Mr. Galton illustrates by analogy with political a ffairs. The successive segmentation of a cell is compared to the division of a political assemblage into parties, having thenceforward different artributes. Or the stirp may be compared to a nation, and the germs that achieve development to its foremost men, who succeed in becoming two nation's representatives.

The great dissimilarity frequently observed between brothers and sisters is similarly illustrated by a political metaphor. A uniform constituency will always have representatives of a uniform type; and this precisely corresponds with what occurs in animals of pure breed, whose offspring always resemble their parents and each other. On the other hand, when a constituency is very varied, trifling circumstances will change the balance of parties, and therefore, although there may be little real variation in the electoral body, the character of its political choice at successive elections may change abruptly. Similarly, in mongrel breeds, the greater the mixture,the greater the variety of the offspring. In like manner Mr. Galton explains why it is that the likenesses
and difterences of twins are more marked than those of ordiand difterences of twins ar
nary brothers and risters.
It is an essential condition in the theory of pangenesis that the developed portion of the stirp is the chief agent in maintaining the progeny of germs. Mr. Galton, on the contrary, holds that the developed part of the stirp is almost sterile, fertility residing in the non-developed residue, or rather in its progeny and representatives (whatever, or however numerous, they may be) at the time when the individual has reached adult life. In this way he explains why, although hereditary resemblance is the general rule, the offspring is frequently deficient in the very peculiarity for which the parent was exceptionally remarkable. "We can easily understand," Mr. Galton remarks, "that the dnminant
characteristics in the stirp will, on the whole, be faithfully represented by the structure of the person who is developed out of it; but if the personal structure be a faithful representative of the dominant germs, it must be an unfavorable representative of the germs generally, and therefore a fortiori of the undeveloped residue: nay, in extreme cases the person may be absolutely misrepresentative of the residue, the accidental richness of the sterile sample, in some particular valuable variety of germ, having drained the fertile residue of every germ of that variety." Instances of this sort frequently occur in the offspring of men of extraordinary genius, in which cases it is inferred that all the germs of genius were used up and rendered sterile in the structure of the parent, leaving the child exceptionally deficient. Another alleged result of the sterility of the developed elements of the stirp is the strong tendency to deterioration in the transmission of every exceptionally gifted race. By the
same hypothesis, Mr. Galton explains the almost complete non-transmissions of acquired modifications through abruptly changing conditions, education, etc.
According to the theory of pangenesis, the germs or gemmules must freely circulate with the blood. On the strength of his experiments with rabbits, showing them to breed true after large transfusion of the blood of alien species, Mr. talton holds that Darwin's theory demands too much : he is satisfied, however, that the segmentations of the stirp are not perfectly clean and precise, but that each structure includes many alien germs, whereby the progeny of all the contents
of the residue of the stirp are distributed over the body, of the residue of the stirp are distributed over the body,
thus enabling the lower animals to replace lost limbs and the higher to restore wounded tissues.
Of the inberitance of non-congenital peculiarities, Mr. Galton is more than ordinarily sceptical. At most, "acquired modifications are barely if at all inherited, in the correct sense of that word." He accepts the supposition that they are faintly heritable, however, and accounts for such inheritance by a modification of pangenesis, to the effect that each cell may be supposed to throw off a few germs that find their way into the circulation, with a chance of occasionally find-
naturalized among them : a process independent of the causes naturalized among them : a process in
supposed mainly to govern heredity.
To illustrate the relationships of parents and offspring, Mr. To illustrate the relationships of parents and offspring, Mr.
Galton resorts again to a political comparison. The idea of Galton resorts again to a political comparison. The idea of
such relationship being one of direct descent he holds to be such relationship being one of direct descent he holds to be
quite untenable. From his point of view, the stirp of the child is to be considered as descended directly from a part of the stirps of each of its parents, while the personal structure of the child is an imperfect representation of his own stirp, and the personal structure of each of the parents is no more than an imperfect representation of each of their own stirps. The idea of filial relationship, which likens it to that which connects colonists to their parent nations, errs in making the relationship too close and strong. It resembles more that which connects the representative government of the colony with that of the parent nations. This is his first approximation. The second approximation consists in making allowance for the limited power of transmitting accuired peculiarities, thatis, for the reaction of the personal structure upon the sexual elements and thereby upon the future stirp. This he allows for by supposing the governments of the par ent states to have the power of nominating a certain propor tion of the colonists.

INFERNAL MACHINES.

Recent European mails bring further details of the diabolical plot which accidentally culminated in the fearful dynamite explosion on the wharf of the steamer Mosel, in Bremerhavien. It seems that the igniting mechanism was a common clock, of strong construction, and with its works so arranged as to cause a thirty pound hammer to strike a blow arranged one above the other, the clock and hammer being between the second and third. As to how the explosion was caused there is much difference of opinion, but it is probable that it was due to one of two causes: either the dynamite exuding out of its receptacles and being exploded by the concussion of dropping the box, or the premature fall of the hammer

It is curious to mark how much mechanical ingenuity has been expended on these engines of destruction: ingenuity which, if devoted to honest ends, would have gained for its possessors far greater rewards than they ever might hope to obtain through the terrible crimes intended. Thomassen's apparatus, above described, is comparatively crude, notably so in view of the fact that he must have examined other devices before deciding upon its use. Take, for instance, the machine which, some three years ago, it was attempted to ship aboard one of the Messageries Maritime Company's ves sels, at Bordeaux or Marseilles. As usual, a heary insurance on worthless goods was the object of the plan. The
principle of this arrangement was that of the needle gun. The needle was set in a bolt, which was acted on by a spring in a tube. In order to hold the bolt back, thus compressing the spring, a catch on the former engaged with a hammer-
headed lever. The lever was also attached to springs, which headed lever. The lever was also attached to springs, which
tended to draw it away from the catch, but the operation of which was opposed by a large disk placed close against the lower part of the lever head and held in its place in front of the catch on the bolt. In the disk there was a notch deep enough for the lever head to drop into when that portion of the disk was suitably presented. The disk was rotated by a train of clockwork at a fixed speed, and its edge was spaced off so that two consecutive marks would come opposite a
fixed point in exactly one day. Supposing, therefore, the fixed point in exactly one day. Supposing, therefore, the
disk to be marked in ten portions, and the machine to be re disk to be marked in ten portions, and the machine to be re
quired to explode in eight days, the lever would be set at quired to explode in eight days, the lever would be set at
the eighth mark from the notch. The clock work started, the eighth mark from the notch. The clockwork started,
the disk would revolve until, at the eighth day, the notch would come opposite the lever, and the latter would fall into it, so freeing the needle and exploding the cartridge. All of this mechanism was placed in a common packing box, and nitro-glycerin or other fearfully powerful explosive was used.
Fortunately the scheme was discovered and frustrated in Fortunately the scheme was discovered and frustrated in time.
The coal shell is another infernal device, the invention of which, the London Times intimates, may be attributed to some over-zealous supporter of Mr. Plimsoll's parliamentary endeavors to prevent the sacrifice of sailors' lives in rotten ships. Each shell was a hollow brass casting, resembling a moderate-sized lump of coal, and was simply filled with an explosive mixture. When coal was delivered to a vessel, it was intended (said the witness, who is supposed to have concocted the shell and the sensational story) to mix in a few of the shells, which, when carefully blacked, it would be impossible to distinguish. They would, with the coal, be shoveled into the furnaces, and instantly blow up, destroying the vessel, whose loss would probably subsequently be attributed to a boiler explosion.
Ingenuity of a much higher and hence more fiendish order has been brought to bear in the construction of "rats," which are of two species, one intended to operate on iron, the other on wooden ships. The iron ship rat consisted of a pig of iroc, similar in appearance to that commonly used for kent ledge or ship's ballast. Of course where several hundred of
these pigs were carried next the keelson and on the floor of these pigs were carried next the keelson and on the floor of
the ship, careful scrutiny of each would be altogether im. the ship, careful scrutiny of each would be altogether im-
possible. Into the block a hole was made, and in this a tubular boring tool, hollow and filled with acid, was placed. Above the tool a weighted lever was rigged, and so placed as to work to and fro horizontally in a space cut out of the top of the pig. The whole was carefully boxed in, and the surface of the iron restored. The rolling of the ship would cause the lever to sway back and forth, and so act on the tool as to car. ry it against the ship's side. A spring leelped to push the tool,
made its way through the iron and opened a leak. The latter, being in a location very difficult to find or even to plug, unless closed in some way would cause the ship to fill and sink.
The wooden rat was much more complex, and certainly more ingenious. In a box were placed, at a distance of five feet apart, t wo vertical cylinders. Between these was a horizontal cylinder having a piston working in it, the rod passing through a stuffing box. The other end of the rod worked a weighted ratchet drill. The vertical cylinders were each half filled with water, and each connected by a separate pipe with opposite ends of the horizontal cylinder. When the ship rolled, the water, alternately leaving and returning to the vertical cylinders, acted on the piston, the reciprocating motion of which was converted into rotary motion at the auger, which thus worked its way through the vessel's side. After the hole was made, the auger was freed from its fasAfter the hole was made, the auger was freed from its fas-
tening and dropped through into the water, so that it neither choked the hole, nor remained as evidence of how the same was produced. The box, even if discovered, would indicate was produced. The dox, even if discovered, would indicate
nothing save to a mechanical eye. Both of the rats, of course, required that their originator or a confederate should adjust them to their work
The use of infernal machines for wholesale destruction, n order to gain insurance, is of comparatively recent date, as the old and common employment of these devices was, and still is in a measure, to destroy individuals obnoxious to the perpetrator of the crime. In 1838 , it will be remembered, Fieschi devised an ingenious arrangement of twentyfive gun barrels (perhaps the prototype of the modern mitrailleuse), which were discharged all at once at the object of his hatred, Louis P'hilippe, without accomplishing the purpose intended, however. The Orsini bombs, designed for the slaughter of 1 ouis Napoleon and his family, were small the slaughter of Louis Napoleon and his family, were small
iron shells made in halres and screwed together. The interior was filled with powder, and the outside completely studded with nipples and percussion caps, so that it would be impossible to throw down the bomb without some cap
exploding the charge. These, when tried, killed several people; but the Emperor escaped unharmed.
The simplest infernal machine is that peculiar to the New York rascal, who occasionally dispatches it per express to politicians who have fallen from his good graces. The last The arrangement received by this gentleman, luckily without injury, was a small innocent-looking box having a sliding lid. The interior of the latter was lined with sand paper, against which the heads of several matches (of the parlor or explosive kind) were placed. Un withdrawing the lid, the friction of the sand paper would ignite the matches and then the powder of a heavy cartridge in the
box. The effect would be to blind or severely injure the opener; but in the case above mentioned, nefarious designs were suspected, and thorough soaking in water allowed of the box being safely examined.
We had prepared drawings of some of the ingenious machines which, as above described, have been applied to such diabolical uses, and contemplated publishing engravings of the same in connection with the foregoing article; but on
second thought, it seemed to us wiser not to do so. Crimes, say those who have made the evils of mankind a study, are epidemic; and there are minds so delicately poised that but a mere touch is necessary to turn them in the direction of evil. Mr. James T. Fields has recently had a lengthy conversation with that incarnate infernal machine, the Boston
boy murderer Pomeroy, who so mercilessly mutilated his little playfellows; and as a result of his interview, Mr. Fields traces the boy's mania for blood, in some measure, to the perusal of the sanguinary yellow covered literature of the dime novel type. Doubtless the writers and publishers of the murderous adventures would be as much shock ϵ d as any other good members of the community would be, could the effect of their work on badly balanced and illiterate minds desiring above all else to avoid even the remotest probability of working evil, think best to deny our pages to the ity of working evil, think hest to deny our pages to the
semblance of the means whereby crimes so horrible and semblance of the means whereby crimes so horrible and
atrocious have been committed, for the harm caused might vastly exceed the advantage of such knowledge as the pictures might impart.

SAFE SAVINGS.-AN IMPROVEMENT NEEDED

Uur English cousins are fast reducing the problem of how to live cheaply and save money to a science. They have in vented coiperative societies of which the members can buy the necessaries as well as the comforts of life at greatly reduced rates, and have long since brought annuity schemes and similar facilities for putting by funds to a high degree of perfection. Thelatestinvention of this kind is the Provident hnowledge Society, an incorporate association whose proa national habit, and so increase the facilities for saving that it shall be as easy for a man to put by a small sum as it is now for him to spend that sum in beer or spirits." A it is now for him to spend that sum in beer or spirits. A will be the practical result.
The association, it seems, works in two ways: First by advising people, either verbally or by letter, relative to forming schemes to encourage frugality, and second by issuing pamphlets, written in the simplest and plainest language, about various subjects of the same nature. Supposing, therefore, a workman can save a few pence a week, and has no idea how to do it, or what the result will be if he does, he
sends a penny stamp to the society with his question, and back comes the nocessary manual, telling him all he wants
life insurance, pawnbroking, saving banks, hints for work ing men, to general employees, and to servants, and sug gestions how to start cooperative stores and penny banks,
the details of winich it is hardly necessary to go into, since in the details of which it is hardly necessary to go into, since in this country a very different condition of affairs in point of
facilities for saving money, unfortunately perhaps, exists. We say unfortunately, because there is really among us no definite and absolutely certain system whereby a man, after he has put by his savings, can be assured that they will al ways be his. He has a choice, to be sure, of depositing his funds in a bank and leaving them there idle, but subject to check at sight, or of placing them in a savings' banks, gaining a certain interest, or of buying an endowment or annuity policy from an insurance company. We refer, of course, to very small amounts, and therefore such investments as good mortgages or government bonds are out of the question. The difficulty with all three plans abovementioned is their lack of absolute security. Banks, flourishing one year, may find cause to suspend the next; saving institutions (as did sever al of the largest recently in this city) may suddenly collapse and sweep away the hardly earned savings in an instant ; and insurance companies are by no means exempt from a like fate. So that, after all, the working man, who here puts his money out of his possession for safe keeping, does so with the knowledge of incurring a risk.
It has frequently occurred to us that a plan might be perfected whereby the government could be made the repository of the public's savings, and perhaps a system of post office savings banks devised, imitating that now in vogue in Eng. land. There every post oftice is a legal recipient for deposits of any sum over one shilling; the account of each and every depositor is kept at the head office in London, and, immediately after he pays in a deposit, he receives post free a let ter from the metropolis announcing the placing of the sum to his credit. When he wishes to draw all or a portion of his funds, he notifies his postmaster, who reports to London the amount called for, and the depositor again receives a free letter, advising him of the fact and inquiring whether all is right. This letter he carries to the postmaster who, in return therefor, pays him the money. This plan effectually precludes every possibility of fraud by intermediate agents, and the depositor has the security of his government for the safety of his cash. He is provided with a bank book, and in other respects deals with the post office as if it were an or dinary savings' bank. Two and a half per cent interest is allowed him on his deposit. In conjunction with this system, the government sells annuities, so that any person can by depositing a small sum for a certain period, purchase an annuity for the rest of his life.
In one of the pamphlets published by the society above mentioned, the inquirer is told what, under the annuity plan, can be done for eight pence (16 cents) a week. For that sum, paid from the age of nineteen to sixty, any man may obtain, on government security, a pension of five shillings ($\$ 1.25$) a week for the balance of his life. For four pence (8 cents), paid during the same period, he may buy a pension of 60 cents a week, and more or less in proportion. If the depositor who begins at nineteen dies before he at tains the age of sixty, say at forty years of age, the money that he has laid by is returned to his heirs at law in absence of a will, or to any one he may designate; it amounts to $£ 35$, or $\$ 175$. If he dies at fifty, about $\$ 260$ would be returned and so on So that the arrangement is entirely different from an endowment life policy by an insurance company which might be forfeited through failure to pay premiums This advantage more than compensates for the comparative ly small returns which the investment at first sight appear to yield. There is beside, under this pension or annuity ar rangement, a provision for drawing out money in case of ill ness.
It will be seen therefore that the depositor may either use he government as a temporary depositary for his savings or suffici buy from it, for a very small weekly sum, a pension sumcient to keep him from want in his old age. There are a scheme of this kind here, but we imagine that ultimately the objections might be overcome. The principal one lies in the fact that our post office is a non-paying institution, and is a charge instead of a source of revenue to the country. The question then arises of whether the increased bur den which the post office savings' bank department would
add, to that already existing, would be compensated for by the benefits gained. Again, this being a country of magnificen distances over which to send a free letter for each deposit or withdrawal, it would be an expensive proceeding: and it would be necessary to designate several cities where accounts for adjoining sections of the country could be kept. There are various other considerations which might be mentioned, rela tively to adopting the system here. In England,however, re cent statistics show that about one person in every seventeen of the population takes advantage of the facilities thus af forded, a fact which fully demonstrates the value and popu larity of the plan.
There is no mistaking that the circumstance of the recent collapse of the savings' banks in this city has, for a time at least, shaken public faith in institutions of that character, and indicared moreover how little people examine into the affairs of concerns to which they entrust their funds. Whether the safe English system be adopted here or not, cer tain it is that a safer plan for poor people's savings is badly needed ; and in modifying the English or devising another or better plan,our political economists and financiers will find a useful opportunity for the exercise of their abilities.

BatHE weak eyes before retiring at night with a little
BATHE woak eyes before ret
sugar dissolved in warm water.

IMPROVED FIRE PLUG. Mr. Christian Rapp, of Cincinnati, Ohio, has recently in vented a new form of fire plug, which, for convenience sake, he prefers to locate in the base of a street lamp, as shown in Figs. 1 and 3 of our engraving. Fig. 1 represents a front elevation; Fig. 2, a front view of the interior, with face plate detached; Fig. 3, a vertical transverse section of the same, showing connection with the main; and Fig 4, the connection of the main with the branch supply pipes of the plug.

The plug is constructed of a casing. an ioterior disk, and a front plate, with adjustable openings to establish connection with the supply pipes of the casing and the nozzles of the closing front plate, to open or close the plug, a spring stop locking the disk into position. A waste cock at the elbow of the supply pipes serves to drain any water from the same.
In the engraving, A represents the main casing, B the interior revolving wheel or disk, and C the outer face plate, secured to the casing by suitable fastening screws. The casing, A, is cast at the back with two supply openings, a, and turn at right angles toward two corresponding openings, a^{1}, of the disk, B , and the nozzles, a^{2}, of the front plate, C. The disk, B, turns on a central shaft, that passes through perforations of casing and front plate, and is provided with screw nuts at the ends to tighten the parts closely to prevent leaking. The contact parts of casing, disk, and face plate are lined with soft metal to allow the tight packing of the same. The wheel, B, is turned by means of a pinion, B^{1}, at the upper part of the casing the pinion boing revolved by a part of thied to its projecting shaft. A spring stop de applied to vice, d, of the front plate locks into recesses, d^{1}, of the disk, to secure the same either in closed position or with one or both holes open. The spring stop has to be released before the disk can be turned by the crank. A washer, e, with indicators, e^{1}, is keyed to the shaft of the disk in such a manner that the indicators follow the motion of the disk, and show the position of the exit holes of the same. The nozzles of the front plate are closed by screw caps, which are taken off when the hose is to be screwed on.
When the fire plug is constructed in connection with a lamp post, suitable arrangements for the gas pipes haveto be made
For the purpose of protecting the fire plug against frost in winter, after use in supplying fire engines with water, the stopcock is closed, so that by a few strokes of the engine the water in the supply pipes may be entirely pumped out. During the warm season the plug may be closed directly by the disk, as there is no danger of the plug being frozen.

THE RIDER COMPRESSION ENGINE.

We illustrate herewith a new motor, the operation of which is produced by the use of highly compressed cold air. This is heated thoroughly without change of volume, and its efficient expansion to a point at or below the pressure of the atmosphere utilizes all the force or mechanical effect pos sible. All these changes are consecutively and ra pidly effected in this motor without the use of valves, springs, levers, or, in fact, any delicate parts whatever, the moving parts being reduced to the lowest possible number, namely, the pistons, shaft, and connections. As may be seen by the annexed sectional engraving, Fig. 2, the engine consists essentialengine consists essential linder, A and a clin, \mathbf{B}, a pown cylinder, B, with their respective pistons, C D, and connections, and a regenerator, H. The lower portion of the compression cylinder, A , is kept cold by a current of water which circulates through the cooler, E . which surrounds the lower portion of the cylinder, while the lower portion of the power cylinder is kept hot by the action of the fire below the heater, F The heating and also the cooling of the air is instantaneously effected by its alternate presentation to the surfaces of the heater and cooler in a thin annular sheet.
The compression piston, C, extends downward to the base of the engine, and is a trifle
smaller than the interior of the cooler, E, thus leaving a thin |the air in its passage each waybetween the hot and cold cylspace on all sides for the air to pass downward and become inders
thoroughly cooled on its way to the bottom, and through The other portions of the engine are readily understood on which space it flows on its way back to the heater. The inspection of the engraving. The two pistons areattached di power piston, D, likewise extends downward into the heater F , which presents to the action of the fire a narrow annulus all round the bottom. Within this heater is the telescope, G, which is a thin iron cylinder about one fourth of an inch less in diameter than the interior of the heater. It is fitted to the interior of the power cylinder, and extends nearly to the

The other portions of the engine are readily understood on rectly to the cranks, I I, by simple conr ecting rods, J J, and all the movements of the various parts are uniform, being solely derived from regular, circular, and rectilinear mo tion; and as there is an entire absence of all complicated parts and the irregular intermittent impulse s which charac terize caloric engines, a high rate of speed and smooth ac tion may be safely and easily obtained. K K ar the packings, which are in duplicate for each cyl inder. The lower one has its lap downward to resist the escape of air below the piston, while the upper one has its lap upward to prevent the lubri cating material from entering too freely into the cylinder. Between them is a patent relief ring to elieve the friction of the packings. L is a simpl check valve which supplies any light leakage of ir which may occur
The operation of the engine is briefly as follows The compression piston, C, first compresses th cold air in the lower part of the compression cyl nder, A, into about one third its normal volume when, by the advancing or upward motion of the power piston, D, and the completion of the down troke of the compression piston, C , the air transferred from the compression cylinder, A through the regenerator, H , and into the heater F, without appreciable change of volume. The result is a great increase of pressure corresponding to the increase of temperature, and this impels the power piston, D, up to the end of its stroke. The pressure still remaining in the power cylinder, and reacting on the compression piston, C, forces the latter upward till it reaches nearly to the top of its stroke, when, by the cooling of the charge of ir, the pressure falls to its minimum, the powe piston descends, and the compression again begins. In the meantime the heated air, in passing through the regenerator, has left the greater portion of it heat in the regenerator plates, to be picked up and utilized on the return of the air toward the heater
These motors are valveless, noiseless, simple and claimed to be absolutely safe; emit no heated air or unpleasant odor, as is the case with caloric ngines; require no steam, cannot explode, do not ncrease risk of fire or cost of insurance, and can be operated by any one who can manage an ordin ary stove.
They are well adapted for running all kinds of bottom of the heater. Its office is to cause the air which light machinery, printing establishments, etc., but are par flows from the compression cylinder to be presented in a thin sheet all round the interior surface of the heater, and particularly at the lower and hotter portion. By this means the air is thoroughly and rapidly heated.
The same air is used continuously, as there is neither influx nor escape, the air being merely shifted from one cylinder to the other. Between the compression and power cylinders is situated the regenerator, H, composed of a number of thin plates slightly thickened at their edges, which, while afford ing a free passage to the air, sub-divides it into thin sheets. It is so placed between the cylinders as to be traversed by

RAPP'S FIRE PLUG

 ight machinery, printing establishments, etc., but are particularly valuable for pumping. One of these little six inch pumping engines (household size) has, we are informed pumped for 6 months, without intermission or stoppage from derangement, each consecutive day of ten hours, $10,000 \mathrm{gal}$ lons of water to a hight of from 70 to 100 feet; and the en ine required the services of an attendant less than thirty minutes each day, and consumed only 20 lbs . of coal per day, thus pumping 2,000 gallons of water 100 feet high at a cost of only one cent
For railroads, city and suburban residences, French Hats, otels, boarding houses, etc, these engines are very desira tels, boarding houses, etc., these engines are very desira
 ble. As may be seen by Fig. 1, the pump is placed on the side of the cooler, and worked directly from the compression piston All the water is passed di rectly through the coole on its way to the tank or outlet.
For further information address the agents, Stafford \& Cammeyer, 93 Libert street, New York city, a which address the engin may be seen in opera tion.

One Man's Work.
The enormous statue of Herrmann, the ancient German warrior, which was inaugurated wome months ago by the Emper months ago by the Emper or of Germany, was entire
ly made by one man. The ly made by one man. The
figure is of embossed cop figure is of embossed cop per, one hundred feet high
and every inch of the im apd every inch of the im mense surface was ham mered by hand. A West phalian nobleman, Her von Bandel, performed the entire work, from the pre liminary modeling to the finishing with the ham mer, many years of hi life being devoted to th work. The statue stand near Detmold, the capita of the principality of Lippe, and the artist's workshop was located on the spot.

THE MANUFACTURE OF COINED MONEY.

coining.

We publish on our previous page a series of engravings illustrating the various processes employed in the manufacture of money, a business which, being mostly in the hands of governments, is not in the category of ordinary manufactur ing operations, but which is, nevertheless, a very extensive and important trade. The amount of money annually mint. ed is prodigious; and the necessity for perfect accuracy in weight and fineness of every coin gives the business the peculiar interest attaching to all minute and delicate operations conducted on a very large scale.
The first step is the mixing of the alloy, which in this country consists of 9 parts pure metal to 1 part alloy. The alloy for silver coin is copper; for gold, a mixture of silver and copper, the proportion of silver in the mixture being not more than one half. In practice, but a small portion of the alloy for gold is silver. The silver is readily prepared for coining; but the gold frequently is found to be brittle when cast into ingots, owing to the presence of impurities. Many of these foreign matters are diminished by treating the molten metal with a stream of chlorine gas. When the standard of purity is accurately adjusted, the metal is cast into ingots, long enough in proportion to their thickness to be rolled into strips of the required thickness (see Fig. 1). The ingots are then heated (Fig. 2) and rolled into long strips (Fig. 3). In our Fig. 4 is shown the operation of punching out circular disks from these strips; and this process is one of great nicety, as the disks require to be so nearly correct in weight that the final adjustment can be readily made. In Fig. 5, is shown the weighing room, where any trifling overweight on each disk is removed with the file, care having been previously taken to make the pieces over rather than under the correct weight. Fig. 6 shows the coining presses, in each of which are a die and a countersink, engraved with
the devices for the obverse and reverse sides of the coin respectively. This operation completes the coin, except as to its edge, which is finished by the machine shown in Fig. 7. which raises the circumferential rim which protects the em bossed face of the coin from abrasion by friction in use. This machine rims from 800 to 900 coins per minute; and words or devices can be embossed on the rim, when required, by a straight steel die, against which the coins are pressed with great force, and rotated. Milled edges are made by this ma chine, the die being properly cut for the purpose.
The coin is now finished, being perfect in value, weight, and form; and all that now remains to be done is to cleanse it from the dirt of the manufacturing processes, and give it the beautiful appearance which characterizes new money This done by scouring and washing, as shown in Fig. 8; and the money is then put up in packages for storage, as shown in
Fig. 9. The waste strips are readily beaten into ingots, as shown in the same engraving; and all filings and dust of the precious metals are carefully saved.
The series of illustrations gives a clear and accurate idea of the system generally in use; but of course the processes are varied in different establishments.

THE BUDDHA CRAB.

Rev. C. W. Everard writes to Land and Water that he was two years ago,in the northeast of China, and was then told that the natives there not unfrequently caught some small crabs which have a most ridiculous face on one side. "They call them the Buddha crabs. I was very anxious to see some; and before I left, the two that I now have the pleasure of sending you, and which I beg you the pleasure of sending you, and which I beg you
will accept, were brought me. One has, unfortunately , suffered in its long journeys, but the other is near ly perfect. The face is very distinct, and looks like a very jovial old fellow much given to wine.
In reply, the editor, Mr. Frank Buckland, says: "I now give a portrait of this remarkable crab; it is just the size of the top of the thumb; the claws are very small. The nearest approach to it is the masked crab (corystes C'assivelaunus), sometimes found in the Brit ish seas. One of these was exhibited alive in the
aquarium of the Zobological Gardens, in 8860 . I think it would of the Zoological Gardens, in 2860 . I think ordinary resemblance to the human face on the back of a crab. This crab comes from China, and, strange to say, the markings on his back exactly resembled the face of an ugly old Chinaman. The eyes are closed, but they are ob ugly old Chinaman. The eyes are closed, but they are ob-
lique to the face, and are surmounted by heavy eyebrows. lique to the face, and are surmounted by heavy eyebrows. The nose is rounded and flattened; at each corner there is a
warty projection. The moustache is curled exactly like the moustache we see on a Chinaman. The mouth seems read to open and swallow any quantity of food."

Ducks and Terrapins.

Everybody, says the Baltimore Sun, has heard of Chesa peake canvas-backed ducks and diamond-backed terrapins, and a great many people know something of how they taste when served up for the table, but not a great many are ac. quainted with the manner in which they are handled by the dealers in those and other famed gastronomic luxuries There is an establishment in Baltimore which has been fit ted up especially for this trade, where canvas backs and all kinds of game are kept by the thousends in apartments where the temperature remains at 18° above zero, and where terrapins in multitudes live and grow fat on nothing. There are five large closets on the premises, built in the walls, similar to bank vaults, and these, by a scientific process, are arranged to keep their interiors at a very low temperature, by the use of ice, but in a different manner from the and other wild game are kept perfectly fresh; in another
there are all varieties of fish, including shad from Savannab white fish from the lakes, rock and perch from the Chesapeake tributaries, and blue fish, haddock, and codish from the North. In another closet the smaller and wore common fish are kept, and all of the closets arn filled with some of the special products dealt in. For a month past shipments of canvas backs by the berrel have been made to London, Liverpool, and Paris by steamships from New York and Baltimore. The fowls are taken from the cold closets, and, when on board the steamers, are put in ice, and reach their destinations in excellent condition. Oysters in barrels are destinations in exce, the oysters being packed with seaweed and corn meal. But tho most novel feature of the house is the terrapin department. This room is lkept warm, and the the terrapin department. This room is kept warm, and the terrapins luxuriate in airtight chests, each from five to ten
bushels capacity. These are packed full of terrapins, which bushels capacity. These are packed full of terrapins, which
number many hundreds in the aggregate. The most of them are of the Chesapeake diamond back variety, and all are a least seven inches across the under shell, that being the measurement which the terrapin must reach before, in the opinion of the epicure, it is fitted for the table. There ar also kept, in some of the chests, hundreds of slider or red fen der terrapins. a fresh water variety, chiefly from the James river. The habits of the terrapin have been made a study by the dealer. He keeps them in his airtight chests, without food, and says they not only exist deprived of air, but grow fat, and if kept in the chests for six months will each weigh four or six ounces more than when put in. If the teri'apins are allowed to have liberty or free air, even in the most lim ited space, they become very poor, as they seem to draw sus tenance from themselves, but do not take food. All the ter rapins in the chests are enjoying vigorous existence, a proved by their movements when the lids were raised. Th terrapins are principally sold to hotel keepers, and to b served up at extra junketings, and bring about $\$ 24$ a dozen During the terrapin season of 1874, one house in Baltimor sold a thousand dozen.

Contagion in our Schools.

The prevalence and spread of scarlet fever and diphtheria among the children of this city are facts which should awak en an anxious concern of the profession. It is unnecessary to say that the occurrence of these cases is explained by the fact of direct contagion. No matter what particular views may be advanced in regard to the modus operandi of the poi son, we hardly believe there are any, at all acquainted with the diseases in question, who would be willing to say that they are not communicable, and hence not amenable to ordin ary preventive measures. But, notwithstanding this belief, a belief shared in by the most intelligent portions of the lay community, we have these diseases cropping out in the schools day by day, under the very eyes of the teachers, and without any apparent effurt on their part to arrest the spread. When a child carries a contagious disease from bis school to his home, thereis always trouble and anviety in the train, and not unfrequently death, besides the danger of the propagation to other members of the family and among the neighboring children. In the absence of sanitary inspection in our schools, it may seem hardly fair that we urge upon any extra duty to supply the deficiency; but we are convinced that, with very little trouble on their part, a great deal of

THE BUDDHA CRAB.
good can be accomplished. And after all, in this particular the teacher is the fittest person to act, being always in direct communication with every scholar, and being the first to be informed of any illness. It would seem to be a very simple task to send the ailing child home, and at the same time to ssume, especially during epidemics, that the sickness may e of a contagious character. Neglect of such precaution causes the sacrifice of many valuable lives yearly; and so long as teachers corsider that they have no moral obligation in the matter, we can hardly hope for any change.
Even in the most contagious diseases the danger of infec tion during the initietory symptoms is comparatively slight This certainly is the strongest possible argument in favor of he prompt quarantining of a suspicious case. But while we allow that, with the right disposition on the part of those who have charge of the children, much disease may be pre ented, there is another element in the question, and one which it is more difficult to meet, because in a measure beyond the control of the teacher: and that is the premature appearance at school of those who have been the subjects of hese infantile diseases. It is well known that the power of propagation lingers in many of these disorders long afte convalescence has commenced; and as such a fact is one of the onder that many times, the most dangerous poisons ar wonder that, many times, the mo
sown broadcast.-Medical Record.

To clean colored leather, use 1 oz. oxalic acid dissolved in pint distilled water.

Dr. A. Horner, surgeon to the Pandora, speaking of the Greenland Esquimaux, says: 'From the length of time these people have inhabited this cold country, one naturally ex pects them to have found some particular food, well adapted by its nutritious and heat-giving properties, to supply all the wants of such a rigorous climate; and such is found to be case, for there is no food more delicious to the taste of the Esquimaux than the flesh of the seal, and especially that o the common seal (phoca vitulina). But it is not only the human inhabitants who find it has such excellent qualities but all the larger carnivora that are able to prey on seals Seal's meat is so unlike the flcsh to which we Europeans ar accustomed that it is not surprising that we should have some difficulty at first in making up our minds to taste it; bup when once that difficulty is overcome, everyone praises it. when once that difficulty is overcome, everyone praises it lavor, tenderness, digestibility, juiciness, and its decidedly
warming after effects. Its color is almost black, from the arge amount of venous blood it contains, except in very oung seals, and is, therefore, very singular-looking, and no nviting, while its flavor is unlike anything else, and canno be described except by saying "delicious!" To suit Europea palates, there are certain precautions to be taken before it is cooked. It has to be cut in thin slices, carefully removing an at or blubber, and then soaked in salt water for from 12 to 24 hours to remove the blood, which gives it a slightly fishy flavor. The blubber has such a strong taste that it re uires an arctic winter's appetite to find out how good it is That of the bearded seal (phloca barbata) is most relished by epicures. The daintiest morsel of a seal is the liver, which re quires no soaking, but may be eaten as soon as the animal is killed. The heart is good eating, while the sweetbread and idneys are not to be despised.
The usual mode of cooking seals' meat is to stew it with a ew pieces of fat bacon, when an excellent rich gravy is formed, or it may be fried with a few pieces of pork.
The Esquimaux make use of every part of the seal, and, it is said, make an excellent soup by putting its blood and any dd scraps of meat inside the stomach, heating the contents, and then devouring tripe, blood, and all with the greatest re ish. For my own part I would sooner eat seal's meat than mut on or beef, and I am not singular in my liking for it, as sev aral of the officers on board the Pandora shared the same opinion as myself. I can confidently recommend it as a dish to be tried on a cold winter's day to those who are tired o everlasting beef and mutton, and are desirous of a change f diet.

Bath Bricks

The annual importation of Bath bricks into the United tates is estimated at 10,000 boxes, there being 24 bricks in ach box. These bricks are manufactured from the deposit of the river Parrett, Bridgwater, England, where million re made annually. Nowhere else are these deposits found, o that Bridgwater supplies the world, and Bath brick are a well known in America, China, and India as in England.

Artists Brushes

In a detailed description of the business of a large manu factory of artists' materials, in this city, a Iribune reporte gives the following interesting information in regard to the various sorts of hair used in brushes. The principal kinds employed are: Hog's bristles, which, being fur, which is also stiff varnishing brushes; badger hair, which is long, soft and elastic, and of which are made graining and gild ing brushes; sable tail hair, which is very long and very elastic, and is made up into the finest and cost iest of artists' brushes; camel's hair, also long and elastic, and second only to sable in fineness; and ox hair, which is pulled from the inside of cow's ears, and, being exceedingly long and elastic, makes good striping and lettering brushes. The skins of the ani mals mentioned are imported in bales, and boys with shears cut off the hair in handfuls, which are after wards arranged by the brush makers. The denuded hides are then sold to glue makers. The value of some of the most costly kinds of hair exceeds that of equal weights of gold, so that each particular hair may be said to have its price, and great care is taken to prevent its loss. A double handful of sable tail hair, for instance, is worth $\$ 100$, and camel's hair is only a little less valuable. The variety of brushes made is almost infinite, and artists sometimes order them made after some particular pattern or device of their wn. More than a hundred different sizes and shapes are kept in stock, the finest consisting of a few long, delicate hairs, capable of making a mark as fine as the scratch of a needle point.

The Centennial Exponition.
A correspondent writes to point out that many persons wil decline to exhibit at the Centennial because the Commission ors have made no arrangement to receive exhibits by railway and to place them in the proper situations in the departmen which they belong. For an exhibitor to go there to put is goods on show, and again, 4 or 5 months afterwards, when the judges are making their awards, will be expensive f he live some distance from Philadelphia. He suggests that the Commissioners should appoint properly qualified men to undertake the removal of exhibits from the railroa depots to the buildings, and to put them in place for exhi bition; and he states that exhibitors living at a distanc from Philadelphia would gladly pay the expense of such an arrangement

Cortespondence.

Mr. Edison's Now Force

To the Editor of the Scientiflc American:
I have recently made some experiments with the so-called theric force, the results of which will be found below. As the subject is one which has attracted considerable a tention of late, I have taken special care while making the tests, and have also carefully verified the results by repetition. You will notice that the indications tend continually in one direction, identifying the force with electricity: indeed, from what I had learned of the subject, I had little hesitation in pronouncing the phenomenon one of an entirely electrical nature. I was also led to believe that its origin was attributable solely to the induction of the battery cur rent on itself, in the coils; but it remained to prove thes conclusions correct, in order to set tle the question so far as the deve. lopment of a new force was con. cerned.
It has been stated that this force traverses with equal facility both good and bad electrical conductors, that it cannot be insulated, and that, in this particular at least, it is quite different from electricity. These statements seem strange in connec. tion with another, which accompanies them, to the effect that manifestations have been transmitted through coils equivalent in resistance to many thousands of miles of telegraph wire. In a case of such apparent contradiction, the statements should certainly be qualified by some evidence that the manifestations traversed the wire rather than that they passed through the insulator. In any event, however, the first statements are wholly irreconcilable with the following tests, made a few days ago:
A short piece of wire was fastened to a brass ring on the end of a glass rod, the latter carefully dried. The wire was then placed in contact with the armature of a vibrator, or at least very close to it. Sparks passed readily between the wire and armature, was afterwards placed upon taylight. Another brass ring was afterwards placed upon the rod, but not a single spark could be obtained from it until it almost, if not actually, touched the first. This was repeated several times, once when fifty cells of gravity battery were used to work the vibrator. Four cells were used most of the time.
The above experiment plainly indicates that the force can be insulated. The latter, however, is of a much higher tension than the battery current which produces it. When the piece of wire on the end of the glass rod is very short, sparks no longer pass berween it and the vibrator. The same would be the case if an electrical machine, giving electricity of low potential, w ere used. But, unlike the electrical machine, the vibrating armature seems to be oppositely polarized when the circuit is opeved and closed. This sufficiently explains why Mr. Edison was unable to obtain galvanometer deflec tions by the methods which he employed; it is also just what we might expect would result from the extra corrent. I was thus led to try the plan represented in the accompanying diagram, Fig. 1. One wire from the galvanometer was connected directly with the armature of the vibrator; the other led to the binding post, Δ. The galvanometer was therefore in connection with the battery by one of its terminals only. When the vibrator was put in motion, deflections were obtained at once. Fearful, however, that the spark was sufficient to close up the gap between the armature and B, and thus shunt the galvanometer, and that by this means part of the battery current would pass throngh the galvanometer and canse a deflection, I olosed all of the points (see Fig. and canse a deflection, I olosed all of the points (see Fig.
2). This gave me a deflection of 25°, and indicated appros2). This gave me a deflection of 25°, and indicated appros-
imately what might be expected in case the spark did actual imately what might be expected in case the spark did actual-
ly close the gap. The adjustable points were then separated, ly close the gap. The adjustable points were then separated,
and the armature allowed to vibrate. The spot of light immediately ran up to 50° or more. By carefully regulating the points, I was enabled to get a deflection of over 400°, and could obtain it either to the right or left. The deflection in the direction of the battery current, however, was somewhat greater than the opposite one. It was evident, therefore, that the battery current did not directly produce the deflections.

A still more decided test was next made, which I am disposed to regard as conclusive. The galvanometer wires were led directly to the rings on the glass rod already mentioned. The rings were sligbtly separated, and each provided with a short wire, between the ends of which the armature was allowed to vibrate, striking one wire at each vibration. Fig. 3 shows the arrangement. Sparks immediately appeared on each side of the vibrator in the very slight interval which separated it from the ends of the wire, and a deflection of 300° or 400^{\prime} resulted. This was always in one direction, so long as the direction of the battery carrent and connections remained unchanged, but passed in an opposite direction when the poles of the battery or wires leading to the galva nometer were reversed, With fifty cells of battery, the spo of light was thrown entirely off the scale.
The vibrator used in these experiments consists of a electro-magnet about two inches long, with a thin piece of
irnn for the armature. The coll measured perhaps two or three ohmg. F!g. 1 gives a fair idea of the instrument. The galvanometer was one of Thomson's mirror instruments, ant ontains something over 29,000 ohms resistance New York city.

Electron.

The New Force

To the Editor of the Scientific American:
In your paper dated January 1, you publish a letter from Thomas A. Edison, in the last clause of which he describes au "inexplicable phenomenon," namely: "An uninsulated wire, proceeding from the source of power (highly insula ted), was takeu into the street and laid in the gutter around a whole block and back into my laboratory by another door and up to the floor above the one where the generator was. Fxcellent sparks were drawn from that end of the wire, al

EXPERIMRNTS OI THE HRW FORCE

nfluence of the sun's gravity, as the sun is the largest near objoct, and all matter is subject to gravity; and as the sun's outward course changes its position, it also causes the comet's course to deviate from a straight line, because it is constantly pulled aside by the sun. This deviation continues until the comet's course becomes momentarily parallel with the sun's course, after which it gradually curves toward the sun, the entire path of its movement being an ellipse, constantly approximating to a spiral circle. The comet's fiery mass having been projected as a fragment from a body revolving upon an axis, it also has an axial motion in conformity with a universal law, which also assists to convert its bulk into a spherical shape, as its own gravity acts upon its mass to concentrate it toward its center. Thus, in time, its mass comes to consist of a fiery nucleus, with various spherical envelopes of gaseous material, more or less separated from each other gravity. Its matter being astremely attenuated its bulk may be immense, while its weight is relatively small. It has an axial and an orbital motion. In axial and an orbital motion. In
this condition, it is observed by this condition, it is observed by a spectator as a bright speck in
space, which rapidy enlarges under continued observation as it approaches, its fiery nucleusilluminating its hazy envelope like a lamp in a globe, the whole re volving on its axis as an im. mense sphere of attenuated mat ter, perhaps $180,000,000$ miles in diameter. As it approaches nearer, still revolving it apparently increases, but less rapidly in size ; and as it gradually meets the increasing light of the sun, its own spherical giow, conquered by a superior light, gradually pales on the side nearer the sun and it accordingly shows a tail of perhaps $90,000,000$ miles (or half its diameter) in length in the solar shadow which its nucleus casts and illuminates, that being the only portion of its huge envelope which the eye is permitted to distinguish under the conquering infiuence of the sun's
though the ground the wire laid on was wet, it having rained light all night."
The "source of power" he speaks of, I take it for grant ed, means that source from which he derives what he term the "etheric force." I see nothing inexplicable in that, as it does not conflict with the action of a current derived from the ordinary galvanic battery used for telegraphing. I have operated the relay and recording register through a naked wire, laid in sea water one quarter of a mile, as perfectly as it can be worked on an insulated air line. I then extended it to half a mile, when it worked so that I could read most of it, but the current was very weak. I then extended it to three quarters of a mile, when I could get only a slight deflection of the galvanic needle. At that distance the current did not perceptibly affect the relay. Electricity, however did not perceptibly affect the relay. Electricity, however
produced, is hard to return or bottle up. It always selects the road which has the best conductivity, without regard to distance. The relative conducting power of the uninsula ded metallic wire and water will show that it requires about one mile of water to equal the better conductivity of the uninsulated wire.
I have no doubt that Mr. Edison will thoroughly ventilate his discovery, and hope that he will succeed in finding both practicable and useful.
J. P. H.

New York city.

What in the Tail of a Comet?

To the Editor of the Scientific American:
I have not been particular to note the date when my discovery, described below, of the origin of the tails of comets was made, that discovery being only an incidental result of some other investigations; and the explanation is so absurdly simple that I have waited several years for astronomers to make the assertion that I am about to make, and which al most any person can demonstrate without need of the com plex apparatus by which it was incidently revealed to me.
Briefly: The tail of a comet is the light projected by its nucleus upon that portion of its hazy envelope which lies in the shadow cast by that nucleus when near enough to the sun to cast a shadow. The ordinary observer can prove the correctness of this statement by means of two lamps, differing only in size; while the more profound investigator can satisfy himself beyond question, through the mystery of the photometer and suitably prepared lights, the one consisting of an incandescent solid having a gaseous envelope to represent the sun, while the other or less light is of similar natare, with the addition of one or more outer envelopes exceeding ly attenuated. By using suitable lamps, a multitude of spectators can be convinced of thetrath of the theory on any misty or foggy night, if one lamp be moved about the other in an elliptical path; indeed the proof is so simple that I have never failed to convince the spectators by using two ordinary lamps.

Comets are originated whenever any sun, by eraption, ejects portions of its substance directly ontward at a speec sufflient to overcome the attractive force of that sun's gravi ty. In the case of our sun
sufficient for the purpose.
The expelled mass flies out
$\underset{\text { Wh }}{\text { Wh }}$
When still nearer, its head and its apparent tail become more defined; and if the conditions of the comet's envelopes permit, the appearance of more than one tail may be ob served: this tail, or illuminated shadow, obeying the known laws of light, being projected as nearly in a direct line from the sun : that is, it forms a slight curve, because each ray of light reaches the observer from the peint of its emanation, and not from the further point which the comet occupies at the instant of observation, as the comet has moved constant ly from the exact point of light emanation during the time required for the light itself to reach the observer. As the comet nears the sun, and swings around it, its apparent tai swings too, that is, the illuminated shadow swings with ter rific velocity, but with no exertion of force, repulsive or otherwise as far as the shadow is concerned; and as the therwise, as far as the shadow is concerned; and as the comet leaves the sun, its shadow necessarily goes before it
and is as necessarily illuminated as that portion of fog lying in the path of a locomotive headlight moving away from a house on fire.

As the comet flies away, its spectacular phenomena are ra pidly reversed, its apparent tail fades, and the luminous glow of its sphere expands and tben diminishes to a mere disappearing speck of light. When, after many circuits, its elliptical orbit gradually becomes a spiral circle, and itself becomes a planet of more or less dignity, its apparent tail disappears by absorption of its attenuated gaseous envelope, which settles on its nucleus by gravity; and its possible apparent fail becomes too short for observation. Thus the true answer to the astronomical conundrum: "What is the Tail of a Comet?" is: "It has none," and this insignificant re sult is a good and sufficient cause for my inactivity in her alding the fact, which was know to me at a much earlie date.
Mohawk, N. Y.
Cari, Mfer.

The Wreck of an Air ship

The Schröder air ship which, according to the inventor' caims, was going to carry fast mails between the principa cities of the country, and which subsequently would fly across the Atlantic in some incredibly short space of time came to an unfortunate end recently. The machine, nearly finished, was carelessly left in an exposed situation over night, on a common in Baltimore. A strong galearising tore it from its fastening, and converted it into a useless and shapeless mass of broken boards and wicker work.

Another Explosion of Factory Dust.

The singular catastrophe which took place at the Pullman Car Works at Detroit, Mich., on November 10, 1875 (which was described on page 368 of our volume XXXIII, has been par alleled by an explosion which took place at Champion Mills, Chicago, Ill., on December 31, 1875. One of the millers was pouring some fine middlings down a chute, when th fine dust ignited on contact with the fiame of a lamp which he held in his hand. A loud explosion followed, and his hands and face were terribly burnt. The building at once took fire, and property to the amount of about $\$ 4,000$ wa destroyed.

IMPROVED BAND SAWING MACHINE.
From the year 1809, when William Newberry, of London, England, constructed the first band saw, and up to the year 1862, that useful machine met with little favor at the hands of woodworkers, principally on account of the disadvantages encountered in the breakage of the saws and the diff. culty of joining them. Since the last mentioned year, however, mechanics have found easy ways of attaching together the parts of the dissevered blade, and consequently thereupon the band saw has rapidly grown in usage; buc in preventing the breakage, certainly a more important desi deratum, little has been accomplished. Wh band saws break is not difficult to understand Forming, as the delicate thin ribbon of stee does, the sole connection between the pulleys over which it runs, it is obvious that, if on pulley be started into sudden motion, the saw must slip over the other pulley before the in ertia of the latter is sufficiently overcome to allow of the imparting to it of a velocity, say, of 400 revolutions per minute. Slipping pro duces friction; friction, heat and crystalliza tion of the steel blade, and hence conditions are determined which, coupled with the strain set up, ultimately may break the saw. At the same time further iojury is done by the rub bing of the biade over the covering of the pul ley. So also, when work is presented to the blade, its speed is retarded and the momentum of the upper driven pulley causes it to over run the lower or driving one, and thas friction is again crasted between blade and surface the same ensues on the sudden stoppace of the lower wheel Various methods have been test lower whel. common is making the upper wheel less heavy than the lower one. In the machine which we now illustrate, a new plan enters, which ad mits of both wheels being constructed of the proper strength and weight.
In the rim of the upper cast iron pulley is formed a recess about $\frac{6}{16}$ inch deep, which has? number of projections that are ground to a circle corresponding to the diameter of the wheel. The space between the projections is filled with plumbago, and over all is located a band of stee or other material, rolled true to the diameter of the projections. The band is open, and after being placed in position is so closed as to allow of adjustability of its diameter. It is covered with leather or rubber as desired. With this device when the lower wheel is started, before the in when the lower wheel is started, before the in-
ertia of the upper wheel is overcome, the band ertia of the upper wheel is overcome, the band
slides in the recess, rubbing on the projections, and thas the upper wheel is gradually set in motion without any friction taking place against the saw. As soon as its velocity equals that of wheel, the pressure of the band is sumfient to maintain the same, since it requires more power to slide the band on the periphery than to run the wheel on its axis. Now, when a piece of wood is put to the saw, it is obvious that the effect of the band is to equalize the speed of the wheels: and so also, when the lower wheel is suddenly stopped, the upper one will expend its momentum in running on inside the band, the saw remaining at rest. It is usual to cover the upper wheel with elastic material which, to some extent, yields to the irregularity of motion. The manufacturers of the pre-

BENTEL, MARGEDANT \& CO.'S BAND SAWING MACHINE
ing on each other alternately in a cylindrical inclosuredrilled in the cast iron support. The al the sam tact with the balls through groose in the cslinder; and a the balls rest only on the edge of small holes made through the balls rest only on the edge of small holes made through
the supporting washers, all can be brought forward and adthe supporting washers, all can be brought forward and adjusted to the back of the blade which, passing downward, rotates the balls without cutting them. Davices are added which cause the balls to revolve irregularly presenting gradually the whole surface of th ball to the support of the blade. By this ge neral arrangement, it is claimed, the fric tion of the fast passing blade is reduced to a minimum, while heating is avoided.
The last improvement, of the four which constitute the principal features of the inven tion, is the device for making the adjustment or straining the saw blade, more sensitive to the varying length of the latter. The shor arm of a weighted lever presses against a re gulating screw, which passes through horizon tal miter gear, and engages therewith, by mean of a slot and feather, to a nut on the idler whee carriage. By turning a hand wheel connected to the miter gear, the carriage is raised and lowered on the guide slide. For changing the plane of rotation of the upper wheel, the jour aal boxes are connected by a circular flange pro vided with circular V slides. The latter are ongaged and held by a sliding cross head. Ad justment is made by a worm and scraw, and is permanent and not affected by vibration. Ther pre numerous other advantages of construction mbodied in this machine The principal one b are, howor, bofore the ;and if to the we add that the apparatus (which was patente through the Scientific American Patent Agency, November 30.1875) is the manufacture of th well known house of Bentel, Margedant \& Co. of Hamilton, Ohio, and received the first pre mium at therecent Cincinnati Industrial Expo sition, no further statements relative to its re markable excellence and value will be required

A SENSIBLE AND SUBSTANTIAL GRINDING

 MACBINE.The engravings given herewith represent grinding machine that is claimed to obviate great many of the difficulties hitherto existing in this class of machinery. It is built to stand very firmly on the floor, its greatest length be ing the direction of the motion of the wheels. Its journals are large and long, and can be placed in any position on the top of the machine or bed, or underneath by means of a slot placed in the top and bottom of the bed, in which the bolding down bolts can be moved. This allows the wheels to be placed in any position, as the ing the lower wheel. To this end an improved clutch brake special work to bedone requires. And if it is desired to us is arranged, which takes hold of the outside and the inside only one wheel, the pulley can be hung on the outside of the of the tight pulley rim, pressing at each side with equal orce, so that its tendency is not to dislocate either pulley or shaft. By turning a small screw, friction may be increased or diminished, or wear compensated for. The saw guide consists of lateral and back thrust guides or supports. The former are tiat pieces of wood on each side of the sew, which may be closed up to the blade and adjusted to com, which for wear. The to thrust guide consists of a peasat for wear. The back thrust guide consists of a series of
chilled iron balls, with steel washers, balls and washers ly
rame and the emery wheel inside, where the pulley is shown in the engravings. If only one wheel is used, and the boxes are hung undereeath the bed, the wheel can be made to pro ect above the top of the bed, and the side of the wheel can used the upper ide of the bed forming a rest upon which hed, the in or be pall in grill wored, so that project through a table secured to the top of the bed, and in th manner a surfaning machine is made. It will be almost im

Fig. 1.

THE UNION STONE COMPANY'S GRINDING MACHINE.
possible to give in detail the various positions into which the machine can be adjusted, but those acquainted with machinery will readily see that the apparatus will really form a foundation upon which almost any attachment for special work can be placed. The bed of the machine is very strong, and the slots in it can also be used to hold the various attachments; so that, without any alteration in the frame, the various devices can be put on or taken off at a moment's notice, and thus one machine can be made to take the place of several special machines. A number of attachments have already been applied to this machine, among them those adapted to the following purposes: Jointing plows (as shown in Fig. 2), beveling boiler plates, grinding the faces of pulleys, grinding car brasses, etc. Four different sizes of machines, after the style of the one illustrated, are made, with $1 \downarrow, 24,3$, and $3 \frac{1}{2}$ inch arbors, weighing about $600,800,1,000$, and 1,500 lbs. each. The smallest are to carry small wheels to 18 inches in diameter: the largest, wheels to 6 feet in diameter.
Large emery wheels are more economical than small ones, when they can be used at all; and with substantial and heavy machines like the above, manufacturers will soon see that their interest lies in using emery wheels in place of grindstones, and large emery wheels in place of small ones.

A patent for this machine has been applied for through the Scientific American Patent Agency. For further particulars, address the Union Stone Company, 38 Hawley street, Boston, Mass.

THE PENGUIN FAMILY.
The penguins are a family of web-footed birds, with very imperfectly developed wings; they are found in immense numbers around the rocky coasts of the Southern Pacific

Ocean, and on the shores of the Cape of Good Hope. The king penguin is one of the best known of the species; it belongs to the genus aptenodytes, being particularized by zoölogists as aptenodytes Pennantii. The bill is slender and carved at the points, which are acute; and the wings are very small, resembling fins in appearance, and having no quill feathers or plumes; they are therefore unfit for purposes of flight. Indeed, it would appear that this singular tribe is entirely unfitted for traveling through the air, as the bones have no air chambers, are filled with marr w, and are very heavy. The feet are very far back, and the posterior surface touches the ground as the bird walks.
Great numbers of these birds were found on Kerguelen's Island, a rocky island in the Indian Ocean, by the expedition which traveled thither to observe the transit of Venus, which took place on December 9, 1874. At a distance they appear as white stationary bodies; but on approaching, they are seen to be waddling along with an indescribably ludicrous gait, which is made still more absurd by the turned heads, as the birds look back distrustfully at their pursuers. As the body sways from side to side, the bird looks like an animated coat with empty, swinging sleeves. When attacked at close quarters, as shown in our engraving (which represents a scene on the coast of Kerguelen's Island), the penguins will use their beaks with cossiderable effect; but their sense of helplessness is strong, and they soon take to running away. Being clumsy and slow in walking, they frequently fall on their breasts, and move their wings (as if they were in the water) like fins. When congregated in numbers, they will unite to resist an attack and will form a
 close phalan. their skins, which are covered on the breast with ine, close feathers of remarkable softness, and are used, in place of
furs, foring apparel. They are generally slaughtered
by being knocked on the head with a club; but sometimes they are taken alive with a lasso thrown over the head. If they can reach the water, they can usually elude the pursuer, as they swim and dive with astonishing rapidity, remaining under water for sometime and reappearing at a con siderable distance from the place of first immersion.
The king penguin, the largest of the species, has an orange tinted breast, which becomes white near the abdo men. The back is grayish black, and the front and back are separated by a sharply definitive line of a steel gray color. They stand about 2 feet 9 inches high, and their plumpness gives them considerable weight. Their diet causes the flesh to be rank and fishy, but it is eaten by the natives of some countries.

Professor Osborne Reynolds as a Water Wheel Inventor.
Professor Osborne Reynolds, M. A., of Owen's College England, has taken an English patent for what he supposes to be a new invention in turbine water wheels, which is en graved and described in a recent number of the English Me chanic. Briefly, the Professor's invention consists in using a double turbine, or two turbines in combination in stead of one, the water passing necessarily through both. The invention also consists in the use of what he terms curved movable vanes or plates, by which the water openings are enlarged or diminished, according to the head of water or the speed required. From the description given, it seems evident that Professor Osborne has simply repro duced some of the inventions already patented in this coun try. For example, the American patents of A. P. Conant April 10, 1866, for turbine, of C. Shaw, February 15, 1870 and others that might be cited, appear to fully anticipate Pro fessor Osborne.

KING PENGUINS ATTACKED BY A DOG

soientific and praotical information.

artificial teeth on natural stumps.
Mr. Moon has recently stated, in a communication to the English Odontological Society, that the stump of a tooth may be preserved as the basis of an artificial tooth, and rendered painless, by leaving the root canal empty and drilling a hole into it just below the edge of the gum. This hole becomes a permanent vent and thus saves the stump from dis turbing influences, which, if deprived of means of escape, would ultimately destroy it by a painful process.
hfting effect of frost on trees.
Dr. Lapham, State Botanist and State Geologist of Wisconsin, says that frost exerts a lifting power on full grown trees, so as to cause the impression on some that the tree be gins to grow again after once attaining its full growth. When the land freezes expansion ensues, drawing the tree up with it, leaving of course a cavity whence the root was drawn. When the first frost comes, the moisture, carrying earthy matter, enters the cavity, and thus the root is prevented from returning to its original position. Dr. Lapham suggests that one of the chief offices of the tap roots may be to guard the tree as much as possible agains this frost-lifting.

merican meat sold in england

Quite a large quantity of American meat was recently sold in the Liverpool markets at paying prices. It was taken over by the steamer Illinois, in a large tank surrouncied by ice and cooled by air driven in by a steam-worked blower. beet cider.
We mentioned not long ago that a cider made from beets was coming into use in France. We learn that it is prepared by adding 7 lbs . of red garden beet to every $2 \frac{1}{2}$ bushels of apples, pressing all together. The cider must not be used for about eight months, when it will be free from the beet flavor.
to obtain a brown patina on zinc.
A solution of molybdic acid, or molybdate of ammonia, in very dilute aqua regia, or a solution of molybdic acid in excess of very dilute caustic soda, produces, according to Kletzinsky, a very useful patina bath for articles of cast zinc. Zinc statues or other ornamental articles, when dipped into this bath, become covered with a very pleasing brown patina showing the prismatic colors. This covering is nothing but a thin film of oxide of molybdenum, which exhibits polarization colors and adheres firmly to the metallic zinc.
explosion of chromic acid with glycerin.
Explosive prescriptions are sometimes sent to innocent pharmacists by careless or ignorant physicians. The latest case of this kind is related by Austrian journals. The fol lowing mixture was ordered for external use: $7 \cdot 5$ grains
chromic acid and 60 grains glycerin. The chromic acid was mixed with water in a flask and the glycerin mixed with it by shaking. Suddenly the contents of the flask exploded with a loud report, flying all about the shop, while the vessel remained unhurt in the hand of the astonished apothecary, and was covered with a black mass. This case deserves the more notice because the quantity was so small and the deton ation so extremely violent.

sconomy in Machine shops.

The following suggestions, in regard to the care of tools and waste of oil in machine shops, are contained in a paper read before the New York Society of Practical Engineering, by James C. Bayles, editor of the Iron Age:

The proper care of tools is always attended with an important economy. In small establishments this seldom receives dueattention. As a rule, a tool belongs to anybody who happens to have it ; consequently, no one is responsible for it. It is neglected, abused, mislaid, broken, stolen, or worn out before it has rendered half the service it is capable of performing. In some shops the time of one man, and sometimes two, is constantly lost in looking formissing tools and putting them in order for use when found ; and a great deal of capital is wasted by the premature destruction of tools which, with proper care, should have lasted for years. In all manufactories there should be a place for tools not in constant use, and some one should have charge of them. A very good system, which I have always found to work well, provides for the charging of every tool in use to the man using it. When it is returned he receives a credit for it which balances his account with the tool department. For tools added to his individual kit, such as files and other implements supplied by employers, charge is made and no credit is given until the tool is returned broken or worn out, when a credit entry is made, with date, showing how long it has been in use. Such a record induces men to be careful of tools, and, by inculcating good habits in this respect, leads to economy in a direction in which waste and extravagance are easily overlooked.

Another important saving in many shops would attend a more judicious oversight of the consumption of oil. In machine shops, and to a greater or less extent in all shops where machinery is used and iron worked, the amount of oil wasted constitutes a very large proportion of the total habit which This waste results from a certain looseness of some one else pays for. When a drop of oil is needed, it is customary for the mechanic to pour a streem from his oil can, and wipe off the surplus with a wad of cotton waste. It is no exaggeration to say that half the oil used about many manufactories of machinery and metal goods is wasted, and the waste constitutes a serious item of expense. Oil is almost always used exclusively for lubricating purposes, es-
pecially in small establishments, yet there are other lubricants that might be kept constantly on hand, which are at once much cheaper and much better than oil, for such purposes as drilling, tapping, screw cutting, etc. There is also a great deal of oil wasted in applying it to machinery and shafting. Whenever we see a drip pan that has not been attended to for a few days, we may be pretty sure of finding it half full of oil which has rendered no service, and which has become unfit for use, being gummy, foul, and filled with foreig impurities There is no need of this waste, which never oc curs when the oiling of the shafting and machinery is pro perly looked after; but it is an evil against which the manu facturer can guard ouly by constant watchfulness.'

THE PATENTS OF 1875.
(amber pation patents.1
Resid Pateats issued by the United States Patent Office to Countries, from Jan. 1, 1875, to Dec. 31, 1875.
[The proportion of patents to population is shown in last column.]

States, etc.	$\left[\begin{array}{c} \text { No.or } \\ \text { Patt } \\ \text { ent. } \end{array}\right.$	$\begin{aligned} & \text { One } \\ & \text { toev. } \\ & \text { tory } \\ & \hline \end{aligned}$	States, etc.	$\|$No. or Pat- Oue ents,
$\overline{\text { District or Columbla.. }}$	${ }_{7}^{214}$	615		$22^{218} 5$
Massachusetis	1,846		Lexasiana	
Rhode IEland:	${ }^{29}$	${ }_{1}^{1,107}$	Went Vlag	
New York.....	3,771	1,163	Montana Territory	
California.	399	1,404	Tennesse	$117{ }^{10} 10,765$
Pennsyivania...	${ }^{2}$	1,728	Vashnapton Territory	
Illinois	${ }^{1} 1,098$	2, 2143	Idaho Territory......	${ }^{1} 114,999$
	1,091	2, 2,508	South Carolna....	${ }^{46} 4178$
Vermont	122	${ }_{2}^{2,799}$	Usah Territory	5. 19,916
隹 ${ }^{\text {Betawar }}$	405	${ }_{2,923}^{2,84}$	${ }^{\text {Mlorida }}$	
Maryland.	260	3,003'	North Carolina.	
Minnesota.	146	3,011	Alabama.	
Nevada	16	3, 7 369	New Mexico Territory	3 37,101
(ina	${ }_{815}$	3, 3	Arkaneas	
Maine..	${ }^{158}$	${ }_{3} 3,964$	U. Navy.	1

toy balloons can be made out of turkey's crops, in the following manner: Free the crop from the thic coating of fat, turn the inside out, and cleanse. Soak in wa ter for two days, and then, with a blunt knife, scrape off the
internal coating. Wash the crop well, and dry. Turn it internal coating. Wash the crop well, and dry. Turn it right side out again, and make an incision through the exter nal coats, carefully avoiding cutting the lining membrane Draw the coats at one side over one neck of the crop, and tie the latter firmly with silk. Proceed at the other neek in the same way. Distend the bag thus formed with air, and hang it up to dry. A light coat of varnish may be added afterwards. Thus prepared, an ordinary crop will hold a gallon of gas and will weigh only 30 grains, which is con iderably less than the weight of a bladder of similar capac ity.
When a teaspoonful of any medicine is prescribed by a yhysician, it should be borne in mind that the quantity meant is equal in volume to 45 drops of pure water at $60^{\circ} \mathrm{Fab}$. It is a good plan to measure off this amount in water in a small wine glass, and mark on the latter the exact hight of the fluid This will give an accurate and convenient standard for future use. Teaspoons vary so much in size that there is a very wid margin of difference in their containing capacity. It is well to remember, also, that four teaspoonfuls equal one tablespoon ful or half a fluid ounce. A wineglassful means four table spoonfuls, two fluid ounces; and a teacupful, as directed by cookery books, indicates four fluid ounces or one gill.
A good dentifrice, largely sold and advertised, is made of $\frac{1}{\frac{1}{2}}$ drachm white Castile soap, dissolved in 1 oz . alcohol, $\frac{8}{4}$ oz water, and \ddagger oz. glycerin. This is colored with cochineal and flavored with peppermint, wintergreen, and clove oils. The powder which accompanies each bottle is a mixture o precipitated chalk, powdered orris root, and carbonate of

magnesia.

To make a handy snow shovel, take a light, tough, half inch board, twenty inches long and a foot wide. Sharpen one end, and over it rivet a strip of thin sheet iron, ben sharp to fit the edge; this forms the cutting edge. Across the other end nail firmly a piece an inch thick, five inches wide, and long enough to extend across the shovel board. Bore an inch hole through this, slanting downward and forward, so that the handle when passed through the hole will strike the board three or four inches in front of the cross piece. Bevel the end of the handle to fit the shovel board, and fasten it with a staple. The handle should be long enough to work withont stooping, and the whole thing should be as light as without st
possible.

The easiest way to burn stumps is to use a sheet iron chimney, big enough in diameter to fit over the largest stump and some six feet in hight. An opening near the bottom answers for a door. The stump should be set on fire by placing around it some kindling wood inside the chimney, and the latter will produce a draft which will materially hasten the burning of the wood.
Black lead well mixed with white of egg is a good stove blacking. Lay on with a paint brush, and when dry polish with a hard brush.
To prevent flat irons from rusting, melt \ddagger oz. camphor and $\frac{1}{2} \mathrm{lb}$. fresh hog's lard over a slow fire, take off the scum, and mix as much black lead with the composition as will bring it to the color of iron. Spread this over the arti cles for which it is intended. Let it lie for 24 hours, and cles for which it is intended. Let it he for 24 hours, and then rub it well with a dry linen cloth. Or sinear the irons
over with melted suet, and dast thereon some pounded unover with melted suet, and dast thereon some pounded un-
slaked lime from a muslin bag. Cover the irons with baize in a dry place when not in use.
A farmer correspondent sends us an excellent wrinkle for finding the weight of horses or steers without scales. He says: "Make a weighing stall about 3 feet wide with a leve floor. In the latter make a recess for the platform of the scales so that the platform will be flush with the planking Now lead your horse or steer into the stall so that the forefeet of the animal rest on the platform and note the weight. Star him ahead until his hind feet are on the platform; note the weight again. Add the two weights thus taken, and the sum will be the total weight of the animal."
Leather pump packiag requiring to be very tight,for smal work,should not be more than $\frac{1}{3}$ inch thick, and not be ben work, should not be more than $\frac{12}{32}$ inch the more than $\frac{1}{16}$ inch The cause of streaked butter is the imperfect working o the butter after it is salted. Salt in butter sets the color, o deepens and brightens it; so that if the salt is worked into the butter and not so fully worked as to salt every part, then the fresh butter retains the color it had when it came from the churn, and the salt butter grows so much darker that i is decidedly streaked. The remedy is to work the streaked butter more thoroughly.

Patont Matters in Congrose.

Senator Frulinghuysen, of New Jersey, presented (on January 6) a petition from Cteorge W. Hunt, administrator of the estate of Walter Hunt, deceased, praying for an extension of Walter Hunt's patent for a paper collar-making machine. It was referred to the Committee on Patents.
Senator Eaton, of Connecticut, presented (on January 8) \& petition from Ezra G. Cone, of East Hampton, Conn., praying for an extension of his patent for a sleigh bell. It was referred to the Committee on Patents.

Mr. J. H. Bagley, of New York, introduced (on January 11) Mr. J. H. Bagley, of New York, introduced (on January 11) into the House of Representatives a bill to protect the reve-
nues of the Patent Office. It was referred to the Committee on Patents.

Bolling Lake.

The discovery of a boiling lake in the island of Dominica has excited much scientific interest, and investigations of the phenomenon are to be made by geologists. It appears that a company exploring the steep and forest-covered moun tains behind the town of Rosseau came upon the boiling lake, about 2,500 feet above the sea level, and two miles in
circumference. On the wind clearing away, for a moment, the clouds of sulphurous steam with which the lake wa covered, a mound of water was seen ten feet higher than the general level of the surface, caused by ebullition. The margin of the lake consists of beds of sulphur, and its overflow found exit by a waterfall of great hight.

DECISIONS OF THE COURTS

United States Circuit Court--EEastern District o Missonti.
firk bitice compoind.-interfering patenta.

Wecent gumeticau auf foteigu zetents.

NEW WOODWORKING AND HODSE AND CARRIAGE BUILDING INVENTIONS.
mproved rinning gear.
Lorenzo D. Hurd, Wellsville, N. Y., assignor of one half his right to Thomas Puller, of same place.-This is an entirely new construction of the running gear of wagons, which cannot be explained
without detailed drawings. It however includes several simple devices of much strength, and also is so made that any one of the Wheels may rise to pass over an obstruction or elevation, or sink to
pass through a hollow, without affecting the other wheels or strainpass through a

IMPROVED TIRE.
Harry Thompson, Decatur, Ind., assignor to himself and George W. McConnell, of same place.-The invention consists of an outer an inwardly projecting flange at each edge, protects the sides of the felly, and keeps the tire on the wheel. The outer one serves to bind the inner over fast to the wheel, and is kept on by a convex inner face, which shrinks into the concave outer face of the inner rim. IMPROVED OPEN THILL.
Conrad H. Matthiessen, Odell, Ill.-The object of this invention is to enable the horse drawing a single or one-horse wagon or sleigh to travel in the regular track in roads where double or two-horse teams are principally used, and at the same time allow the vehicle
to follow the regular track. The rear end of the thill is forked and to follow the regular track. The rear end of the thill is forked and
connected with the axle. This brings the body of the thill about in connected with the axle. This brings the body of the thin rige be-
linewith the center of the vebicle, so as to be over the tween the two tracks in the road. The forward part of the thill is curved into U shape, so as to pass around the horse's breast and to in it, at such a distance from the end, and in such a way, that the said free end may be turned down to rest upon the ground to support the tbill in proper position while bringing the horse into posi-
tion, and harnessing and unharnessing him.

IMPROVED WINDOW SHOTTER.
Sofle Victor, New York city.-This is an improved window shutter that may be readily adjusted to combine the free circulation of air and shade of an awning with the protecting features of the com-
mon shutter. It consists of an outer shutter frame without slats, to the top part of which is hinged a separate shutter, that may be retained in outwardly inclined position by folding brace rods, and folded down to the open frame to be secured.

IMPROVED FOLDING CHAIR.
Frank A. Patch, New York city.-The side bars of the chair prame are curved, so that their lower parts may serve as the forward legs
of the chair, and their upper parts as the posts of the back. The of the chair, and their upper parts as the posts of the back. The
brace bars of the arms are curved and pivoted to the side bars; the brace bars of the arms are curved and pivoted to the side bars; the
rear bars are attached in similar manner. The seat is flexible, so rear bars are attached in similar manner. The seat is flexible, so
that the whole forms a chair of strong and simple construction which may be folded into a small space.

IMPROTED BAT-SHARPENING MACHINE.

Wm. I. Covel, Beloit, Wis.-The object of this invention is t ustable frame pivoted in the center and having parallel guide ways, in which moves a sliding block, to which the saw is detachaby fastened. Through eald sliding block passes a screw-threaded od whereby the block and saw may be adjusted in the frame, and the lower end of this rod is attached a lover, connected throug of than with the crank of a slowly revolving shaft, by means o uich the saw and block are together elevated and made to ap arach a revolving emery wheel each time a tooth is sharpened guide, which latch feed moves the caw by engaging with the face the saw teeth for the purpose of bringing the teeth successivel in position for the emery wheel.

IMPROVED MORTISING MACHINE.
Simeon Duck, Victoria, British Columbia, assignor to himself and Joshua Davies, of same place.-This embodies a novel construction of a machine for cutting square and angular mortises at any desire nclination. The device consists of a tilting hed, by which the ma frial may be carried into any desired inclination to be mortised by vertically operating tool. A cog segment and worm shaft tilt the ral screw shaft admits its position in lateral direction. A longi udinally sliding frame is guided in the bed frame, and adjusted by rack and pinion, the adjustable heads of the same holding the maerial to the tool. One of the heads is arranged with a rotary chuck with holes in its periphery for a pivoted spring clutch, that hold
the materials for exposing it rotatively to the action of the tool.
improved troning table
Lewis P. Lawrence, Port Morris, N. J.-Thls is an ingeniously constructed table, adapted to be attached to a ledge or window
prame by a spring catch, and having an outside adjustable leg by rame by a spring catch, and having an outside adjustable leg by
which the outer end of the table may be placed at any deaired which
hight.

NEW CHEMICAL AND MISCELLANEOUS INVENTIONS.

MPROVFD GAS BURNER.

Owen J. McGann, Chicago, Ill.-This invention has for its object provide an improved mode of attaching the ring holder of water lens or reflector to its burner, which latter is also provided with a socket, adapted to be detachably applied to the burner of an ordinary gas bracket.
improved spring scales.
Abram Harper and Laroy W. Cross, Edgerton, Ohio.-This inven on consists of a contrivance of levers and springs for the suppor fte measure, so arranged that the weight of the contents of the encealed in an inclosed base a sich protects the apparatug from njury.
TMPROVED CARBON PHOTOGRAPH.
Claude Léon Lambert, Paris, France.-This is a new process fo
producing carbon photographs or sun pictures, produced in ealts o romium or other pigments, combined with gelatin or its ealts of ent, and rendered permanently insoluble by the action of light. The especial features of novelty consist, frst, in a compound con isting of water, sugar, liquid ammonia, and permanganate of potassa, to form a bath in which a negative obtained from a transpar ent positive may be immersed, and chus intensifled; and second, on ordinary albumenized paper, by placing the sensitized paper in a press, the blank for the picture being covered with a black or yellow mask, and the whole being then precipitated by hyposulphite

IMPROVED CONDENSER FOR ILLUMINATING GAS.
George W. Edge, Jersey City, N. J.-The invention relates to the retort to the purifier, so as to be revolved by the current of gas The impact and rubbing action of the latter on the vanes of the wheels effect the desired condensation of the tar and other heavy natters, which are thrown off by centrifugal force-the rotations eing ordinarily near two hundred per minute-and are thus col ected in
emoval.

IMPROVED HORSE COLLAR

Jacques Meyer, New York city.-This collar has metallic stiffen glates or hames, which are hinged at the top and locked at th pring lock of the other collar section. The terrets and trace fas eners are connected in rigid but detachable manner to the stiffenng hames. The collar may thus be applied without straps, bucklos, or other parts visible from the outside, while the ready opening and closing at the side of the neck alnws its putting on without th nimal stooping or bending down

IMPROVED SIGHT PROTECTOR
Marmaduke H. Mendenhall, Wabash, Ind.-This inventor now mproves the sight protector for which letters patent were granted him January 12 and April 20, 1875, so as to bring the light unde ame time protect the eyes from the glare, intensity, and heat. This s mainly done by the use of suitably adjustable plates of colored glass.
improved cigarette mouth piece.
Diedrich Marquis, New York city.-This invention consists of a别 outer spiral, decreasing in width, to which a wrapper of to bacco paper is connected in spiral shape, to he filled and closed a he end.

IMPROVED REMEDY FOR RHEUMATISM.
Aug. Severin, New York city, assignor to himself and Frederick arnfaller, of same place.-The proposed remedy is a composition of iodide of potassium, solid extract of aconite,
norphine, and compound sirup of sarsaparilla.

NEW AGRICOLTURAL INVENTIONs.

improved shears for cutting hogs' noses. William H. Grow and Crawford M. Sloan, Rock, Kan.-One hanupports the cartilage while the same is being cut by a blade on the other handle. The blade has an offset at its middle part, so as o leave a portion of the cartlage connected with the nose of the hog by a narrow neck. The end parts of the blade are curved about upon the arc of the upper side of the
off the rest of the cartlage close to its base.

IMPROVED POTATO BUG DESTROTER
Isaac W. Griscom, Woodbury, N. J.-This is an apparatus ounted on wheels, and so designed as to be drawn over the plants. he poisonous powder is placed in a hopper, in which is a stirrer and it passes to a distributing device, which finally sprinkles it upon

John G. Miller, Fredericksburgh, Va.-By this device the plow ann, when he turns the team and reverses the plow, can, by mean otches of a notched clevis on the beam, to cause the plow to take more or less land, as may be deeired.
improved self-rake for reapers.
Samuel B. Gilliland, Salisbury, Mo.-This rake is operated b pitman, which connects with a lever operated by a grooved wheel on the axle. When the rake is pushed outward by the out ward movement of the pitman, the teeth will be turned down beneath the platform, so as to pass beneath the cut grain lying upo aid platform without disturbing it, and that, when the rake i rawn inward by the inward movement of the pitman, the teeth
are turned up, so as to sweep the cut grain from the platform. The whole is a simple and doubtless efficient device.
mPROVED HARROW ATTACHMENT FOR CULTIVATOR PLOWS Frederick D. Ladenberger, Glenbeulah, Wis.-Thls is a combine and two harrows, the two latter being connected to the former by yebolts and brace rods, and made adjustable in width by means o curved bar. The farmer is then provided with several useful im plements in one.

IMPROVED PLOW.
Joseph Phillips, Smithton, Ill.-This is an improved cast iron jpright for plows, having a flange formed upon its upper end. Th ow a longs ng a longitudinal rabbet upon the rear part of its landside, and ceive the beam, the landside, the mold board, the share, and th handles.

IMPROVED BUTTER WORKER.

William H. Lilly, Bethlehem, Pa.-The chief parts or elements of is improved machine are a horizontal, continuously revolving oowl having a concave bottom, a revolving worker of peculla construction, a stationary segmental block for pushing or trans-
ferring the worked butter from the side of the bowl towards the center of the same, and a central discharge tube for the buttermilk expressed from the butter. These parts, and the gearing neces ary to operate such as rotate, are arranged in a frame having no eculiarity of construction.
NEW MECHANICAL AND ENGINEERING INVENTIONS.
improved manupacture of hexagonal nuts. George Johnson, Haverstraw, N. Y.-The inventor claims that y this improved system of manufacture, a stronger nut is obained, any waste of iron in cutting avoided, and a convenient eeding of the bar to the nut-cutting machine is propuced. In
he accompanying engraving, Fig. 1 represents a top view of the

figst.

mproved bar for mating heragon nuta, and Fig 2 shows traight bar hitherto employed for making these nuts. The straight hat alter is paesed through rolls or dies, and forced into such shape des are produced semi-hexagonal projections and recesses at bot espond to the projections at the other side. The bar is fed in his shape (on its edge) to the nut machine, being turned after eac or the the pasitio Fig. 2 , produces a great waste of iron at the sides in the form of mall triangular pieces, and disturbs the fiber of the iron, requirin so the frequent sharpening of the cutting tools, as there are for ach nut four cutting planes.

IMPROVED LEATHER-DRESSING MACHINE
Bart M. J. Blank, Jersey City Highta, N. J., assignor to Morris nabens, New York city.-This inventor proposes an improved apidly and uniformly accomplished. The invention consists of a evolving feed roller, in connection with a series of creasing o polishing dies, that are secured by gage and set serews to socke解 ready insertion of the dies.
improved nail plate feeder.
William H. Field, Taunton, Mass.-In this invention, feeding aws, in which the gripper rod rests, are made to close on the rod and then move forward the breadth of one nail by a rod moved orward by the machine and backward by a spring. In its back ward movement, th
hold to feed again.
improved key for lock
Warren H. Guthrie, Hudson City, N. J.-A common device of aide by a fine pair of nippers, turn it, and so draw back the latch. The present invention prevents this by means of a swinging staple shaped guard hung to the key and surrounding the wards, so that,
when the key is in the lock, each of the key holes will be flled by a edge ehers in the lock, each of the key holuction of nippers o wedge-shaped plate, w
the planting of a drill.

IMPROVED WATER WHEEL
Cloud Chalfant, Penningtonville, Pa.-This invention is an im rovement in the class of horizontal outward-flow water wheels he improvement consists chiefls in providing the wheel with verical rising and faling buckets, and in adapt
ralsed and lowered within the stationary case.

NEW HOUSEHOLD ARTICLES.

IMPROVED BED BOTTOM.
Elias Stillwell, Rockville, Mo.-The object of this invention is to ov en a a springs as ordinarily emplozed ; ind itconthout th side detachable rails, over which a stretcher of canvas is placed. The said rails are kept apart by notched bars, and have arms which rest upon a subjacent support, and, when pressed down from the
weight of the occupant, tighten the canvas. In combination with eight of the occupant, tighten the canvas. In combination wit said ralls are employed one or more bolts on each side, which pass
through the bedstead rails, and also the detachable rails, to prevent the aceldental displacement of the latter.

Business aud zersoual.

 T The Charge for I Inertion under this head is One Dol-
Alden Engine, 3 ccll. Com. Balance Piston,doubbes
power o steam! Clicculars free, Farrelly Alden, Pitteb h. power orsteam! Circulars rree, Farrelly Alden, Pitteb ${ }^{\text {b }}$ ha.
"Wrinles and Recipes" 18 valuabbe trade eugestiong, prepared expresell by cele.
brated expert orated experts and by correspondents of the " "Sclentitic.
Amertcan C " 250 pages. Elegantly bound and fllus-
 apprentices. Matled. post pala, for 81.50. Address
N. Munn, Publisher, P. O. Box 772. New York city. 300 new and 2 'd hand Machine Tools, Saw Mills, Planers. Wood Working Machines, Pumps, Water Wheels,
Grist Mills, Engines, Bollers, etc., for sale. See first No. 2 Bogardus Mill for Dry Work for Sale at half
price. A. C. Stebbins, 98 Liberty St., New York. Wanted-Second hand Wrought Iron Gas and
Steam Pipe, 4, 5, and 6 inch; also, Cast Iron Flanged Steam Pipe, 4, 5, and 6 inch; also, Cast Iron Flanged
Pipe, 6, 7, and 8 inch. Address, with full partioulars as
to quantity, price, \&c., Leslie, care P.O. Box 3050,N. Y^{4} Book on Making and Working Batteries, Elec-
trotyplng. Plating, 8 cc . 50 c . T. Tay, Box 185, Ipswich, Ms. Geo. P. Rowell $\&$ Co, the enterprising adver-
tising agents of New York city, belleve in making themselves a necessity to advertisers, and, in every way open
to Ingentous minds, they seek to attaln that popular and

Agricult'l Works,Clinton,IIl. Mach.sold on Com. Walrus Leather \& Polishing Materials-Greene For Sale, almost new, 425) gallon Copper Kettle,
$4 \mathrm{ft.x4//2} \mathrm{fc} . \mathrm{Welght}$,1.050 los. Price $\$ 330$. Perfect. Abbe Bolt Headers, the best-Prices reduced;
2 sizes made. Palmer Power Spring Hammers, 10 sizes. See machines, or write for information before buying
300 new and 2'd hand Machine Tools, Saw Mills,
Planers, Wood Working Machines,Pumps, Waver Wheels, Planers, Wood Working Machines,Pumps, Waier Wheels,
Grist Mllls, Engines, Bollers, etc., for sale. See firs column of page 77, this number.
Plles-No matter of how long standing your case
may be, or how many remedies failed, a cure is possible. Circulars free-cause-conseque
Worker Medictnes. Salem, N. J
Pat.Repts.\& Sci.Am.,cheap. Box 185, Ipswich,Ms. Steel Castiogs, from one lb. to five thousand los.
nvaluable where great strength and durabllty are reInvaluable Where gr
quired. Send for C
Co.. Pittsburgh, Pa.
Wanted-To purchase the Patent of a good arti-
cle of general use, or will manufacture and pay royalty.
ddrees B. A. Ro
Use Yocom's Split-Pulleys on all Shafting, same
appearance, strength and price as finished Whole-Put appearance, strength and price as finished whole. Pul
eys. Shafting Works, Drinker St., Delow 147 Nort Second St., Phllade!phla, Pa.
A valuable Folding Cradle Patent for Sale. Ad-
dress the inventors, J. Welch \& S. Jefferys, 504 West $28 t h$ dress the inventor
Street. New York.
Designer or Draughtsman-Engagement wanted
by an engineer of practical and scientific education. Woodworking Machinery a spectalty. Be
Address Civ. Eng., 222 East 55th St., Ctty.
Blake's Belt Studs are the best and cheapest fas-
ening for Leather or Rubber Belts. Save ten time their cost. Greene, Tweed \& Co., 18 Pars Place, N.Y. 1 Linen Hose for Factorles- $1,11 / 2,2 \& 21 / 2$ inch.
At lowest rates. Greene, Tweed \& Co., 18 Park Place. For Sale-No. 5 Blake Crusher, good as new, $\$ 900$
10 H. P. Loco. Boller, 8150.15 H.P. Upright Bofler, $\$ 150$ 6 ft . Planer, 8275.4 ft . Planer, 8175 . $17 \mathrm{in} . \times 6 \mathrm{ft}$. Lathe,
$815.12 \mathrm{in} . \mathrm{x} 6 \mathrm{tt}$.Lathe, 8125 . Shearman, 45 Cortlandt, N. F . Wanted-A partner with means to manufacture
a Patent Hay Rake or Pes-Vine Puller for Southern use. Tobacco Wafers-Patented. State Rights fo
Sale. Address D. A. Alden, Malden, Mass. Manufacturers! Send for illustrated catalogue
of Best Belt Pulleys made. A. B. Cook \& Co., Erle, Pa. Manufacturers of Improved Door, Sash, \& Blind
Machinery. Send circulars and prices to Noxon Bro's, Walkerton, Oncario
For Sale-An upright Re-Saw, in good order
Can be seen running at 286 Market St., Newark, N. J. Can be seen runn
W. H.
Kirk \&
Fine Castings and Machinery, 96 John St., N. Y For Sale-Second Hand Wood Working Machin-
ery. D. J. Lattlmore, sist \& Chestnut St., Phtla ., Pa. Boult's Panelling, Moulding and Dovetailing MaBoult's Paneling, Moulding and Dovetailing Ma
chine a complete succees. send for pamplet and sam
ple of work. B. C. Mach's Co., Battle Creek. Mich. For best and cheapest Surface Planers an 1 Uni-
ersal Wood Workers, address Bentel. Margedar \& Co. 1 milton, ohlo.
Small Engines. N. Twiss, New Haven, Conn. 300 new and 2'd hand Machine Tools, Saw Mills,
Planers, Wood Working Machines, Pumps, Water Wheels Planers, Wood Working Machines, Pumps, Water Wheels,
Grist Mills, Engines, Boillers, etc., for sale. See first olumn of page 77 , this number.
Patent Scroll and Band Saws, best and cheape
nuse. Cordesman, Egan \& Co., Cinclnnati, Ohlo. Solid EmeryVulcanite Wheels-The Original Solid Emery Wheel-other kinds imitations and Inferior. Cau-on-Our name is stamped in full on all our best Stand
ard Belting, Packing, and Hose. Buy that only. The
eest ts the ctieapest. New York Belting and Packing Company, 37 and 38 Park Row. New York.
Hotohkise Air Spring Forge Hammer, beat in the
market. Prices low. D. Frible o Co , New Haven. Ct. Water, Gas and Steaun Goods-Send eight stamps
or Catalogue, containlay over 400 illustratious, to Batley, or Catalogue, contanIngy over
Farrell $\&$ Co., Pittbburgh, Pa.
The Baxter Engine-A 48 Page Pamphlet, con-
taining detall drawings of all parts and full particulars, now ready, and will de m
18 Park Place, New York.
For best Presses, Dies, and Fruit Can Tools, Bliss
\& Willams, cor. of Plymouth and Jay, Brooklyn, N. Y. For Solid Wrought-iron Beams, etc., see, adver-
tise:nent. A Idress Union Iron Mils, Pittaburgh, Pa., Hotchkiss \& Ball, Meriden, Conn., Foundrymen
and workers of sheet metal. Fine Gray Iron Castings (o order, Job work solletted.
Peck's Patent Drop Press. Still the best in use
Addreas Milo Peck, New Baven, Conn.

300 new and 2'd hand Machine Tools, Saw Mills,
Planers, Wood Workling Machines, Pumps, Water Wheels, arist Mille, Engines, Boilers,
column of page 7 , this number,
all Fruit-can Tools,Ferracute W'ks,Bridgeton,N.J. American Metaline Co., 61 Warren St., N.Y.City For Solid Emery Wheels and Machinery, send to Hydraulic Presses and Jacks, new and seco letals. E. Lyon, 470 Grand Street, New York. Spinning Rings of a Superior Quality-Whiting-
ville Spinning Ring Co., Whitinsville, Mass. For best Bolt Cutter, at greatly reduced prices,
ddress H. B. Brown \& Co., New Haven Conn. Diamond Tools-J. Dickinson, 64 Nassau St., N.Y. Temples and Oilcans. Draper, Hopedale, Mass.
not
H. H. will find a full description of jade for iron pipes on $p .185$, vol. 33. Tempering millpicksis described on p. 202, vol. 31.-W. H. Will ind on p. 347, vol. 32, a recipe for an alloy fusible be-
low 212° Fub.-D. G. F. will find good recipes for bronzing on iron on pp. 11, 85, vol. 33, and on bras on p. 51, vol. 33. "Electricity, its Theory, Sources,
and Applications " is a good book on electro-pla-ting.-H. A. H. will find on p. 139, vol. 31, a formu iy for the lifting power of gas. The silvery coat ing on iron wire, given in our recipe, will wear
well with careful usage. Steel wire is best for springs that are much used.-E. B. will find a de scription of leather pulp on p. 296, vol. 31.-E. T. vol. 25.-J. C. Jr. will find Bloxam's "Chemistry" will find on \mathbf{p}. 10 , vol. 27 , a full description of the hosphorus lamp. This also answers H.W.S.-T. E. will find on p. 11, vol. 31, a recipe for waterproof varnish, which he can apply to his bronzed work
-H. A. P. will flud full directions for molding -H. A. P. will flud full directions for molding
rubber on p. 283, vol. 29.-H. F. H. is informed that no boiler incrustation preventive can be reknown, as the impurities of water differ so widely in their nature.-W. F. McL. will find a recipe for
marine glue on p. 42, vol. 32. Mix enough gutt marine glue on p. 42, vol. 32. Mix enough gutta
percha with bisulphide of carbon to make a thick percha with bisulphide of carbon to make a thick
varnish.-J. S . is informed that a pump made of a varnish.- J . S. is informed that a pump made of a
tin pipe with a wooden plunger is commonly used tin pipe with a wooden plunger ashes do excellen
to draw oil out of casks. Coal asher crvice in earth closets.-F. K. Will ind a good re will find a description of soluble salicylic acid on p. 86, vol. 33.-B. F. will find a description of an apparatus for freezing water in bottles on p. 82,
vol. 33 .-J. W. will find a description of the Russian circular ship on p. 87, vol. 33.-F. J. C. will $1 t, 283$, vol. 30 .W. C. will find a recipe on pp ment for millstones on p. 251, vol. 31.-R N. can ules given on p. 33, vol. 33.-T. F. can harden screw plates and dies by the process described on
p. 75, vol. 28.-R. J. w can harden tallow by the process described on p. 202, vol. 24.-W. N. will find amp on p. 2t2, vol. 31.-W. N. K. will find, on reference, that the paper stereotyping process is
described on p. 363, vol. 30 - M. P. is informed that the only way of ascertaining the power of a spring by experiment.-J.C. W. will ind directions fo making spongy platinum on p, 330, vol. 25. File can be har
212, vol. 26.
(1) J. B. asks: 1. What is the cause of the A. Your description is too meagre; you shoul state the arrangements of flues, furnace, etc. 2. Can the air of a room be analyzed so as to find
what gasesit contains? A. It can, but it requires what gasesit contains? A. It can, but it requires
the tact and skill of a chemist to obtain accurate results.
(2) F.S. W. asks : Please give me a recipe for making blue and red stencil paste, which can
be castinto cakes, to be used for branding flour be castintocakes, to be used for branding flour
barrels. A. Mix any of the ordinary p:gments with sufficient chalk or carbonate of ma
(3) G. D. V. asks: What is the effect of ice mymilk for cartage over some fifteen miles of country roads, and find that it will churn some what in warm weather. I have thought of put ting broken ice in the tank used for cooling, there by lowering the temperature below that of spring
water. Do you think this would be an advantage in helping the milk to withstand the shaking? A very low temperature, such salt, might be o some advantage; but the only sure method is that of filling the vessels full, so that there can be no
possibility of shaking. (4) D. M. C. asks: Can we use cast stee for punching machine mandrils, and will it sustain
great wight and not crush in such use? A. Steel great wight and not crush in such use? A. Stee
castings are far preferable to forgings, and will sastings are far preferable
(5) J M. S. says: One cool Monday morning our fireman, while firing up, burst the globe of the main valve and a quarter turn in the main
team pipe running from the boiler to the engine The pipe was 20 feet in length and 4 inches in dianeter, and took one turn downward: it was probably partly nlled with water, the drip cocks not having been opened. Experts here explain hat steam, thus let on to confined water, exert en times as much force as if the pipes were fre from water. bursting the pipes on account of the
non-elasticity of water. Is this so? A. There was probably ice in your pipes, and they burst from unequal expansion.
(6) R. S. B. M. . says: I have often observed
nen riveting steel plates together with soft iron rivets. Will the resistance of the plates to the contraction of the rivet, as the latter cools off, lengthen the t
oretically, yes.
(7) A. M. B. says: I put a set of tubes int boiler, and in less than a year one of them gav out. They have been going out one at a time until 8 have given out. There are small holes in them, that look as though they had been drilled condensed ${ }^{2}$ condenser, and I use tallow in the cylinder. Can you tell me a remedy? A. There are possibly chemical imporities in the tallow. Try purifyin it by the process given on p. 182, vol. 29 .
(8) C. C. R. asks: Is there any objection to using the common expansion valve (on the back of the slide valve), worked by another pair of eccentrics and link, in order to have the exhaust in
dependent, for locomotives? A. It would give n dependent,
(9) T. C. says: I have built a small steam engine with cyliuder 11/5x3 inches, and have an upright boiler 12×16 inches, with one $31 / 2$ inch flue in the middle. Boiler and flue are made of copper
of No. 18 wire gage. What is a safe pressure? A Safe working pressure 30 lbs . per inch. 2. Will the books run two such engines? A. No. thorough knowledge of land, marine, and locomotive engines and boilers? A. Bourne's "Hand-
book" and "Catechism of the Steam Engine," book" and "Catechism of the Steam Engine,"
Forney's "Catechism of the Locomotive," and Col burn's work on the "Steam Engine."
(10) W. A. B. asks: Which of the follow g oils are best for shafting and printing ma chinery : Black lubricating oil, lubricating casto
oil, or light engine oil? A. Lubricating castor oil
(11) E. H. R. says: Last year I had trial ages to my steam boiler of a kind that worke with a binge by raising the bandle end. Thes etting the steam escape (if above the drop out until readjusted. One day I noticed, when the handle had become detached and a full head of team was on, that, although there was the usual bissing by the escape steam (or what I though hould be escape steam) there was no steam isible, although the escaping gas was through on open door and with sufficient force to pre the bandle. My curiosity was then excited, and I nquired of the engineer what was the reason that no steam was visible, only what appeared to be hot air or gas? He said he did not know. He nly knew that, when mud was in the gage pipe, steam was visible. When the pipe was
lean, steam would issue. Now if this mud fil clean, steam would issue. Now if this mud fll what was this escaping gas, that seemed to have ost no force but to bave entirely changed from steam to hot air or kas? The escaped gas did not
deposit any moisture upon coolitg. A. We have deposit any moisture upon coolitg. A. We bave eard of many similar cases, and can afford no eglad to hear from any of our correspondents
(12) J. H. asks: Is there anything with Which a horseshoe magnet could be covered so as
to stop its influence or attracting force, a wax or ostop its influence or attracting force,
paint of any kind, for instance? A. No.
(13) C. D. P. F. asks: 1. Is it practicable to heat a houee 40 by 50 feet, three stories high, a centages by steam from one boiler? A. Yes. 2 How large should the boller be, the buildings be ing within a circle of 500 feet radius, and a separate steam pipe leading from the boiler to each of the buildings, from which the cubic feet of air
 the size of the boiler should be predicated. As
suming the stories to be of about the usual hight he boiler would require to have about 185 feet of eating surface, or about 14 horse power. There should be two pipes leading to each buildingin or-
der to secure a circulation-one for the return; der to secure a circulation-one for the return;
and these may be about $2 \neq / 2$ inches in diameter. and these may be about $2 ; 2$ inches in diameter hey should be packed with a cement of asbesto ave steam by preventing the radiation of hea, How deep should the pipes be buried in the earth? A. At least three feet, and the boiler should be se a cellar or vault low enough to receive the re turn pipe above the bottom thereof. The green-
house could be warmed to a more uniform and afe temperature by means of a hot water appar atus of its own.
(14) C. H. A. asks: How can I silver the in de of glass globes? A. Make a reducing solution of one fourth, and a silvering solution of one
tenth, the strength as published in No. 22, vol. 33 , aual parts of each solution.
(15) G. A. A. asks: 1. What should be the ondensing lenses for a magic lantern? rossing (or smallest) point of the beam of light when in use may be ten or twelve inches from the ower of the pair of maniters corresponding to the 4 inch condensers? A. The quarter size pho tographic portrait tube, of $19 / 4$ inch aperture and
or 7 inches focus, works very well. 3. What is the advantage of having the condensing lens made up of two glasses? A. That the focus may be made sufficiently
light by reflection.
(16) J. F. asks: What kind of ammonia is used in a nickel bath t.
sulphate is preferable.
(17) C. C. M. asks: 1. Can I use a small te tions of my factory with simply the use of two wires? A. If you mean what telegraphers call sounder, yes. 2. Will it be necessary to have coil below the bell, so as to make the bell a mag net? A. No
(18) J. D. B. says: The teacher of our as tronomy class says that, were it not for the reflecting power of the atmosphere, we could see nothing
not in direct sunlight. I claim that the reflection not in direct sunlight. I claim that the reflection
from the earth and adjacent objects would be suf ficient to enable us to see many things not in the irect rays of the sun. Am I not right? A. Ye
(19) W. H. A. asks: Has electricity bee used in deep sea soundings? A. We do not recal
any instance where it has been used for this pur
(20) J. A. S. says: If we had a material which was a non-conductor of magnetism, wrough poser to cut off magnetic intluence suddenly, an t regular intervals, would we then be able to propel light machinery by the power derived from common steel magnets of good quality, that is, tainly, but if such a substance existed ro econo mical advantage would result; work must be done to operate it, and this would more than overbal nce any power which it would give.
(21) D. J. C. asks: Is it possible to make
(22) A. H. T. says : 1. I have constructed a ccount of its peculiar shape and form. I wa unsuccessful in the attempt, because I could no apply the electro-magnet to the surface of the steel ribbons. How should I proceed to make a
magnet of great power? A. You ought to be able magnet of great power? A. You ought to be able
to magnetize it with an electro-magnet of the bar to magnetize it with an electro-magnet of the bar
or curved form. Use one wound with No. 14 or 16 curved form. Use one wound with No. 14 or
opper wire, and charged with two or three Grove (23)
(23) R. J. S. asks: How can I settle rain water taken from a pond, so as to make it clea or culinary purposes? A. Mix with a small
mount of lime water, and allow to settle until clear.
(24) L. L. asks: 1 . Which is the best way it make a stereoscope? A. For what purpose is
to be used? 2. What lenses are the best? A ouble convex, with one side thicker than the other. 3. How many times should they magnify?
A. About twice. 5. What should be the distance A. About twice. 5. What should be the distance
between the lenses and the picture? A. About ix or seven inches, for ordinary eyes. 5. How are the endless chains to hold the pictures in revolv ing stereoscopes made? A. Formerly they were ide as the picture is long. Across them were fas tened narrow strips of wood, with wires at each nd for holding the views. The latest improve the same in each case.
(25) P. D. S. asks: How can I make bichrofochromate of potash in water, and in acother vessel make a strong solution of gelatin. Then oour them together, stir well, and allow to cool
or flow your plate with gelatin in the usual way Or flow your plate, with gelatin in the usual way,
and then place it in a bath of bichromate of potand then place it in
ash for a short time.
(26) F. C. S. says: Please give me direc tons for n!ckel-plating apparatus. A. Take a wooden box and line the inside with sheet lead, havingabout onequarter of an inch between the
box and lead. About midway between the exds place two upright copper poles, and across these lay a copper wire, upon which hang the articles which are to be plated. Insulate the copper wire
or rod from the lead cell and connect it to the zinc pole of the the lead cell and connect it to the zinc pole of the battery. The positive pole should ter-
minate in a nickel anode placed in the soluticn.
(27) F. W. B. asks: What metal will most cheaply and effectually reeist the action of phosphoric or phosphorous acid, and the vapor arising
from the oxidation of phosphorus? A. Gold or platinum.
(28) W.T. says: I have a quantity of butfor grease. How can I get the oil out of it, to use for lubricating purposes? A. Butter is a mixture of several fats. You can obtain these free from salt and other impurities by digesting for a short
time in hot water, and then allowing to cool. We time in hot water, and then allowing to cool. We
do not know of any method by which these fatty do not know of any method by which t
bodies may be economically separated.
(29) W. M. M. asks: What chemical preA. Try pastilles.
(30) E. B. asks: What is the best solvent for gum copal? A. Copal dissolves in turpentine, which is the usual solvent employed for the gum.
Oil of roscmary is said to be one of the best solvents; ether is probably the best solvent, but it evaporates so rapidly that the varnish cannot be equally spread. The oils of spruce and lavender
havealso been used as solvents. It is almost inhave also been use
soluble in alcohol.
(31) C. asks: In speaking of the 81 tun
nglish gun, is the tun 2,000 or 2,240 lbs? A. 2,240 lbs.
(32) S. G. C. asks: How can I remedy a it was used for washing, making lard, etc., with out the least trouble; now it is unfit to use, as it makes the water black. How can it be cleaned A. We are as much at a loss to explain the strange action as yourself. You should have stated
whether the pot is of iron or other metal, and if Whether the pot is of iron or other meta, and is
there is any incrustation, in which case pleas there is any incrustation, in which case please
send a sample. State whether or not the water
used is from the same source as formerly; and if
so, whether it may not have suffered some change. If the latter is at all probable, send us a smal sample of the water also.
(33) J. B. J. says: In your issue of December 11, 1875, you give a recipe for mucilage, re quiring 30 grains sulphate of aluminum. Will contains sulphate of potash and water in addition to the sulphate of alumina. A. Probably not so
(34) F. P. L. C. asks: Is there any chemical composition that may be used for darkening the skin without injury? A. We know of none. Dyes can be applied, but they always affect the
normal condition of the cuticle, and for this reanormal condition of the cuticle, and for this rea-
son cannot be recommended. Organic solutions cannot be made use of, as they are readily taken up by the system,and most solutions of the metals have a very injurious effect upon the adjacent muscles, etc
(35) A. M. asks: Is water having a limey taste injurious to the system, when used for drinking and cooking? A. Generally speaking, it is not injurious. On persons unused to drinking such waters, it sometimes aets, pr
(36) J. A. asks: What will remove ink stains from parchment? A. It would be necəssary to know what kind of ink, in order to give a
definite answer. Try a little pure diluted murideflnite answer. Try a little pur
atic acid or cyanide of potassium.
(37) S. L. G. asks: Is water which has burnt gunpowder and tar in it dangerous or un-
wholesome to drink, or to use for cookery? A. It is not dangerous, but it is less wholesome than common rain or river water.
(38) C. F. asks: Can you give me a good recipe for making and polishing artificial malachite? cond dent is artificial, and we shall make the re quisite examination.
(39) L. H. says: I tried your recipe for green black writing ink, published in your issue stands and pens get all covered with a hard sub-
stance (see inclosed). What is the matter? A. stance (see inclosed). What is the matter? A.
This ink should be used with a gold or quill pen. The white powder is sulphate of iron.
(40) I. F. B. asks: Can potatoes be used for manufacturing purposes? A. Yes. They are
used on a great scale in the manufacture of starch.
(41) R. B. W. asks : Is alumina fusible before the oxyhydrogen blowpipe, or by any other known heat? A. Alumina ($\mathrm{A}_{2} \mathrm{O}_{3}$) melts into a
colorlessglass when exposed to the oxyhydrogen blowpipe flame; and when thus ignited it is found to be soluble in acids with great difficulty.
(42) H. M asks: Why does a magnetized needle float on water? A. Any needle will float neewater if it be carefully laid on the surface. A
certain amount of impact is necessary to break certain amount of impact is necessary to break
the surface of the water, and then the needle will the surface of the water, and then the
sink, whether it be magnetized or not.
(43) G. R., Groningen, Holland asks: 1. What is canary seed (phalaris canariensis) used for? A. To feed canaries and other small birds. 2. What is caraway seed (carum carui) used for? A. For flavoring cakes and other articles of cookery. Germany kummel
(44) F. W. A. H. says: Can you tell me of a remedy for itching, not suppurating, chilblains? and oil of cajeput 1 drachm. Mix, and rub in with gentle friction.
(45) W. L. asks: Can you givems a recipe or a black ink powder that can be mixed up with 3 lbs., copperas 1 lb ., gum arabic $1 / 1 / \mathrm{lb}$., white sugar $1 / 4 \mathrm{lb}$.; powder and mix. Put 1 pint boiling water on 2 ozs. of this mixture, and your ink will
soon be ready for use. (46) R. M. asks: How is licorice paste
made? A. Dissolve common stick licorice in wamade? A. Dissolve common stick licorice in water, strain the solution, and add a iittle refined su-
gar. Then evaporate till a stiff paste is obtained, and press into shape.
(47) T. H. C. asks: 1. Is copper now in use
anywhere for edge lools? A. Yes, in China and anywhere for edge lools? A. Yes, in China and
elsewhere. 2. Would the discovery of the art of hardening copper, so as to make it suitable for tools, be of any great value to the world? A. Not unless steel becomes unattainable
(48) W. \& S. ask: 1 . How can we detect the presence of lime in drinking water? A. By blowpresence of hater through a straw. If the water
ing into the
becomes cloudy, lime is present.
2. How can we make a filter for drinking water? A. Make a wooden cistern, with a false bottom a few inches to draw the water from the intervening space. Bore some holes in the false bottom, and put in some coarse gravel, then some fine gravel, then some sand, then some crushed charcoal, and your filter is ready for use
(49) P. S. asks: What is the weight of a
cubic foot of gold ? A. 12041284 lbs. avoirdupois, (50) G. M. R. asks: How can I anneal cast iron? A. Malleable iron castings are enclosed in
iron boxes flled up with pounded ironstone or iron boxes flled up with pounded ironstone or
common lime. The boxes are then luted, rolled common lime. The boxes are then luted, rolled
into the oven or furnace, submitted to a good heat for about flve days, and allowed to cool in the furnace.
(51) C. F. asks : How can I make eau de Co logne? A. Take oil of lavender 4 ozs., purifled benzoin and of rosemary each 2 ozs., dissolve
sively oil of neroli, oil of young orange (called by the French hulle de pettes grains, of of lemon $10: 4$ ozs. ; oil of sweet orange, oil of lime, an oil of bergamot, each 20.8 ozs., and a little tincture
of the flower of rose geranium. Thisis a good imof the flower of rose geranium. This is a good im
itation of the eau de Cologne prepared by the Fari nas, and is said by some to be that of the origina ormula.
(52) J. E. asks: How can I color fanc soaps? . . For red, use tincture of orchil ; for ye low, tincture of turmeric or annatto ; for brown, burnt sugar or umber. Other colors can
(53) N. S. asks: Will the elasticity and manent? The spring is 15 inches long, 2 inche wide, and of $17 \mathrm{~B} . \mathrm{W} . \mathrm{G}$. It is used to push th bodies of scalded hogs, so that they protrude 40 inches within the circle of a revolving spring, about 60 times a minute for 10 hours a day. A Your spring
liable to set.
In the arrangement of a sliding shaft through riction, pressure, which presents the leas pinthroughshaft and slot through hub? A. A eather in the shaft.
(54) J. R. B. asks: What solution will lean brass or iron after brazing, while hot? A We know of none
Can a governor be made to regulate the speed of an engine, 2x4 inches? A. Yes.
of how many horse power
be to give power equal to 10 should an engin hrashing machine? A. Twelve.
(55) H. M. W. suys: I want to divide a vided by 10 parts; these 9 parts are to be subdidivisions. Is there a rule by which I can divide a circle in this way? A. The necessary instructions
would occupy too much space. The subject will would occupy too much space. The subject,"
shortly be treated in "Practical Mechanism."
(56) L. S. says: I have been firing a 30 2 tun Baldwin locomotive, which always had thumping on the left hand hind driver. The en driving box wedges and wrist bin setting the could not stop the thumping. Lately the engine was taken out of shop; the driving boxes were paralleled; brasses, wedges, drivers, and wrist pins were all turned off, and now thethumping is
on the opposite side. It can be heard when runon the opposite side. It can be heard when running either slowly or fast, but mostly when she is
drawing a heavy load. Can you explain it? A. drawing a heavy load. Can you e
Not without examining the engine.
(57) I. D. H. says: We have some heating stove patterns that are too light. We want to thicken them up, so as to enable us to take off an-
other set of patterns of proper thickness Is there any material that can be painted or smeared on the patterns, so that, by repeated applications they could be thickened up evenly and neatly A. No.
(58) W. W. McK. \& S. asks: Can you inla, so that it can be bored and turned withou using pig iron? Some shops use nothing but scrap, and soften it by putting in certain mater als. What are they? A. We think you are mi but the addition of new soft iron.
How can we make a good arrangement for viground, covered with a movable lid, and place near a water supply, is all you require to wash
(59) H. G. asks: Can you tell what is used to stop boilers from priming or foaming ? A.
Plenty of boiler power and steam space is the best
(60) J. M. M. G. Jr. says; We have an engine of 20 horse power which last year ran two gin stands very well with 30 lbs. steam. We
stopped it in the spring, and did not run it any more until this fall, and now it takes 50 lbs. to run We got a machinist to examine it, and it was in perfect order. I am afraid to raisemorethan 60 bs. steam on boiler, as we have had it 22 years. It has been repaired and a new head put in at one end. What is the matter ? A. It would be impossible to say without an examination of the en (61) C. C. G. asks: Does it take more power orun a saw on a long mandrel than on a short
one, not counting the extra weight? A. Yes, be cuse of its vibration.
(62) H. C. asks: Is there any practical dif iculty in running two engines on the same shaf One cylinder is 14 inches x 30,the other 15 inches 36. They are to be connected by link motion. A.
No, unless the other conditions (situation of engine, etc.) prevent.
(63) J. S asks: How can I temper butcher's teels for sharpening knives, without injuring the silver color? A. It cannot be done.
(64) A. L. O. says: We have been troubled with the bad working of our furnaces. It is impossible to keep one room comfortable. If we
opened two registers, a cold stream would rush opened two registers, a cold stream would rush
down one, while a feeble current of warm air down one, while a feeble current of warm air
would be coming up the other, and vice versa. The weather was very cold, accompanied with a remedy? A. When theair is heated in your furnace,it expands and produces a pressure; the reg. ister being open, it inds less resistance in the rarefled air of the rooms than in the dense cold air at the mouth of the cold air box; it therefore rushes
out of the registers into the rooms, displacing the air in the rooms by driving it out through the

Now, if it is supplied to two rooms on opposite
sides of the house, when the wind is blowing upon one side it interposes a certain pressure from
without upon the joints and crevices, and so pre vents the air in the room upon that side from be ing displaced. The result is that, the usual outlet being closed, no warm air can be forced into the without being entirely removed the pressure fro ters with increased rapidity. This difficulty migh be alleviated by providing weather strips on your doors and windows, and by ventilating by your
chimney flue, having a weather cowl upon the to of i.
(65) J. Y. asks: What is a good architectur book, with plans, specifications, and elevations? . Woodward's " National Architect" fulfles the onditions you require. "Wooden and Brick buildings" is a more extensive and later work probably obtain both or either ing. You ca J. Bicknell \& Co., No. 27 Warren street, N. Y.
(66) W. B. M. asks: I have a 51×8 inc
(66) W. B. M. asks. I have a $5 \frac{1}{x} 8$ inches boat 38 feet in length by 7 feet 4 inches beam Would this boat be rightly proportioned for tha ize of engine ? Would a vertical boiler 6 feet hig by 30 inches in diameter, with 33 two inch tube feet long, be of proper size for engine? Would pitch, be proportioned to the above? A. The bonler is rather small, and the other proportions are very fair. You should realize a speed of 6 miles an hour.
By what chemicals can you detect the presence of carbonate of lime in water? A. Add lime waer, which will precipitate carbonate of lime, giv
(67) R. H. M. asks: 1. How long must my afters be for a house 16 feet wide,to have a Gothic Gothic style of architecture. The pitch is gener ally steeper than in the other styles. 2 What half Gothic pitch? A. The term is evidently \& provinclal one among builders. 3. How much
must I raise the roof in the center so that it will be a Gothic pitch? A. Make the length of your rafter equal to the width of your house, and you will have a pitch that will be suitable for the Got
(68) W. H. S. says : In a trunk or flume ar placed four 20 inch turbine water wheels, 7 feet
apart, the whole being under a head of 33 feet The power drives at present a head of 33 feet water wheel, 3 feet wide in the clear. Can I de ive more power by using the water on 4 wheels than I could by applying it all to one wheel at the bottom of flume, the wheel being also 20 inches in diameter? Could I in either case obtain more power than I can with an overshot wheel? A. I you bave a good overshot. Wheel, we do not think ou will gain any material advantage by making
(69) F. M
().M. R. asks: Given 1,000 cubic fee how much in volume would it be increased if 250° Fah.? A. It can be determined by the fol owing rule: Let $p=$ pressure of air at temper ture $32^{\circ}, v=$ volume of air at temperature $32^{\circ}, P=$ pressure of air at temperature $\mathrm{T}, \mathrm{V}=\mathrm{volume}$ of air at temperature T. Then $\mathbf{P} \times \mathrm{V}=p \times v \times[1+(\mathbf{T}$
$-32) \times 0.0020276]$. If T is greater than 32 the plus ign is to be used, and the minus sign is to betake when T is less than 32.
(70) M. H. T \& Co. ask : 1. Does it impai the strength of an iron chain to galvanizeit ? A.
No. 2. Does it impair the strength of hooks to galvanize them? A. No. 3. We make hooks in bent to shape, and out of squaze iron, drawn and bent to form the eve, then welding the ends of iron together, and bending to shape. Which is the best way to make them for strength? And which would you prefer to use, a hook made en-
tirely by hand or one made under a trip hammer? A. We think these two questions could be better decided by experiment
Does air from over salt water rust metal
than air from over fresh water? A. Yes.
(71) H. E. W. asks: What is the best meth d to kill the sound or echo in a hall or church ? . On p. 356, vol. 29, you will find an illustrated is a communication, from Mr. J. M. Allen, of Hartford, Conn., which gives a careful statement
of experiments, resulting in the discovery of a of experiments, resulting in the discovery
successful remedy for the echo in churches.
(72) J. H. L. J. asks: What is the reason that Portland or Roman cement cannot be mad positions for a good roof? A. The reason is to be found partly in the unstable nature of the board ing upon which roof coverings are usually laid and partly in the friable nature of the cement itself, which is not impervious to water unless la in lar
ally.
(73) W. M. B. says, in reply to D. S. C.' query as to discoloration of aniline: The darken-
ing of the anlline is due to the turpentine in the varnish. I have been experimenting on thesemost fugacious colors. If some one will tell me of a varnish that will not kill aniline red, I will make my fortune.
(74) C. W. J. asys: The upper rock being rest as when in motion) why is the same when a is more easily raised by theregulating screw when the mill is in motion? This question may appear to you as absurd, but I have failed to convince an opponent that gravitation is not destroyed by mo
ion, and that any speed may be given the run
quence of speed, from the spindle on which it We would like to be assured that thi have ever made any experiments to verify it please send us a record.
(75) H. M. W. eays, in reply to I. G. S.'s qucry as to cracks in the skin: A good application is: Tincture aloes $1 / 2 \mathrm{drachm}$, glycerin 4 ozs. The alcohol should
before mixing.
MINERALS, BTC.-Specimens have been re ceived from the following correspondents,and xamined, with the results stated:
A. A. D. -It is a variety of clay. The white - J. J. N.-If the specimen referred to was in small round box, it is yellow hematite, an ore of iron.-E. L. C.-It is a flne earth, apparently of
infusorial origin.-G. D.-They are andalusite infusorial origin.-G. D.-They are andalusite,
composed of silicate of alumina, found in many placesin the United States.-J. F.-It is a variety of indurated clay, not especially valuable. - W. H. with siler and alumina. It is not worth assasing No. 2 is blue clay, and exists in great quantities in many localities.-C. N. G.-Your description is too - J . M.-It is galena or sulphuret of lead.-F. M. J. It is decomposed mica.-J. H.S.-It is quartz containing some silicate of copper or chrysocolla. C. W. McC.-Nos. 1 and 3 are water-worn silic
ous pebbles. No. 2 is feriuginous quartz. No. is water-worn silex. No. 5 is pink quartz. No. is blue quartz. No. 7 is drusy quartz.-J. W.-Or-
dinary spelter is cast zinc. One of the specimen dinary spelter is cast zinc. One of the specimens
consists of copper and zinc. The black fowder is consists of copper and zinc. The black powder is
black oxide of copper, formed by oxidation aided black oxide of copper, formed by oxidation aided
by heat. Your plan of cleansing is good.-U. H. -It is sulphuret of iron, and is injurious rather than otherwise to the coal.-V. P. E.-It is green -A. O.F.-It is white quartz with scales of mica No metal.-C.H.G.-No. 1 is clay containing hy drated sesquioxide of iron. No. 2 is silicate of al umina with sliex. No. 3 is arenaceous sand rock No. 4 is magnetic iron sand. No. 3 is clay withan hydrous
C. ssks: 1. What is the weight of the 20 inch gun that was made some years since, at Pittsburgh, I believe? 2. What do the 15 inch guns pariog burnt cork for the face, for theatrical purposes, so that it will easily rub off?-P. A. K. asks: Who got up the first railroad sleeping car, and put it into practical use, and when ?-T. H hia in a child? -W. G. A. acks : What is the deep est penetration, by the best shot guns that are made, with No. 4 shot, in a white pine board at 35 yards range?-L. C. asks: What is the capacity of he largest flouriog mill in the United States?-A M. M. says: I notice in your issue of January 1 an
article on the weight that the threads on and 34 inch wrought iron pipe will sustain. Can any one tell me the weights that different sizes
from $/$ inch pipe to 10 inch pipe will sustain?

COMMONICATJONS RECEIVED.

The Editor of the SCIENTIFIC AMERICAN acoriginal papers and contributions upon the followag subjects:
On Cold Vapor. By R. M. O
On Crime Cure. By F. S.
On Acadie. By A. A. B.
On Railway Signals. By L. S. w.
On Home Science. By J. J. B
On Precession. By J. H
On Belts. By T. F. B.
On a Centennial Problem. By J. L. A.
On Trisecting an Angle. By E. C. A
On Life-Saving Appliances. By H. R.
On Bees. By L. E. C.
On the Etheric Force.
On the Etheric Force. By J.
On Vaccine Virus. By B
On Dullnese of Trade. By B. M.
On Some Electrical Experiments. By M. B.
On Boiling Down. By C.J. T.
On Raising Sheep. By H. G.
On Raising Sheep. By H. G. O.
On Snowfalls in Colorado. By S. H.
Also inquiries and answers from the following:
S. W.-S.-A. O. W.-H. S.-s. P. B.-J. W. S.-A.
s. W.-s.-A. ow. W.-H. S.-S. P. B.-J. W. S.-A.S
-C. T. S.-E. L. C. - G. S.

HINTS TO CORRESPONDENTS.

Correspondents whose inquiries fail to appea ahould repeat them. If not then published, they may conclude that, for good reasons, the Editor
declines them. The address of the writer should

Enqu bility of inventions, assignments, etc., will not be published here. All such questions, when initial only are given, are thrown into the waste baske as it would fill half of our paper to print them all;
but we generally take pleasure in answering briefly but we generally cake pleasure in answer
by mail, if the writer's address is given.
Hundreds of inquiries analogous to the following are sent; "Who does photo-lithography and helio typy? Whose is the best steam threshing ma-
chinery? Who makes traction engines in Ameri ca? Who makes small ice machines? Who puts up lightning rods? Who makes loom shuttles
Who sells tools for marking wood rules? Wh Who sells toois for marking wood rules ? Who makes lathes for turning curtain roll rrs, etc.?" All such personal inquiries are print
ed, as will be observed, in the column of "Busines and Personal," which is specially set apart for that purpose, subject to the charge mentioned at
the head of that column. Almoet any deaired informa

[official.] EX OF INVENTIONS			mon sense chairs and bockers
	Ro		
Granted in the Weot			
December 28, 1875.	$\begin{aligned} & \text { sawe saw } \\ & \text { soue } \end{aligned}$		THE CENTENNIAL.
deach bearing that date. [Those marked (r) arereissued patents.]			There is no doubt that our Centill attract to our shores multitudes of repre
			An unusal opportunits
	sno		ing to these people such foreign patents sa have
			e
cinili, 11.36		${ }_{\text {cose }}^{\text {tee }}$	
semng ma			
woor shant			
dst		Address H. N. MUNN, Publisher, P. O. Box 772. 37 Park Row, New York.	
er, 1amp. F. A. Traber............		In	
	Troy		pa
	12,483 an, 138		
			H Orfice, cor. F^{\prime} and ith Sts.,
	Under arament, L. P. boney................... 111,667		Wasbington, D. C.
rerale	Veneering, wood for, spur \& Prang.............17,120		[OME-MADE TElescopes.-Directions for
	West		
cin	wa	arpan	
koc	Wa		Dichardson, meriam \& Co.
	petrole		
${ }^{121}$			
			Machenes.Sob
ch			
112,53 121,56 15			
	debigns patrntrd.		deefect. with 2 dyures.
	8 ses		
Featere renatar,			
$\xrightarrow{112,57}$			
cintilite			
			DO YOU Male or female. Send sour ad-
171,1,32			
171,6424			MONEY
			E, in rockvi
121,4	scheddle of patent fees.		
			grand opportunity for capt,
cin			$\begin{aligned} & \text { Mme } \\ & \mathbf{l}^{\prime} . \mathrm{M}_{\mathrm{s}}, \text {, OCATE, New } \end{aligned}$
	peal to Commisaloner of		
	Onapilice On numg		
Horeente and mage, s. N.			
	(en		
${ }^{1212,627}$			
$\xrightarrow{112,60}$	lugt of Patente gramted ma carma,		
3			
			pr,
	${ }^{5.580}$		
	$5.580 .-6$. w. k ena	NOLH	
	M, maton tove heater. Dee		4 Kouse Block, Cleveland, U
			$\overline{\mathrm{F}}$ OR SALE, Low-One to H.P. Hor. Engine and
	,		
Looms, warp beam apron for. L. J. Labounty ... 171,519 Lubricatiag compounds, H. V. P. I)raper, $171,508,171,509$			
	(s)		Fiorse Shoe Nails;
$\begin{aligned} & 121,5 \\ & 1212, \end{aligned}$	Aduertisements		
cint			itt parties hay ins patented
	kemmente must be recoloed at publloal on ilos as		
	"Platform" Clothes Wringers.		WHIPPLE'S
			ent Door
exhlbitor, L. H. Sheppard...................... 1i1,58			A
$s_{10} 80$			
S			
			treet, New York.
			O1
Pulmonary diseases, remedy tor', J. O. Slemmons 171,536			

Jandary 29, 1876.1

BARGAINS IN MACHINERY

 ${ }_{11}^{859}$

 patent
Planing and Matching
 5250\% =

Friction Pulleys.

THE SEND GOO CIRCULAR THE BASTET MAGNETIC ENGINE AND

DUNCHING

THE UNION IRON MTLLS, PItS

 $\mathbf{N}^{\mathrm{EW}} \&$ SECOND HAND WOOD WORRIN

 vo steam pumps.

 with gitaticer wheres,

 TO ELEGTROPLATERE JREELERS,

 Centenital dril chuck-
 A. F. . Grabman,

TMPROVED MACHMERY for STAVB

Pullege, hored, wurned nidys

Compressed AIT MOTIVE Power.-Fo

Works, witn dmentons. etc.

NIAGARA STEAM ${ }^{\mathbf{E D}} \mathrm{P}$ UMP

 a Specialty.

 BLAKE'S PATENT Stone and Ore Breaker

$\mathbf{A}^{\text {LCOTt LATHES, Por Broom, Rake and Hoe thandiles. }}$
MACHINIST' Patent
Set Iron Dogs, Redine

$\mathbf{W}^{\text {TTHERBY, RUGG } \& \text { RICHARDSSON, Man- }}$

THE CENTENNIAL INTERNATION AL EX

VIMIFGAR HOWMOME MN
 AND VENEER-CU'RTING MILL,
186 to 200 LEWIS ST., foot 5th \& 6th Sts., E
Hard-Wood Lumber AND OHOICE FIGURED VENEERS,
he LARGEST STOCK: The GREATEST The LARGEST STOCK : The GREATI
VARIETY : The Lowest Prices! Crr Enclose Stamp for Catalogue and Price-List.
Orders by maill prompty and faithfully executed.

JAS. LEFFEL \& CO. 109 Liberty St.. New York Cit
MM Mhory oimpord sty lor maing

AAFETY HOIBTDE
Machinory. OTIS, BROS. de OC

COLD ROLLED SHAFTING.

The fact that this sharting has 75 per cent greater
strength,
 Colling Pat. Coupling, and res. Price list manded

Machinists' Tools,
EAGLE FOOT LATHES,

S

HAIR-FELT---HAIR-FELT. BOILERS \& PIPES. ons incte tid

P. BIAISDELI \& CO.

Manufacturers of the Blatadell Patent Upright Drills and ther first-class Machinlat Toois.

STEEL CASTINGS.

MACHINERY.
IRON \& WOOD WORKING MACHINERY Cold Rolled Shafting. HANGRRS, PULLEYs COUPLINGS BELTING, * GEORGE PLACE,

Mman \& Co's. Patent Oifices.

Established 1846.

The Oldest Agency for 8oliciting Patents in the United States.

Thenty-nine years experience

MORE PATENTS have been secured through

They employ as their assistants a corps of the most ex perienced men as examiners, specifcation writers, and lected from the ranks of the Patent Office.
SIXTY THO USAND inventors have availed ventions, and procuring their patents.
MUNN \& CO.,
mentic Ayericas, continue to publication of the confer with inventors, prepare drawings, specifications, and assignments,attend to fling applications in the Patent Office, paying the government fees, and watch each case step by
step while pending before the examiner step while pending before the examiner. This is done through their branch office, corner F and 7th streets, Washington. They also prepare and file caveats, procure design
patents, trademarks, and reissues, attend to rejected cases (prepared by the inventor or other attorneys), procure copy rghts, attend to interferences, give written oplnions on
matters of infringement, furnish copies of patents, and, in fact, attend to.every branch of patent business both in this and in foreign countries.
a special notice is made in the Scientific american o all inventions patented through this Agency, with the name
and residence of the patentee. Patents are often sold, in notice.
Patents obtained in Canada, England, France, Belgium, Cormany, Russia, Prussia, Spain, Portugal, the British
Colonies, and all other countries where patents are granted at prices greatly reduced from former rates. Send tates the cost, time granted, and the requirements for each country

Coplen of Patent.
Persons desiring any patent isesued from 1886 to Novem her 26. 1867, can be supplied with offlcia coples at a reangs and length of specifications. Any patent issued since November 27, 1867, at which and specifications, may be had by remitting to this office \&נ. A copy of the claims of any patent isoued since 1886 will
be forished for 81 . be furnished for 81.
When ordering coples, please to remilt for the same as date or patent.
A pamphlet contalning the aws and fill directions for oound Reference Book, gilt edges, contains 140 pages and many engravings and tables important to every patented and mechante, and is a useful handbook of reference for evooly. Price 25 cents, mailed free. Address MUNN \& © ©
Publishers SCIENTIFIC AMERICAN
37 Park Row, N. Y.
Corner \mathbf{F} and 7ih streets.

galuertisements,

 Engravings may head advertisements at the same rate
per line, by measurement, as the letter press. Adper line, by measurement, as the letter press. Adcarly as Friday morning to appear in next issue.
 TOULMIN'S ELLIPSOGRAPH-Draws ellipses

AMERICAN

 Jonrial of Science, Chemistry, Pifysics, Geology, Mineralogy natural History, astronomy Meteorology, etc.publibhed monthly, and making two volumes a Editors and Proprtetors: J. D. DANA, B.Silliman,
and E. S. DANA.

Niagara

 SteamPump Works CHARLES B. HARDICK,
23 Adame stree BROOKLYN, N. Y.

 TMPORTANT FOR ALL CORPORATIONB AND

 CRAY\&DNFORTH. BOSTON.IMPORTER
 Todd \& Rafferty MachineCo.

REYNOLDS \& \& CO.,

 F0R CHARLLE'S PRESENT,

 tro-plating, \&c. Fe. C. BEACH \& CO., makers, 246
Canal St., near Center St. New York.
 It
J. KENNEDY \& Co., Richmond, Ind. PERFECT

NEWSPAPER FILE.

very one whress
Ad

LOW-PIICED EUERY WIEELS
Made and Introduced by Inexperienced men, haver resulted In failure, dissatisfac-
tion and distrust of all Enery Wheels. Standard and rellabie goods
which can

Mill FurnishingWorks
 THE BEST INJECTOR For Locomoitro and stationary $\begin{gathered}\text { RRIRDMANTS } \\ \text { PATEMT }\end{gathered}$ ro and in kurove

 $\overline{T H E H E A L D \& S I S C O}$ Patent Centrifugal Pumps.

 and

Portiand Cement
STEAM BOILER
Inspection \& Insurance COMPANY.

Schlenker's Stationary Revolving - Die Bolt Cutters, HOWARD IRON WORKS, $\underset{\text { BUFRALO, N. Y. }}{\text { Bend for clronar. }}$

IRON AND STEEL drop forging. Tho Enuld E Boldon Company, Danbury, ot

IRON PTANTERS

Diamond Solid Rmery Wheels.

$\$ 5$ a year by mail, post-paid. Send 10 cents for Specimen Copy TO ILLUSTRATE AND DESCRIBE the many interesting themes and objecta presented in the
GREATCRNTENNIAL INTERNATIONAL
ExPOSTTIO Greatcentrnncl intrrnational Exposition
or 1876, and also to meet the wants of that large or 1876, and also to meet the wants of that large
class of readers who destre an increased supply Class of readers who desire an increased supppe
of Scientific Information, particulurrly of the more Teshnical and Detailed character, we shal iseue a special prbucation, entitled the SCI-
ENTIFIC AMERICAN SUPPLEMENT, to be printed weekly during the Centennial year of
1876, and, perhaps, permanently thereafter. Each 1876, and, perhaps, permanently thereafter. Each number will have sirteen large quarto pages,
issued weekly, printed in the best style, uniform with the SCIENTIFIC AMERICAN, but sepe rately paged.
ThesCIENTIFIC AMERICAN SUPPLEMENT in addition to the special matter pertaning to the nternational Exposition, will embrace a very ride range of contente, covering the most recen nd valuable papers by eminent writers in ALL
THE PRINCIPAL DEPARTMENTB OF BCIENCR AND

--Chemiatry and Motallurgy,-Embr

 2. -Mechanics and Enkineoring.-The
 ing, M11 Kork. Textile
and working drawine
3.-Electricity, Light, Heat, sound.-

4. -Architecture. - Examples or the best Nev Stractures, with detanis and drawing Address MONF \& CO., Publishers, 37 Park Row, Hew York.
 mentin Photograbyy frinting, New in ipiprove.

6.-Agriculture, Botany, and Horticul-

7.-Rural and Household Economy. The Latest Information concerning Building Mate,
riala, New and Valuable Rectipe, and a

8. - Materia Medica, Therapeutice,

9.-Natural History and zoology.-Th Latest Investigations. Discovereres, and Enost Inter.
eating Information in this department of Science.
10 \& 11.-Meteorology, Terrentrial Phyics, Geography.- Acoonnts of Interest

12.-Goology and Mineralogy.-TheLate and most Intereating fienological Investigatione
and Reporte, and New 13.-Attronomy.-Recent Interesting Discover

TERMS:-selentific Amorican supplo mont, one year, post pald, 86.00 ; half year, 82.50

ASBESTOS OOYerinnes

H. W. JOHNS, 87 Maiden Lane, N.Y. Patentee and Manufacturer of ASBESTOS ROOFING
SHEATHING-PAINTS--TSEAM PACKING, \&c.
Sende or Pamplet

Steel ${ }^{\text {rgube }}$ Cleaner.

 covering
 SCIENTMMEBICAN For 1876.

The Most Popular Scientific Paper in the World.
Only 88.20 a year including Postage.
THE SCIENTIFIC AMERICAN, 10 cents for imen copy rear, enjoys the widest circulation of any weekly eewspaper of the kind in the world. A new vol ume commenced January 1,1876. Published week-
ly. Now is the time to subscribe and to form 19. Now is the time to subscribe and to form The Contents of the sCiEntific american embrace the latest and most interesting informa-
tion pertaining to the Industrial, Mechanical, and Scientifle progress of the world; Descriptions, with beautiful Engravings, of New Inventions, New Implements, New Processes, and Improved Infustries of all kinds; Useful Notes, Recipes, Suggestions and Advice, by Practical Writers, for
Workingmen and Employers, in all the various Workd
arts.
EVE
arts. pages, elegantly printed and illustrated with many engravings. The year's issue contains 832 large
pages, equal to four thousand book pages, at a cost, pages, equal to four thousand book pages, at a cost,
including postage, of only 88.20 a year to the subB
Engineers, Mechanics, Telegraphers, Inventors Manufacturers, Chemists, Photographers, Physiof all Professions, will find the SCIENTIFIC AMERICAN most useful and valuable. Its page teem with interesting subjects for thought, study, and conversation, and are an unfailing source of new and instructive information. As an Instruc tor and Educator, the SCIENTIFIC AMERICAN progress in every community of knowledge an It should have a prominent place in every House hold, Reading-Room, and Library.
Specimen coples sent, prepaid, on receipt of 10 cents.
TERMS OF SUBSCRIPTIONS.-POSTAGE PAID BY US.
One copy Scientific American, one year.... $\$ 3.20$ One copy Scientific American,three month 1.60 One copy Scientific American and one copy

Scientific American Supplement, both
for one year, post-paid... 7.00
One copy Scientific American, one year,
and one copy Science Record......... 5.20 We make a iberal discount and give advanprocure Subscriptions. Δ beautifully illuminated subscription List, also Prospectus and Rates, sent

MUNN \& 00 .

