Sricutific Ammericam.

MUNN \& CO., Editors and Proprietors poblished weerly at
NO. BT PARK ROW, NEW YORK.
O. D. MUNE.
A. E. bench.

TERMS.
One copy, one year, postage incladed.
One copy,
O1nb Ratem
Ten coples, one year, each 82 70, postage included.. 29 00
Over ten coptes, same rate each, postage included...
aubscriber then recelves tie papar free of charge.
Nots.- Persons subscriblng will please to give their fall names, and Post Office and State address, plainly written. and also state at which time they wlah their subbcriptions to commence, otherwise the paper will be sent from the recelpt of the order. When requested, the numbers can be supplied
from January 1st, when the volume commenced. In case of cbanging reat dence, state former address, as well as give the new one. No chang a can be made unless the former address is riven.
If any of our readers fall to recelve thetr numbers regularly; if the direction 18 not plasinly written; if premiume are not recetved; or if there is
tault of any sort at thit office, we will thank our friende to eend us posta tault of any sort at thts office, we will thank our friende to send us posta card complaints, and repeat the same, if need be, nntll the remedy is effect
ed. Do not hesitate to complain. We dealre to keep all mattera hetween ed. Do not hesitate to complain. We destr

VOLUME XXXIV., No. 4. [New Series.] Thirty-first Year.
NEW YORK, SATURDAY, JANUARY 22, 1876.

THE SCIENTIFIC AMERICAN SUPPLEMENT.

 or the Week ending January 22, 1896.
table of Contents.

i1.

弐 VII. NATURAL HISTORY.-A Pre-Histortc Drawing.-Embryogeny

x. MISCELLANEOCTS.
markable Sclentitat.
 COMBINED RATES.

he get together for one
of formit
Remit by postal order. Address
MUNN \& CO., PUBLISHERS,
MUNN \& CO., PUBLISHERS, ${ }^{37}$ Park Row, New Tork.
CIF SIngle coples of Stpplement sent to any addreas on recelpt of
10 cente.

WORKING MEN'S VIBITS TO THE CENTENNIAL

According to present indications, the cost of living in Phila delphia during the Centennial is going to behigh. It is but natural that the citizens will avail themselves of the golden opportunity offered by the immense infiux of transient visi tors, and hold temporary accomodations at prices which will severely tax the average purse. While may not work as a hindrance to the visits of those living with in a moderate distance of Philadelphia, and who will therefore avoid heavy traveling expenses, it doubtless will be the
means of keeping away a large number of others residing in more distant parts of the country, and especially working
men, who will probably be the most appreciative visitors but whose funds to spare for the occasion will be closely
limited. It seems to us that, of all classes which, it is ex limited. It seems to us that, of all classes which, it is ex stand first. We do not believe that any intelligent work man can examine the display without being improved there. by, and that even the dullest individual will leave the grounds with his ideas widened and with some useful know ledge of the skill and progress of others, in at least his own rade
The tendency of the present time is to dignify labor, to con vince men that to work is not degrading, and that the edu cated worker with hands is the peer of the educated worker with brains. Mr. Gladstone in a recent admirable address on Science and Art, says to working men: "Blend the beautiful with the useful, and the distinction between what is manual and what is mental will be lost, to the manifest gain of your class, to the unspeakable benefit of all." "Ennoble your work and it will ennoble you " is the translation of the above into cation is impossible and in that subtle and most effective form of education which instructs by arousing the desire to strive and do likewise, the education afforded by the museum of art, and the exposition of other men's consummate skill, this country has been sadly lacking. With the Centennial owever, begins our greatest attempt to supply this need and by the Centennial is offered to working men of every cla3s such an opportunity to study and to emulate as no other exposition heretofore held has ever paralleled, even in point of magnitude. We need not argue further to show tha what elevates and raises the working men likewise affects the whole community, and that, by benefiting the one, w indirectly, though none the less surely, benefit the other. To come back to the practical side of the subject, it mus act as a and thus act as a bar to their acquiring the benefits referred to, then it is not only in the interest of the men themselves, but of those who directly gain by the work, to devise means of avoiaing unnecessary expenses. And here we think is a opportunity for the unions and trade societies to come for ward and benefit their members. Some of the unions hav large and influential memberships and possess considerabl funds. A small tax would greatly augment the latter, and perhaps in this way a sum could be raised to put up and maintain buildings especially devoted to working men's ac commodation. These edifices need be but temporary struc tures on rented ground, and the charges for occupying them should be but slightly above actual cost of maintenace. If the small ones club together and build, all the trades would be represented, and working men of all classes would be provided for. For non-union men a slight extra cbarge, equa to the tax imposed on the society men, might be made, and thus in the end the unions, besides benefiting all workmen, would profit pecuniarily by the operation
It would be a wise plan for large employers and societies o confer with railroads and other transportation companies and arrange special rates for transporting working men a prices below the reduced excursion tariff offered to the gen oral public, and to issue special working men's tickets, to be bought through employers and societies. In the same wa he unions or any association of individuals may erect work men's accommodations and issue tickets for a certain number of days' board and lodging.
As regards the action of employers themselves, we pre sume that nearly all will see the benefit of affording thei men as much opportunity as possible to visit the Centennia Where it is out of the question to afford holidays sufficien or all to go, the privilege might be granted to the most deserving, or held out as a reward for special effort. It
might be well for those who approve such a course to might be well for those who approve such a course
notify their men now that the two workmen in each depart ment of the works, for example, who should show the best record for attention to duty, etc., between the present time and, say, July 1, would then be furnished with tickets to and from Philadelphia, and lodging tickets while there, and given as many holidays as the employer might fix upon. A repor from these men might be requested on their return, or they might be given to understand that each would be desired t explain before his comrades whatever be had seen of interest in their especialbranch of trade. Another suggestion we have to make is that an employer should, when he is likewise an exhibitor, and displays some object which, like an engine o steam pump, requires attention and care, instead of keeping ne man at that duty, if it be anywise possible, send a dif ferent one from the works every week, or every three days.
In this way a large number of working men may see the Exposition without the employer's incurring any considerab expense

theory and practice.

We published an article on page 8 of our current vol ume, in which we showed how the results obtained in prac rice, in regard to the effects of expansion of iron in bridges did not agree with those of the theoretical calculations; an tis is only one instance in which theory and practice ap ear to disagree. Some persons go so far as to assert tha agree. We, however, maintain that they must invariably ccord, and that, if this is not apparent, the practice is defective or the theory incomplete. This opinion is founded on an experience of many years, by carefully investigating all cases where such disagreement appeared to exist; and
our faith in theory has proved to be well founded in every case in which the theory was complete, and the practice, if
not perfect, at least of such a nature that the imperfections ould be ascertained
A case wherein an incomplete theory was taken as the ation is found in the ar bridges. Thard to the effects of expansion of the in ig. Ta was ounded, were obtained from experiments concerning not under compression, and their contraction by cold when not under strain by extension. In order to use such data as the base for calculating the effects of expansion and contrac tion in iron structures, it will be necessary that the experi ments be repeated, and new coefficients of expansion and contraction be obtained by experiments in heating and cool ing metals while under great strain; in this way we may ul imately ascertain the law which modifies the figures now in use, which must be varied according to the compression or artension which is brought to bear on the expanding or con tracting metals. Notwithstanding that this expansion and contraction are exceedingly powerful and able to overcome very great resistances, it cannot be maintained that such re sistances are without any influence on the amount of expan sion and contraction, and it is for the determination of these mounts, for different degrees of resistance, that new exper ments are required. This is only a single instance of the reat work which yet has to be done by engineers in settling the data for calculations as to the strength of materials, cal ulations on which depend the success, scientific as well as conomical, of the labors of the many great men in the pro fession of civil engineering

DRAWBRIDGE INCONSISTENCY.

It has always seemed to us that no one could stand by the reat bridges which span the Hudson river at Albany, and witness the immense fabrics slowly swing their huge draws opeu to admit the passage of some puffing little tug not a hundredth part of the size of the whole structure, withou being struck with the incongruity, if not absurdity, of the roceeding. A passenger train may be delayed on each bark f the river, and crossers innumerable may wait as patiently sthey may on each approach of the bridge: all this is of less consequence than the passage of a tow of slow cana boats, or of some solitary sloop or schooner. The Albany bridges are, however, but a sample of drawbridges in geve ral, and the question why draws should exist in a grea umber of instances, or why should vessels have the righ of way, applies to the entire class. Once upon a time, when railroads were not, and the principal traffic of mankind was done by water, it was important that the path of veesel carrying on commerce should not be barred. Public policy gave them a right of way over the stage coach, and bid the latter wait until the more important conveyance had passed The law recognized this, and courts in their decisions wisely sustained the law in its strict interpretation. But as the imes changed the law did not, and justice, proverbiali blindfold, was especially so in this regard, and entirely ailed to perceive that the railroad had supplanted not mere y the stage coach, but the freight vessels as well, and tha rapid transportation was and has been for some time pas he last thing expected by those who ship their goods via river schooner or canal. Consequently justice or law has stupidly persisted in making the railroad train at forty miles an hour give way to the sailing craft at four knots, that is te say, cars loaded with perishable freight perhaps, or impa tient passengers to whom time is money, or the fast mails o he public, muststand a longer or shorter time on the brit k f a river and wait the passage of a schooner load of brick or lumber. Why? If there be any sound reason for the reference, we confess our inability to perceive it.
Nor is this all. Although it presumably may be supposed hat, for the protection of their own property, railroad compa ies will avail themselves of the most approved means of voiding disaster and accidents, the fact nevertheless re mains that,despite such means especially adapted to warning rains approaching drawbridges, trains have run headlong nto the open gulf again and again. On most roads engi eers are cautioned to bring their locomotives to a full stop a certain point just before reaching the bridge; but here is delay again, coupled with the probability of the rule, like very other based on human fidelity or prudence, being lighted or neglected.
If a bridge barred a great harbor, like that of New York or example, or even a less port, where the commerce by water was of major importance, it would be wise to give ves els the right of way; but such a condition of affairs practi cally negatives the existence of a bridge as a means of cros ng, since the repeated interruptions to travel would speedily cause a resort to tunneling or other means, as a cheaper and far more convenient alternative. It is, therefore, very rare] that we find the railroads blocked by drawbridges for really mportant causes. In the case of Albany, bo ocean vessels as cend so far up the river, and nothing larger than the regu lar river steamers for Troy have occasion to go under the bridges. On scores of railroads, there are draws which serve no more useful purpose than the admission of a chance chooner into some short arm or inlet. It would be a much better policy to abolish drawbridges altogether wherever th ondition of affairs is such that a steamer by knocking down er funnel, or sailing vessels by lowering their upper masts, can pass under: or else to alter the laws to conform to
thosenow in existence in Holland, which forbid anr vessel thosenow in existence in Holland, which forbid ans vesse
approaching a drawbridge when a train is due. It is a very easy matter to house topgallant masta in large ships, or to lower topmasts in a fore-and-after; as for dropping funnels, it is done, by every penny steamer that plies along the Thames at London, dozens of times daily, Bridges without draws
moreover, are very much cheaper to build and maintain than those with them; and in cases where the draw is unavoidable, it is very much easier to signal and warn off a slow sailing vessel, or even a steamer, than a lightning express train.

the centennial exhibition.

The prospects of the Philadelphia Exhibition are so gloomy just now that its friends are filled with alarm. Every effort has been made to stimulate the people of the United States to enthusiasm in its favor, but there is a very widespread feeling across the Atlantic that exhibitions are a noisance; and the requisite funds cannot be obtained for the completion of the undertaking from a people who refuse to respond to the most pressing invitations for subscription. As a last resource, the Exhibition promoters are going to Congress for a vote of $\$ 1,500,000$, or, say, $£ 300.000$. The applicants state very plainly that it is their last resort, having failed to get what they need from the people directly, and that without this aid their enterprise may be limited and delayed. There appears thus far to be no party feeling upon this measure, and probably there will be none. The want of money is, moreover, not the only trouble in store for the management.
It will be remembered that foreigners refused to send their goods to America, unless they were permitted to affix the prices at which they could be sold if admitted duty free. This point was conceded without much opposition at the time, but the native manufacturers now find that they can not possibly compete with foreigners in price, and they are now beginning to utter indignant protests against the publi cation of any prices. In a word, the protectionists are afraid that the people of the United States will learn so much a the Exhibition that they will rise en masse and crush the party. Already it is rumored that, if the price rule is adhered to, many of the leading houses in the States will not exhibit, while, on the other hand, if the rule is broken, for eigners will not put in an appearance. Altogether things do not look well for the Centennial ; and if we may be allowed to use an expressive Yankeeism, it is not impossible that the whole thing may end in a gigantic 'fizzle' after all."-The En gineer.

Our esteemed cotemporary is evidently not posted in re spect to the "hard pan" of the Exposition. He does not re alize that all the buildings are nearly done, that all will be ready before they are actually wanted, that all the arrange ments are complete to ensure the success of the Exhibition, and that there is not the remotest possibility of its becoming a "great fizzle."
The Exhibition Company has, it is true, applied to Con gress for a grant of $\$ 1,500,000$, which, if allowed, will be a convenient plum for the managers, ought to augmen the greatness of the affair, and add to its renown. But ly affect the fact of the success of the Exhibition, since that is already assured.
In applying for this grant, it has been necessary, we pre sume-it is al ways necessary in such cases-to make use of little special pleading. Our cotemporary has probably a lowed his ideas of the state of the enterprise to be more af fected by this pleading than by the astonishing magnitude
of the works and labors that have been actually realized of the works and labors that have been actually realized,
and which, as stated, place the final success of the Exhibi tion beyond question.
We regret that our British friends have thought it unad visable to take any very prominent part as exhibitors; but we feel sure that they will fiock here in thousands as visi tors, and we shall welcome them most cordially. We hope to surprise them by the extent and extraordinary novelty of the display. If good old England is not a great contributor, her people, when they come, will find that her descendant have not been lacking, and that they have appreciated th glorious industrial lessons which she taught them in 1851

bAMBOO AS A SOURCE OF PAPER STOCK

The steadily increasing demand for fiber for papermaking has driven our manufacturers to the ends of the earth in search of new fibers. Not a few have looked with longing eyes upon the wealth of raw material going to waste, the world over, in bamboo thickets; and many attempts have been made to convert such fiber economically into paper tock.
Mr. Thomas Routledge, a progressive papermaker, claims hat the slow progress made with this plant has been due no to any inherent unfitness of the bamboo, but to the fact tha insufficient attention has been paid to age of material used.
Like the asparagus plant, the bamboo is succulent and ten der when young, but rapidly becomes hard and woody with age. When mature, it is, as all know, exceedingly dense, and in most varieties the outer part is so hard and silicious that it will strike fire like fint. To convert stems at this stage into pulp, they must be subjected to long.continued boiling in strong solutions of caustic alkali, at high tempercess at once difficult, costly, and dangerous.
Mr. Routledge finds thes
Mr. Routledge finds that these objections may beobviated zad the bamboo made to furnished excellent fiber cheaply
simply by using the plant when young and green. simply by using the plant when young and green. Before ment of alkaline baths, at atmospheric pressure, suffices to dissolve the mucilaginous and extractive compounds combined with the tissues, so that the fibers may be readily sep arated pure and free.
For many years Mr. Routledge has devoted much time to chemically and practically as a papermaker nearly overy
known fibrous material; and he does not hesitate to say that no other fiber can approach the bamboo in economy of production, and very few if any in the quality of the stock it yields for the manufacture of paper. And it has the fur ther advantage of being practically inexhaustible in quan tity. The bamboo is of extremely rapid growth, and it fiourishes in every tropical country. Grown under fa vorable conditions of climate and soil, it excels every other plant in amount of available fiber to the acre, and there is no plant which requires so little care for its cultivation and continuous production. The estimated gield is twenty times that of firx, hemp, jute, or cotton.
In view of the threatened exhaustion of the supply of es parto, owing to the greed of the native collectors, the utiliza tion of the bamboo promises to be a great public advantage, even if the paper produced from it falls far short of Mr. Routledge's anticipations. The sample furnished-Mr. Routledge's pamphlet on " The Bamboo Considered as a Paper Making Material" being printed on bamboo paper-shows it to be fully equal, indeed superior, to much of the common and cheap news paper in use. In fineness and strength it surpasses any made use of by our great dailies, and in color all but the Herald. It has, however, the serious fault of semitransparency, the letterpress showing through.
As an essential point in the proposed plan of atilizing the bamboo for papermaking consists in the use of young and preferably freshly cut stems, it will be necessary to have the fiber prepared where the bamboo grows, thus adding a new industry to tropical regions.

OUR WATER SUPPLY.

In 1870 the average daily consumption of water in New York city was $85,000,000$ gallons : in $1871,87,000,000$ gal ons; in $1872,90,000,000$ gallons; in $1873,100,000,000 \mathrm{gal}$ ons; in 1874, 102,000, co0 gallons; in 1875, $107,000,000$. A the Croton aqueduct is now used to nearly its full capacity the demand for water threatens to exceed ere long th amount which the aqueduct can deliver.
About 340 square miles of territorg are drained by the Croton river above the dam. On this area the rainfall is sut ficient to furnish an average daily supply of $300,000,000$ gal lons. The actual yield of the river is very much greater showing that many of the springs which supply its tributary streams are fed from without the Croton water shed. Cro ton lake, which covers some 400 acres, has a storage capacity of $500,003,000$ gallons. The old reservoir in Central Park holds $150,000,000$ gallons; the new reservoir, $1,000,000,000$, and the distributing reservoir on Fifth avenue, about 20,000 , 00 gallons: making a total of about $1,670,000,000$ gallons Δt or near the sources of the tributaries of Croton river, in
Putnam county, there are many small lakes, some of them Putnam county, there are many small lakes, some of them
of great depth, which have been converted into natural reservoirs by lowering their outlets. Of these, Lake Glenid covers 182 acres, and will supply $168,000,000$ gallons, when drawn down 3 feet; Lake Gilead, 122 acres, drawn down 12 feet will supply $396,000,000$ gallons: Lake Mahopac, 603 acres, drawn down 3 feet will supply $584,001,080,000,00$ gallons; Lake Barrett, 70 acres, lowered 10 feet will supply $198,000,000$ gallons; Lake China, 50 acres, lowered 10 fee will supply over $132,000,000$ gallons: a total of over 2,000 . 000,000 gallons.
Besides these
Boir at Boyd's Corneral reservoirs, there is an artificial reser voir at Boyd's Corners having a storage capacity of 2,700 , 000,000 gallons, and an unfinished reservoir on the middle
branch of the Croton which will have a storage capacity of branch of the Croton which will have a storage capacity
$4,000,000,000$ gallons. Thus the supply of storage wate amounts to the enormous quantity of nearly $6.000 .000,00$ gallons, to be increased by the new reservoir to $10,000,000,000$. In 1868 there were 9 days when the daily fiow of Croton 1869, 80 days; in 1870, 107 days; in 1871, 35 days; in 1872 30 days; in 1873, 109 days; in 1874, 85 days; in 1875, 39 days.

scientific and practical information.

the largest glass cylinder in the world.
Mr. Thomas Degnan, of the Union Glass Works in Somer ville, Mass., recently made an enormous glass cylindrica shade or cover for a statue which is to be exhibited at the Centennial. The process began by inserting a long hollow ron tube into the pot of molten glass, and by careful mani pulation about 75 lbs. of the latter was caused to adhere to circular. This was then taken to a wooden mold of sem men, and thus brought to a white heat. It was then taken to a wooden cylinder plased beneath the floor of the factory nd after it was placed therein, Mr. Degnan began the work fashioning the cylinder to its proper proportion, which h id by blowing through the iron tube and into the body of he glass; while at the same time, two men, guided by wave of his hand, raised and lowered the glowing cylinde gently but quickly until it came forth finished, and measure 5 feet in hight and 74 inches in circumference.

aleansing water mains.

It frequently happens in iron water mains that deposits of ust are formed, sufficiently thick to reduce materially th diameter of the pipe. To clean the interior, Mr. E. Dodds an English engineer, has lately devised a pipe scraper which operates as follows: The pipe is cut, the scraper is inserted, temporary joints are made, and the water is turned on at highest pressure, which drives the scraper on at great speed. In the first experiment, a distance of 300 yards of

Dr. Edward Smith, author of an excellent work on Foods," thinks that condensed milk is not a suitable food s a substitute for pure milk for infants. It is more fatten ing but less nourishing, and greatlỳ reduces the child's pow er of resisting diseases. Dr. Smith states that children brought up on impure London-fed cows' milk will resist an attack of acute disease better than children fed on condensed milk.
a New refrigerator car.
Very good success has been obtained in preserving grapes means of a new refrigerator car which has been recently ested on the Union Pacific road. A fan blower attached to one of the axles forces air through ice, and the blast subse quently passes into the car through a perforated pipe at the bottom. After circulating among the fruit, the current re turns to the blower and is again cooled. The advantage is the uniform temperature of about $40^{\circ} \mathrm{Fah}$., which is main tained inside the car

JADE.

A number of sales of Japanese and Chinesecuriosities have recently taken place in this city, in which were included ob ects made of a material little seen in this part of the world and about which little is here known. It is a precious stone aluable not on account of its scarcity, because in China and Burmah large mines of it exist, but for the great difficulty encountered in cutting and carving it, necessitating an amount of patience and manual dexterity rarely found sav among the inhabitants of the celestial kingdom. It is a sil icate of alumina called jade, and is obtained in Tartary various parts of China, and in the Mogoung districts of North Burmah. The true jade is hard enough to cut glas or quartz, and the most valuable pieces are of an intensel bright green hue, the ordinary material being pink and yel low. As many as 1,600 men are engaged in the jade mine of Burmah, and the substance is sometimes found in hug blocks, which three men can hardly move. The crude frag ments are cut by means of thin copper disks, used in conjunction with fine silicious grit, composed of quartz and lit tle particles resembling ruby dust. The boring of earrings and bracelets is effected by a revolving cylinder tipped at the free end with the same silicious mixture. The Chin se, with their proverbial ingenuity, make an almost perfec mitation of jade out of rice, the quality of hardness alon mitation of

EXPLUSIVE COPPER COMPOUND

It has long been known that acetylen copper is a very dan gerous explosive, detonating on the slightest percussion, and worse than all, forming spontaneously on the copper pipes ormerly employed to convey illuminating gas.
Recently another salt of copper has been prepared, which forms, when mixed with chlorate of potash, an explosive which may be used to fill percussion caps, torpedoes, etc. To solution of sulphate of copper is added enough hyposul phite of soda in solution to entirely destroy the blue color. Tetrathionate of the suboxide of copper is formed, and dis solved in excess of hyposulphite of soda. To another por tion of the blue vitriol solution, aqua ammonia is added until the blue precipitate, at first formed, dissolves to a dark blue solution of ammonio-oxide of copper. The two solutions are now mixed ; and after long standing, a violet-colored salt crystalizes out of the beautiful blue liquor, and it is this sait which becomes explosive when mixed with chlorate of potash. The Polytechnisohes Notizblatt, from which we obtain the above, does not state the composition of the violet salt bove referred to, or the probable reason of its explosiveness, whether due to the nitrogen imparted to it by the am monia, or to the large excess of sulphur, which latter sub stance, it is well known, when in a free state forms with chlorate of potash a misture that detonates by percussion.

DEEP RED ghass.

Pettenkofer, who analyzed the intense red glass used in antique mosaics, proposed to make it by fusing lead glass with about 9 per cent of oxide of copper and 3 per cent protosesquioxide of copper as a reducing agent. In this case, however, some of the lead is also reduced, giving Kayser employs borax as the fiux The following proportions are taken: Clean quartz sand, 60 parts; oxide of cop per, 10 parts; protosesquioxide of iron, 3 parts; calcined borax, 10 parts; calcined soda, 10 parts. A high tempera. ture should be employed during the fusing and reduction, and then it should be moderated to a dark red and kept there some time. When cold, the red glass will be covered with a thin layer of green copper glass.
action of protochloride of tin on chlorate of

POTABH.

When 2 parts by weight of stannous chloride and 1 part of potassic chlorate, both in powder, are triturated together in a porcelain mortar, the mass becomes heated in a few minutes very strongly. Beside chloric acid, large quantities of apor of water are given off, and a yellows, which, when and allowed to cool, deposits hypochlorite of potassa in splendid brilliant crystals, while the sapernatant opalescent, milky mother liquor contains oxychloride of tin.
tungestate of zinc as a white plgment.
When a solution of tungstate of soda is mixed with a solution of some zinc salt, the tungstate of zinc is precipitated as a snow-white pigment, that covers well and is recommend ed to artists that work in oil colors as deserving the prefer. ed to artists that work in oil colors
ence over all other white pigments.

