British Trade Mark Registration.

A new act of Parliament takes effect January 1, 1876. Its provisions, so far as they go, are good enough, but it is our duty, says Iron, to call the attention of our readers to the important fact that no very great space of time is af forded them for registering their trade marks. An office for registration is to be opened not later than January 1, and it is also enacted that no person shall be entitled to institute any proceedings for any infringement of a trade markafter the first of July next, unless such trade mark be registered. Six months, then, comprise themargin allowed for the registration of existing trade marks in the United Kingdom-no very long period when we consider the tardiness of our country in adopting a system long since recognised and enforced in others. There will be a great deal of work to be got through others. There will be a great deal of work to be got through
in the first six months of the ensuing year, but, with the in the first six months of the ensuing year, but, with the
expurience of the Patent Office to guide them, the Commisexpyrience of the Patent Office to guide them, the Commis-
sioners of Patents have ample means for forming a system.
Readers of Iron will, of all people, the least need reminding of the importance of securing the legitimate trader in the enjoyment of the peculiar device by which he distinguishes his goods. To the public it is an indisputable advantage that cutlery or other goods should bear not only the name, but the mark of the maker, while the strict inviolability of his cognisance is to the latter of vital necessity. As the ancient craftsman hung out a sign over his shop to tell his business to the large majority of clients who could not read his name, so have modern manufacturers, whose goods are carried all modern manufacturers, whose goods are carried all
over the world, among men of every color and lan guage, adopted marks which speak a language equal guage, adopted marks which speak a language equal-
ly comprehensible to the Tartar and the Guacho. No ly comprehensible to the Tartar and the Guacho. No
stronger proof of the value of a symbol which has stronger proof of the value of a symbol which has
been impressed upon goods of special quality can be been impressed upon goods of special quality can be
brought forward then the evil persistence with which the most celebrated trade marks of Sheffleld were pirated in the days when commercial treaties as yet were not. The mere name of the maker, which might appear sufficient for every purpose to those who have not given much thought to the subject practically affords the slenderest kind of protection. It would be impossible to restrain another maker of similar name from putting it upon goods made in imitation of those which have acquired world-wide re nown, and a trick not unknown in local elections in the West of England-the finding of a man of straw bearing the same name as a popular favorite-would be easy of perpetration.
In the case of the Messrs. Coats, a firm of the same namein the United States having imitated their wrappers, and thus seriously interfered with their trade, the courts stopped the imitation, but of course could not prevent the use of the name. This restriction, however, proved sufficient, as pur chasers at once saw the difference in the wrappers, and the mere similarity of name did little harm. Glenfield starch, again. has often been inquired for as the starch "with a long chimney upon it," and Asiatic customers exist who buy certain English goods by the trade mark alone. It is need less to muttiply instances of the the fact that one spe cial kind of knife, which had a great reputation in certain parts of South Anerica, went completely out of fashion in parts of South Anierica, went completely out of fashion in
consequence of the market being flooded with inferior Gerconsequence of the market being flooded with inferior Ger-
man imitations bearing the same mark. The advantage of man imitations bearing the same mark. The advantage of
a distinctivesign has received ample recognition atthe hands of those best qualified to appreciate its importance. A single firm has spent in a couple of years as much as $\$ 15,000$ in protecting their marks from infringement-a very prac tical test of the value they set upon them.

LWe suppose we need not remind readers of the Scienti Fic American that, under the American patent law, all trade marks, no matter how long they have been in use, may b patented, or, in other words, registered. Full informatio to avail himself of this important protection.]

Preparation of Ebonite.

The use of ebonite, one of the newer preparations of india rubber, is constantly increasing, on account of its better ap plicability to many purposes in the arts than its near ally, vulcanite. The two substances are quite similar, being com posed of india rubber and sulphur, with some preparation of gutta percha, shellac, asphalte, graphite, etc., although these latter are not essential. In vulcanite the amount o sulphur does not exceed 20 to 30 per cent, whereas in ebonite the percentage of sulphur may reach as high as 60 . An in creased temperature is also required for this preparation The approved formula consists in mixing together 100 parts of rubber, 45 of sulphur, and 10 of gutta percha, with sufll cient heat to facilitate the combination. In manufacture, sufficient quantity of this mixture is placed in a mold, of a de sired shape, and of such material as will not be affected by the sulphur contained in the mass. It is then exposed to
heat of about 315° Fah. and a pressure of about 12 lbs. to heat of about 315° Fah. and a pressure of about 12 lbs. to
the square inch, for two hours. This is done most readily by placing the mold in a steam pan, where the requisite pres sure and temperature can easily be kept up. When cold, the ebonite is removed from the mold, and finished and polished in the usual manner.

The Dioptric Light.

We published in our issue of December 4, 1875, an illustion and description of a dioptric light, the invention of Major-General Meigs. We have since received a number o communications relative to its being an old device. One is from Mr. W. C. Gayton, of Chicago, Ill., in which he claims that the spherical lens has been in use in England for more
than 30 years. It is much used by lace makers, he states than 30 years. It is much used by lace makers, he states who require a strong light; and a single candle, if surround-
ed by a circle of these glass globes filled with clear water, will give light enough for four or five women at this work which is very trying to the eyes.
C. G., of Upper St. Clair, Pa., states that another form of the device consists of a globe half filled with water and half with lard oil. This forms the lamp, and a globe of water is suspended at a little distance, so as to throw a clear light on the work.

THE NEW NEBULAR THEORY-POSBIBLE WORK FOR THE ABTRONOMERS.

In a recent issue we published a brief note calling atten tion to a recent experiment, made by a French scientist, in which a cloud of metallic particles, carried from an elec. trode by the electric current, assumes, in the midst of an en ironing liquid, a gyratory spiral movement, under the in fuence of a magnet. It will suffice to glance at the annexed ongravings (taken from La Nature), which well represents his experiment, to recognize the forms of the spiral nebula described by Lord Rosse, some of which have the curvature Fig. 1

Fig. 2.
seven hundred and fifty thousand dollars, to be expended under his direction in the construction of an astronomical observatory and the purchase and erection of the largest and best telescope that art and science can produce. The spot selected for the placing of this telescope is upon the summit of Mount Hamilton, in the county of Santa Clara. This mountain is some 1,400 feet higherthan Mount Diablo,and is said to be free from fogs at all times of the year. The county of Santa Clara has charged itself with the building and maintenance of a good road to the summit; and the Regents of the University have made application for a section of the land, to be listed to the University, with a view of devoting it to the purposes for which it is designed by the generosity of Mr. Lick. It is estimated that the purchase and placing of he telescope and other scientific apparatus will cost about $\$ 300,000$, leaving a fund of $\$ 450,000$ for its maintenance and for instruction in this department of Science.

New Allov for Iron.

Experiments proved that, by using chromeisen instead of spiegelesen, extremely soft steel is obtained; rods made for experiments were very easily bent, even by hand. It is seen, from these attempts to replace spiegeleisen by chro aeisen, that the use of the chrome iron alloys is limited, and the steel obtained is for most purposes too soft for the manu facture of such materials as rails, axles, tires, etc.
During some experiments with the chrome iron alloys, a strange phenomenon was observed. It is well known tha chromium is extremely hard, and scratches even hardened steel ; meanwhile an alloy was obtained which was mallea ble, and in a fresh state could be easily bent. It was also remarked that sometimes in opening the crucibles nothing but slag was found; but in breaking the crucibles, the alloy was found to be in the bottom of them. That may be attributed to the corrosive properties of the liquid alloy, which often penetrated even through the bottoms of plumbago crucibles.
The abovementioned alloy was anslysed, and the following average composition was found -
Metalliciron, 96.40 per cent, metallic chromium, 2.30 per cent; carbon, traces; lime, silica, 1.30 ; total, $100 \cdot 00$.
By melting a mixture of castiron, tin, and lead in the following proportions, a very liquid alloy is obtained:
Cast iron, 79.00 per cent; tin, 1950 per cent; lead, 1.50 total, 10000
The alloy has a very handsome appearance, and fills per fectly well the casting molds; thus it could be used for casting small articles. The alloy is to some degree mallea ble.-Chemical Nevo.

something New in Boller Flues.

The National Tube Works Company, of McKeesport, Pa. says the T'imes, are now manufacturing wrought iron lapsays the Times, are now manufacturing wrought iron lap
welded tubes in all sizes up to fifteen inches diameter, the larger of which are nowbeing adopted on our steamboats larger of which are now being adopted on our steamboats
for boiler flues, instead of the riveted flues, and the following for boiler flues, instead of the riveted flues, and the following
steamers are now using them for this purpose: Steamer Vince steamers are now using them for this purpose: Steamer Vince
Shinkle, two boilers, forty seven inches diameter and twentyShinkle, two boilers, forty seven inches diameter and twenty-
four feet long, ten lap-welded flues in each, of eight inches four feet long, ten lap-welded flues in each, of eight inches
diameter; steamer Cons Miller, two boilers forty-one inches di diameter ; steamer Cons Miller, two boilers forty-oneinches di ameter, twenty-four feet long, with six lap- welded fues in each
of ten inches diameter; steamer Golden Rule,three boilers, for ty-four inches diameter,twenty-sis feet long, with three eight and three ten inch lap-welded flues in each. These tubes are giving perfect satisfaction, and the local inspector at Cincinnati says they have proven themselves all that could be desired. There aremany advantages claimed for these tubes, as flues, among which we might mention the following: They are cylindrical in form, a point not claimed for the riveted flue, cylindrical in form, a point not claimed for the riveted flue,
thereby lessening the chances of collapsing, if not absothereby lessening the chances of collapsing, if not abso-
lutely preventing accidents of this kind. There are no rivet lutely preventing accidents of this kind. There are no rivet
heads or laps to interfere with the draft, and consequently heads or laps to interfere with the draft, and consequently
the flues are not liable to choke up with soot, are much less the flues are not liable to choke up with soot, are much less
apt to scale, and, having a smonth unbroken surface, are of apt to scale, and, having a smonth unbroken surface, are of
course much more easily cleaned, a fact that will be apprecourse much more easily cleaned, a fact that will be appreciated by the firemen. Another point claimed is that they are of uniform gage, having no rivets or laps, and must natur-
ally require much less fuel, a fact that will undoubtedly really require much less fuel, a fact that will undoubtedly receive due consideration.

Waterproof Tissues and Paper.
Les Mondes says that bichromate of potassa has the pro perty of rendering glue and gelatin insoluble in water. Thus paper, and stuffs of cotton, linen, or silk, if once coated with this insoluble glue, become perfectly impervious. To rende glue insoluble, it is sufficient to add, to the water in which it is dissolved, 1 part of bichromate to 50 parts of gelatin. The addition is only made at the moment when the liquid is to be used. The process is conducted in full daylight. The Japanese make their umbrellas with paper prepared in this manner.

The Brighton Express.

Brighton is fifty-three miles from London, and the rail. road which connects these two cities is the famous one of road which connects these two cities is the famous one of
the world for speed, for safety, and for the enormous wealth the world for speed, for safety, and for the enormous wealth
of its commuters. From fifty to sixty miles an hour is the rate of speed, and there are no stopping places. A billiard ball does not roll over the green cloth with more ease than this train moves. A correspondent of the Evening Post says: "I have seen the sea at Brighton, and fifty-three min utes afterwards I have seen the dome of St. Paul's through the fog of London. The tracks are kept in perfect order, and the cars are built of solid mahogany.'

