[For the Scientific American.]

the scertain the proper length of a connecting

 ROD.It is not often that the owner of a steam engine possesses any detail drawings of it ; and hence when it requires renewal in its various parts, taking up the wear and lost motion, with a view to keep the parts in line and as nearly as possible of the original dimensions, is left largely to the judgment of the repairing engineer. In the case of connect-
ing rods, however, this is at times neither practicable nor ing rods, however, this is at times neither practicable nor
desirable, for the reason that the bearings of main shafts are desirable, for the reason that the bearings of main shafts are apt to vary in their distance from the cylinder, by reason of the wear in the bearings or bhaft is above the cylinder, to shorten the distance between the two, the jeverse being the case when the cylinder is case when the cylinder is tal engines, this is not so aptal engines, this is not so ap-
preciably felt, for the reason preciably felt, for the reason
that the wear is not so much that the wear is not so much
in the direction of the length of the piston rod. When the main bearing brasses, of either vertical or horizontal engines, have been much worn, and have had the lost motion taken up at various times, they will be found, in most instances, to have varied in their distances from the steam cylinder, which may be compensated for when taking up the lost motion of the connecting rod, by making the length, from center to center of the brasses,
equal to the distance from the
the center of the guide bars.
In renewing the main shaft-bearings or the connecting rod, however, it is better to ensure that, the bore of the main shaft being in the center of the brasses, the length of the connecting rod is made such as to leave the clearance, between the piston head and the cylinder covers at the ends of the stroke, equal, and not to take it for granted that such is the case when we measire from the center of the guide bars or crosshead journal to the center of the main shaft. It will

not do to measure from the center of the crosshead journal to the center of the crank pin when the latter is at midstroke, because, when the crank pin is in that position, the cross head does not stand in the center of its travel on the guide bars, because of the angle at which the connecting rod

stands. The piston head will, in all cases when the crank stands at the center of its stroke travel, stand nearer to the cylinder head which is nearer to the crank than it does to the opposite cylinder head, the amount of the difference being dependent upon the length of the connecting rod as compared to the length of the engine stroke. If the connecting rod be shorter than the stroke, the greater is the difference referred to. From these considerations, it becomes neces sary to make the connecting rod of a length to ensure that the clearance shall be equal at the ends of the piston stroke
which should be doneas follows which should be done as follows:
Place the piston at one end of its stroke by the following pro cess: In Fig. 1, A represents the guidebar, B the guide block, C the fly wheel, D the crank, E the eccentric, and F the center line of the connect ing rod of an engine intended to run in the direction of the arrow Giving the wheel a turn or two in the direction in which it is intended to run, we allow it to come to rest so that the motion block, B, will be at very nearly the end of its stroke on the guide bar, A, and then placing the edge of a straight edge along the end of the guide block, B, the straight edge at the same time overlapping the face of the guide bar, we mark on the face of the latter the line, 1 , which will then be quite even with the end face of the guide block. We then (after chalking it to make the marks show plainly) mark on the
face of the wheel the line, 2 , which should be true with the rim of the wheel with a pair of compass callipers th rim of the wheel with a pair of compass callipers, provided that rim has been trued up in the lathe. We next, with a piece of iron wire or rod, bent as shown by G, make; at some fixed point, such as shown at H, a centerpunch mark and resting one end of the scriber, G, in the fixed center punch mark, we scribe with the other end upon the edge of the wheel the line, 3, as shown in the illustration. Our nex operation is to move the wheel forward in the direction in which it is to run, so that the crank will move to the dead center, and the guide block will leave the line, 1 , as shown in Fig. 2 ; and the motion of the wheel being continued, the guide block will return to the mark, 1, the ${ }_{\text {w }}{ }^{\text {wheel }}$ being moved very slowly indeed, so that there will be no troubl
ends of the stroke, the length of the connecting rod is the distance from the center of the crosshead journal to the cen er of the crank pin

New York city.

No More Wooden Nutmegs.

At a reception recently given by the Turners' Company of London to LieutenantCameron, R. N., as a recognition of his services in exploring the African continent, the guest of the evening, alluding to what he saw in his travels, said: "The country of Nyangwe, I firmly believe-in fact, I am suremay be reached by the Congo; and hereafter I hope that where my steps have been we shall see a system of English trading stations for the purchase not only of ivory, for the richness of the vegetable products of the country is some thing beyond description. I have walked along for fifty or sixty yards under a grove or sixty yards under a grov
of nutmeg trees, with the whole ground covered with whole ground covered with nutmegs, and no one knew
what they were worth. Bewhat they were worth. Be
sides that, there are many sides that, there are many other vegetable products in abundance, many differe roducing palms. Up th valley of the Congo, to a hight of 2,600 feet above the level of the sea, the coun try is crowded with oil palm and hereafter that trade alone, leaving the question of ivory altogether on on side, will be sufficient to wel repay any enterprising merso move it that the end of the guide block will come to rest chants of England who embark in it."
exactly fair with line, 1 . We then take our wire scriber rest one end in the fixed point, and with the other edge mark, on the edge face of the wheel, line 4 , which will then occupy the place that line, 3, does in our engraving. Our next duty is to find the center between the lines 3 and 4 , which we mark with a fine centerpunch mark, as shown at.5. And it will be readily be perceived that, if we move the wheel round so that the scriber, G, rests in the fixed center point, as shown in Fig. 4, at A, the other will be true with the centerpunch mark, 5 , and the motion block; and hence the piston and crank will be exactly on the dead center at that end of th stroke.

Then place the crank on its dead center, by the proces here given. On the end face of the crank, and from the cen ter of the shaft, strike a circle equal in diameter to the crank pin, as shown in Fig. 3, A representing the crank pin journal and B the circle referred to. Then take a spirit level, and place one end of it on the crank pin journal and the other end even with the circle, abovereferred to, as shown in Fig. 4, A representing the crank pin journal, B the circle, and C the spirit level in each case position I being for a vertical and position II for a horizontal engine; and presuming the engine to be leveled true, the crank will be on its dead cen ter when the bubble of the spirit level stands true; if howerer, the bore of the cyl nder is not quite leyel, place the spirit level in the cylinder bore and properly adjust it parallel with the bore of the cylinder, and then mark on the face of the spirit level a line exactly even with the center of the bubble, or else two lines just even with the two ends of the bubble; and set the crank so that, when the spirit level is applied to the crank pin and the circle, the bubble will stand in the same position as it did when in the bore of the cylinder, and the crank will stand on its dead center. It must, however, be remembered that, in the case of the vertical cylinder, the spirit level must be applied in the cylin er as shown in Fig. 5, in which A represents the crank pin the circle, C in each case the spirit level, D the engin cylinder, and E the center line of the cylinder, it being obvious that it would be useless to apply the spirit level in any sition, relative to the crank, in the cylinder. The crank and plston being thus placed in position at corresponding
"What do our readers," says the London Grocer, "think of this? We join with them in hoping that Lieuteriant Cam eron's discovery will turn out to be quite true. It would be cruel for him to deceive us on so vital a point, as cheap nut megs-such as the public understand by cheapness-have been looked for in vain ever since they were first imported and we are convinced that in this, as in numberless other cases, it is the supply alone that creates the demand. Give us cheap, sound nutmegs, and the consumption of them will rapidly increase, and limed, worm-eaten, or wooden nut megs of Yankee celebrity, will gradually become as rare as they are now comparatively common It-is, therefore, to be hoped that the bint thrown out by Lieutenant Cameron wit reference to the enterprising merchants of Engıand will be adopted, and that new and profitable channels of trade will be speedily opened up with tnat secluded corner of the globe."

Remarkable Surgical Operation

About two years ago, a waiter in a Parisian restaurant un dertook to imitate the feats of the Chinese sword swallow ers, by introducing a fork, handle foremost, into his throat taking care to hold the tines in his teeth 'rhe attempt was successful, and a repetition was demanded by the loungers in the saloon. The man complied ; but while the fork was in his œsophagus,one of his comrades made an ill timed joke, the performer grinned, let go the fork with his teeth, and down it went. The pain was intense. A physician was summoned, who managed to seize the forls with a forceps ; but just as who managed to seize the fork with a forceps; but just as
he was drawing it up, the patient was seized with convul he was drawing it up, the patient was seize with convul-
sive coughing, the doctor was compelled to relax his hold, sive coughing, the doctor was compelled to relax his hold,
and the fork slipped down all the way to the stomach. The symptoms of asphyxia at once disappeared, and the man suf ered no inconvenience for about two weeks. At the end of hat time, however, severe gastric affections manifested themselves, and the patient was sent to a hospital, where he has since, until last month, remained suffering great agony In the month of October last, it was decided by the hospital physicians to practise the extraordinary operation of gastrotomy, that is, to cut directly into the stomach and ex tract the obstacle. It wds at first attempted to determine adherences of the viscera from out, inwards, by means of austics : but this not succeeding, a triangular zone, wherein o essential organs were included, was selected as the poin of perforation. In April, the incision was made, the layers of tissue being dissected away one after another. The envelope of the stomach was attained, cut, and a piece emoved. The stomach itself was then opened, and pincers introduced ; and after a few attempts, the fork was grasped and withdrawn. The wound was closed, and is now nearly healed, the patient suffering only from a slight stomachic istula, already in process of obliteration. The fork was per ectly black, but otherwise unchanged.

Turbines.

In 1854, Emile Geyelin made a wheel at Saltillo, Mexico, which was a double turbine (that is, a turbine receiving wa er between two movable wheels on the same shaft, which counterbalanced each other, and avoided the necossity of re sisting the thrust fronı the head of water), for 160 feet fall producing 125 horse power, and turning at a speed of 1,850 revolutions per hour. This double turbine, though only 11 inches in diameter, propels a cotton mill of 10,000 spindles

Restoration uf Faded Writing.-Moisten the paper a little with water, and brush over it a solution of sulph-hydric ammonia. Since most inks contain iron, it is easy to understand that there will be formed sulphide of iron, which is black.

