(Continued from first page.)
to minute experiment by Professor Tyndall. That scientist finds the device to be of greater efficiency, while its cost is about one quarter of that of the Fresnel apparatus of simi lar power, with which it was compared. The Italian govern ment has also conducter comparative experiments between the Balestrieri and lent :lar systems, in a lighthouse at Ci vita Vecchia, and the $0^{\prime \prime}:$ itl commission report the exceed ing superiority of the new apparatus.
It being proposed to alapt the invention to the lighting of cities, experiments were lately tried in Rome. The ligh was placed on the Piazza del Popolo, so as to illuminate the Corso. An oil lamp of considerably inferior power to that used in a lighthouse of the second order was caused to throw a light by which a letter, written in fine characters, could be read at a distance of about 2,000 feet. The inventor has re cently devised a smaller apparatus which, at a distance of 224 feet, projects a beam 80 feet in diameter, the source of light being a single butterfly gas burner. This is especially adapted to the lighting of our streets and buildings with great economy of gas.

Another important application of this invention is the accumulation not merely of light but of heat rays. A lens 3.2 feet in diameter has an area of $1178 \cdot 1$ inches, and supposing this to reduce the sun's image to 0.15 inch , then the emergent light is condensed 7,854 times. Now, under the most favorable circumstances, a Fresnel lens does no transmit more than one fourth the heat it receives; hence the sun's heat is condensed but 5,236 times. It is possible, says Les Mondes, to make a Balestrieri apparatus of two three, four, or five times the size of the lens; and the calorific effects, increasing directly as the squares of the diame ters, will be four, nine, sixteen, or twenty-five times as great as those of a lens of the above-stated size. It seems possi ble, therefore, to obtain a calorific intensity capable of redu cing even the most refractory substances.
[This is a notable example of the way in which American inventions are "re-invented" and the credit monopolized by Europeans. Substantially the same device was patented in this country, as a locomotive headlight, on July 18, 1871, by C. S. Lee and W. M. Baldwin, of Troy, N. Y., and was de scribed in the Scientific American at that time.-Eds.]

The Newly Discovered Mechanical Action of Viole Light.
M. Paul Bert's recent investigations as to the cause of changes of color in the chameleon have led him to a discovery of considerable importance, since it indicates a mechanical effect of light, and more especially of the violet rays, hitherto entirely unknown. He traces the changes of hue of the reptile to minute corpuscles or chromoblasts, which are located either below the dermis or at the surface of the skin, according as they are affected by certain nerves which are respectively analogous to the vaso constrictors and vaso dilatators. When the chameleon is placed half in red light and half in violet light, oltained by passing sunlight through colored glass, the portion on which the red light falls re mains of the normal yellow color, while that affected by the violet light changes to a greenish black hue. This same ef fect can be produced by suitable nerve excitations and divisions, showing that the accession of color on the skin is ab solutely caused by the rising of the colored corpuscles to the surface; while, when the latter remain inert, the natural yellow hue of the creature continues unchanged. Hence it would appear that the colored corpuscles, like certain chemi cal substances, are not equally affected by all the rays of the spectrum, and that in the violet blue rays alone resides the spectrum, and that in the violet blue rays alone resides the
property of mechanically moving the chromoblasts and drawing them to the surface
Similar action on contractile substances has already been noted as caused by heat and electricity; but that light should possess an exciting effect of this description is certainly re markable.
M. Bert proposes to continue his researches to determine the influence of light on contractile matters under other circumstances, and he especially hopes to discover the reason of the favorable influence of light on the skin of children and of lymphatic persons. It seems to us he might go further and observe whether the color in the human skin, either that normally existing, as in the case of negroes, or that obtained by direct exposure to sunlight (tanning or burning), is attributable to any similar cause

There is one fact worthy of remark here about M. Bert discovery, and that is that it happens at a singularly op portune time, to be taken advantage of by those who are in clined to consider seriously the supposed influence of sun ight filtered through various colored glasses on phenomen f growth and of disease. Dr. Ponza, an Italian physician has recently stated that light of certain colors has a benef cial effect on lunatics and other persons suffering under ner vous ailments; and since M. Bert has demonstrated in the chameleons the direct influence of light on a nervous sys em, it appears not improbable that Dr. Ponza's alleged re ults may have some foundation.

Correspoudente.

Intermittent Springs.

To the Editor of the Scientific American:
J. S. O.'s assumption, on page 283, vol. 34, though theo etically plausible, will not upset the accepted theory of in termittent springs, as the following facts will show; Some years ago, while residing in a small village where a club pleasure ground was kept, I was requested to engineer couple of drinking fountains, one situated on a hillside and the other about 20 feet below, on the main walk. I led the water by a gentle descent from the springs by the pipe
 A, to the upper basin, from which the overflow was to be carried through the larger pipe, B, to the lower fountain. Business called me away at the time the pipe connecmade a change in my plan, producing a comical effect. All were laughing at my fountain when I returned, and one old gentleman described his experience thus: "I was walking on the lower walk, and saw a large stream flow from the fountain; walked up and took the cup for drink, when it suddenly stopped. My wife came up, and we were both much surprised. I thought some thing had got in the pipe, and stooped down to look, when I heard a gurgling sound ; and my wife and I were splashed all over with water You have played us a fine trick." I at once suspected what was the matter, and found in fact that, in stead of a perforated plate being placed at the outflow of the upper fountain, the plumber had bent it into a siphon, think ing to prevent the entrance of rubbish. I had a small hole perforated at the top, and the intermittent spring ceased The theory is that the water, falling from the crown of th iphon, when the pitch is vertical or great, rapidly carrie with it the small amount of air in the bend, the place of which is at once occupied by water.
george h. Henshaw.
Ste. Anne Bout de l'Isle, Canada.

Intermittent Springs

Tothe Editor of the Scientific American
In your issue of April 29, J. S. O. says: "The generally accepted theory of intermittent springs is that a cavity in the earth has two water channels, one leading into it, the other out, the former being the smaller." Is this the theory I have examined at different times a number of the standard works on this subject, and I do not think that we must take into consideration so much the size of the tubes as the amount of water which flows through them More wate will flow through a long tube held vertically than through a shorter one of the same bore
In the engraving, A is the cavity, $M N$ a horizontal tube conducting the water into the cavity, and BC:E the siphon

tube of the same size as M N , tube through which the water flows out. If only enough water is collected, in the tube M N, to keep it constantly full, the velocity of the water as it flows through the tube, may be expressed thus $v=\overline{g d}(g$ representing the force of gravity, and d the diame ter of the tube). As the water flows into and fills the cavity, it also fills the shorter arm of the siphon; and because it is just as large as $M N$, the water will rise to the top of the siphon at C. As the siphon is now charged, the water will flow down the longer arm, increasing in velocity at every in stant, according to the laws of falling bodies, until it reaches the end at E, when it will flow through the whole siphon with a velocitv equal to $\sqrt{2 g h}$ (h being equal to the hight of
he water in the cavity above the spring, at E). Now as h, in the formula, may be very much greater than d, so may the velocity be much greater in flowing out than in flowing in ; hence, the cavity will be emptied and the witcr will stop flowing out until it is again filled, and so on. When he water first begins to flow out, h is equal to CS, but when it has fallen in A to B, h has decreased to 0 S ; so, as the water falls in the cavity, the velocity of the flow constantly decreases. If the diameters of the tubes be 1 inch, and CS be 20 feet, the velocity of the flow into A will be about 1.6 feet in a second of time ; and that of the flow out, at first, about 35.8 feet.
In all intermittent springs, the velocity of the flow, as it continues, must decrease, and as the cavity is shallow or deep, this decrease is small or great.
Canonsburgh, Pa .
James F. Ray.

ASTRONOMICAL NOTES

Observatory of Vassar College.
The computations and some of the observations in the following notes are from students in the astronomical department. The times of risings and settings of planets are pproximate, but sufficiently accurate to enable an ordinary observer to find the object mentioned.
M. M.

Position of Planets for June, 1876.

Mercury
On June 1, Mercury rises at 5 h .44 m . A. M., and sets at h 44 m . P. M. On the 30 th , Mercury rises at 3 h .36 m . A. M., and sets at 5 h .58 m . P. M
Mercury was at its greatest elongation on May 21, but can be seen after sunset for some days later, probably through he first week of June, as it sets at a point north of that at which the sun is last seen

Venus.

Venus must be known to all who at this time observe the western sky. It does not attain the greatest brilliancy until une 7.
Venus rises on the 1st at $7 \mathrm{~h} .26 \mathrm{~m} . \mathrm{A} . \mathrm{M}$., and sets at 10 h 3 m . P. M. On the 30 th , Venus rises at 6 h .18 m . A. M., and sets at 8 h .36 m . P. M.

Mars.

Mars is very small. It can be found by its nearness to Venus, setting an hour later than Venus, on June 1, and at almost the same time on June 30.

upiter

Jupiter is now well above the horizon in the evening, and can be seen as soon as twilight is over. It rises on the 1st at $5 \mathrm{~h} .56 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 3 h .42 m . of the next morning. On the 30th, Jupiter rises at 3 h .49 m . P. M., and sets at 1 h 39 m . the next morning.
The satellites of Jupiter revolve around the planet in such short periods that their changes of position can be seen in a watch of a few hours, and on almost any evening one may pass across the disk of Jupiter, making what is called a transit ; or it may be hidden by passing into the shadow of Jupiter, in eclipse; or Jupiter may come between us and one f its moons, as in occultations.
These phenomena can be very nicely seen on June 15. Acording to the Nautical Almanac, on this evening the shadow of the first satellite passes across the disk of Jupiter ; this cannot be seen without the use of a good telescope. At 91 . 26 m . (Washington time) the third satellite, which is the largest, reappears, having been behind the planet for several hours; at 9 h .52 m . the first satellite leaves the disk, having been in passage across it for more than two hours,
and at 12 h .6 m . the third satellite disappears ly going into the shadow of Jupiter. On this evening only two of the atellites will be seen from 8 to 9.30 P . M

Saturn.
Saturn is coming into better position. It rises on the 1st at 0 h .36 m . A. M., but on the 30 th comes above the horizon t $10 \mathrm{~h} .39 \mathrm{~m} . \mathrm{P} . \mathrm{M}$., and sets at 9 h .25 m . the next morning. Saturn is among the small stars of Aquarius, about 2° south of the star λ.

Uranus.

Uranus is among the stars of Leo. It rises, on the 1st, at 9 h .30 m . A. M., and sets at 11 h . 35 m . P. M. On June 30, Uranus rises at 7 h .45 m . A. M., and sets at 9 h .45 m . P. M. Neptune.
Neptime cannot be seen without a good glass, and at pres ent is very unfavorably situated, as it comes to the meridian in the daytime.

Sun Spots.

The report is from April 20 to May 21, inclusive. During the past month, the surface of the sun has been remarkally free from spots. The present seems to be the minimum of the sun spot period. On May 6 a small spot appeared coming on. The observation of May 11 showed that this had divided into an elongated pair, which was followed by two very small ones. On May 11 these had disappeared, and the elongated pair had united into one, which was not seen after May 13. From that date till May 21 no spots have been found.

Dyeing Cotton Blue.

For 5 lbs. goods,dissolve 1 oz . copperas in 4 gallons of soft water. Wet the goods in warm suds, put them in the copperas water, let them remain 10 minutes. Dissolve in an other vessel 2 ozs. prussiate potash in 4 gallons soft water Wring your goods, put into this solution, let them remain is minutes; wring out again, now add 1 oz . oil of vitriol to the potash water, and stir well ; put the goods in again and bring to a boiling point, letting them remain until you obtain the desired shade.

