NOTES ON CHEMISTRY.

on unusual occurrences of phosphoric acid.

1. In commercial soda ash: in notable quantity. As this is used as a flux, the occurrence of phosphoric acid might, in certain cases, produce unlooked-for results. Its presence would, moreover, as a general rule, be detrimental.
2. In fluorite: shown to be present in American fluors, more especially those from Southern Illinois. According to Berzelius, the spar from Derbyshire contains 0.5 per cent of phosphoric acid. No analyses of American fluorites appear $t)$ have been recorded. When they are performed, the determination of the percentage of phosphoric acid should termination of the percentage of phosphoric aciil should form not the least important caat
should be made with extreme care.
3. In cryolite : the mineral analysed came from Evigtok, reenland, and every care was taken to select out pure material, free from the minerals usually occurring in connection with the cryolite.
4. In artificial fluor spar, patented under the name Stevens flux: It is made by heating cryolite with lime, and washing o.1t the fluoride of calcium thus formed. A quantitative det rmination gave 0.00934 per cent of phosphorus, corresponding to 0.0214 per cent phosphoric acid.
5. In the so-called chemically pure sulphuric acid: in the course of the preceding analysis it was necessary to use a large amount of sulphuric acid in order to get the minerals into solution. Although it seemed an almost absurd precaution to look for phosphoric acid in the sulphuric acid, yet it was done, with the result of finding some actually present. The acid analysed was that which has been used at the In stitute for several years with great satisfaction. That por-
tion of the acid used in the preceding analysis contained tion of the acid used in the prec
0.0006 per cent of phosphoric acid.
On other probatily occurrences of phosphoric acid: It is worthy of note that cryolite is one of a class of minerals, similar in their constitution and in their rock associations. Tius cryolite, $3 \mathrm{Na} \mathrm{F}+\mathrm{Al}_{2} \mathrm{~F}_{3}$, occurs at Evigtok in gneiss, chiolite, $3 \mathrm{Na} \mathrm{F}+2 \mathrm{Al}_{2} \mathrm{~F}_{3}$, in the Ilmen Mountains in gran ite, associated with topaz, fluorite, and cryolite. Examinajected, would probably reveal the presence of phosphoric acid in a number of simitar fluorine-holding minerals.
A converse proposition is probably true of minerals containing. phosphoric acid. In quite a number of instances this is the fact, as in amblygonite, wagnerite, and apatite. The associations of these three minerals are likewise very similar. There is an interesting field of study open regarding the mineral combinations in which phosphoric acid, chlorine, and fluorine enter in combination with alkaline bases, and e.rths. By artificial means, the number could probably be
largely increased. Finally, many silicates deserve re-examlargely increased. Finally, many silicates deserve re-exam-
ination. The minerals chondrodite, topaz, and muscovite ination. The minerals chondrodite, topaz, and muscovite
are similar in containing fuorine and in their associated are similar in containing fluorine and in their associated
rocks, the first occurring in granular limestone, the second in gneiss or granite, the last forming a constituent portion of gneiss. It is doubtful whether these and similar silicates have ever been examined for phosphoric acid, with the aid of the refined qualitative tests of late years perfected for
this substance. Over great ar
Over great areas of metamorphic rocks, the soil produced
by rock decay retains an inexhaustible fertility by rock decay retains an inexhaustible fertility, and every
soil analysis shows the presence of a considerable percentage of phosphoric acid. In the case of the gneiss rocks of the Atlantic States, this phosphoric acid is not improbably de
rived in rived in part from an undetected trace of phosphoric acid in
the muscovites. the muscovites.
That these surmises should not appear unwarrantable, it
should be bornein mind:1. That in should be bornein mind $: 1$. That in the great majority of cases, phosphoric acid has never been looked for. 2. That it is only of late years that chemists possessed a ready method of detecting it, and an accurate method for its quantitative estima-
tion. 3. It might frequently be tion. 3. It might frequently be precipitated in combinatio with certain bases, and the fact be readily overlooked.

a rapid method of double weighing.

In the weighing of the two portions required for the ana-
lysis in duplicate of a substance, the following device, which lysis in duplicate of a substance, the follo wing device, which, if not new, is new at least to the writer, will be found materially to shorten the time required: Equal portions, as nearly as the eye can judge, say (in the case of a carbon determina tion in steel) about 5 grammes (75 grains), are placed in the two watch glasses of the balance. They are equilibrated by transferring from the heavier side. Each portion is then removed and equilibrium restored by weights; their sum is the weight of both portions. Of course, this is accurately true only when the balance is in perfect adjustment. If not, the following mode of double weighing will give accurate results in the same time as is required to make one
double weighing in the ordinary manner. Calling the right hand watch glass R , and the left hand watch glass L , after hand watch glass R, and the left hand watch glass L, after
the two portions are in equilibrium, one (say that in R) removed, and its place supplied by weights. These are to be taken as the weight, not of the portion in L , but of the portion in R. The porion in L is now to be removed, and the weights by which it is replaced are in like manner to be ragarded as the weight of the portion in L.
avoidance of error in weighing absorption tubes. Certain discrepancies having appeared in duplicate determinations, where absorption tubes were employed, and which were assignable to no known error in the melt.od of
conducting the analysis they were attributed in part to the conducting the analysis, they were attributed in part to the large volume of air displaced, and the variations in temperaure and pressure at the successive periods at which the
weighings were effected. The absorption apparatus was therefore nearly,but not quite, counterbalanced by a second ab-
sorption apparatus of the samedisplaying capacity and similar glass. The latter was partly filled, and then sealed and kept in the balance case; the former was left in the balance case until the temperatures of both were equal. The amount ab-
sorbed was in this way directly measured by the small insorement in weights requisite to restore equilibrium. This
che device has caused the anomalies to disappear, and duplicate determinations rarely differ more than two hundredths of one per cent.
a general method of spectroscopic examination A short while ago, Mr. Iles drew attention to the fact that races of boracic acid could be detected by moistening the borates with glycerin in the application of the spectroscopic lest. Mr. Brown Ayres, at the lecturer's request, has applied the same reagent to a number of insoluble and non-vola tile compounds of the spectroscopic elements, and finds that a mixture of one part of hydrochloric acid and three parts of glycerin greatly enhances the delicacy and brilliancy of the spectroscopic test. The mixture is applied from a dropping bottle, similar to that used with cobaltic nitrate in blowpipe analysis, and from its adhesive properties may be used with solid particles, and the concentrated residues from evaporation.

EXAMINATION OF AN ARTIFICIAL MINERAL

Thris was formed during the casting of an alloy consisting of 85 parts of copper and 15 parts of tin. During the process of casting, a portion of the alloy refused to pour, and
was dumped out upon the clean brick floor of the casting was dumped out upon the clean brick floor of the casting room. It was found, on solidifying, that a great number of crystals had formed on the surface and in the cavities exposed to the air. The crystals are needles not exceeding \ddagger inch in length and ${ }_{2} \frac{1}{0}{ }_{0}$ inch in thickness. Luster adamantine, and of great brilliancy. Color, white and transparent. It scratched glass, its hardness being over 6 . The specific gravity at 62° Fah., by the bottle, is 6.019 . It will be noted that this is lower than the specific gravity of natural cassiterite, which is from $6 \cdot 4$ to $7 \cdot 1$. It glows brilliantly in the oxydizing flame, but gives no evidence of fusion at the ter minations of the crystals. It tinges the flame green. With
soda, it gives a white coating of oxide of tin. Crystals not apparently affected by several hours' digestion in hydrochloric and nitric acids. In chemical constitution, it is a stan nic oxide, containing a small amount of oxide of copper. A quantitative analysis was not made, owing to the small mount at disposal. The mineral is therefore an artificial variety of crystallized stannic oxide or cassiterite.

MUSICAL VIBRATIONS.

The lecturer began by remarking that it was "carrying coal to Newcastle" for him to lecture on musical vibrations in a place where original researches, known and respected even across the water, were made on this subject.
We come in contact with the external world by our senses, and we recognize matter by its effects upon them. All matpower which never allows it to rest. If we attach a porous cell to one end of a glass tube and cause the other end to dip in a vessel of water, a jar of hydrogen placed over the porous vessel will gradually cause the passage of the gas it contains into the cell and tube, and will drive out the air before it, which will escape in bubbles through the water. On removing the jar, the inherent activity of the hydrogen impels it to escape again through the pores of the cell, and the By rises in the tube
By means of a condensing pump we are enabled to force air into a receiver; on turning the stopcock, the inherent activity of the air forces it out again until equilibrium is restored. Conversely, we can withdraw the air from a re ceiver by means of an exhausting pump; but on opening the
stopcock, the activity of the outer air forces it into the re stopcock, the activity of the outer air forces it into the receiver until the first conditions are again established. These sure, and relieved of pressure, possesses inherent activity. In its ordinary state air is under contipual pressure, owing to the weight of the atmosphere above it.
A pendulum moved to one side returns to its original posi. by friction beyond it, and continues to vibrate until stopped by friction and the resistance of the air. Water and alcohol
placed in the same vessel in layers, taking care not to them, will gradually and completely intermingle by their own innerent activity.
If one end of a wooden rod is fixed in a vise and the other end is bent over, the particles on one side are compressed and those on the other extended. On releasing the end, the par ticles by their inherent activity recover their original posi
tion with such energy as to pass beyond it and the rod con tinues to vibrate in lessening arcs until it comes to rest. An other form of elasticity was illustrated by means of a rubber tube about ten feet long, of which the Professor held one end and an assistant the other. When this tube was shaken and which traveled the whole length of it, like waves, and at one time caused the tube to appear like a series of long links. 'These vibrations are due, first to the impulse given
the tube, and second, to its inherent activity or elasticity the tube, and second, to its inherent activity or elasticity.
By means of a little manipulation, cords may be made to vibrate as a whole, or in two, three, or more sections: which accounts, as we shall hereafter see, for the wonderful har-
mony of the pianoforte.
The vibrations of a plate were next exhibited, by covering

On rubbing the glass with the wet fingers, its vibrations became apparent by the wave motions of the water projected on the screen. The vibrations of a glass tube may be shown
by putting some fine powder in it and producing a by putting some fine powder in it and producing a sound near its mouth, when the powder will arrange itself in little plates, standing on edge and moving to and fro ; at certain points, however, the powder remains at rest. These points are called nodal points, and mark the length of the waves. If we had a fork making 1,024 vibrations a second, and a glass tube vibrating in unison with it, the nodal points in the glass tube would be just one foot apart, and would show us that sound traveled about 1,025 feet a second.
Let us now examine how the air is affected by these vibrations. If we suspend a pine rod by the middle and rub the fingers coated with resin over it, it emits a shrill sound. Substituting a brass rod, clamped in the middle and having an ivory ball suspended in contact with one end, for the an ivory ball suspended in contact with one end, for the
wooden one, and rubbing it in the same manner, the ball is wooden one, and rubbing it in the same manner, the ballis
violently projected from it. The explanation is that all violently projected from it. The explanation is that all
friction acts rhythmically. When one body slides over anfriction acts rhythmically. When one body slides over an-
other, the particles of one seize those of the other and drag them along until the resistance overcomes the attraction between the two; then they return to their former positions, to be again displaced, and these actions recur at regular intervals. Now suppose the rod to be replaced by a tuning fork, and the ivory ball by the particles of air in contact with the fork. These particles are first thrown off, forming a condensation of the air; then they return,forming a rarefaction, and are immediately projected again by the next beat of the fork against them. The condensed and rarefied waves are then propagated outward through the air.
The cross section of a tube contains a great number of air particles. The motion of a wave of sound through them was compared to that of a wave of water at the bottom of the ocean, seeing that we live at the bottom of the ocean of air. The existence of nodal points in a tube was explained by the fact that there are two sets of waves present, travel-
ing in opposite directions. The first waves are reflecte.d on ing in opposite directions. The first waves are reflected on
reaching the bottom of the tube, and return, meeting the following waves. At certain points these waves unite, producing a greater wave,while at others they neutralizeeach other, one tending to pull a particle down while the other tends to lift it up at the same time, and so the particle remains at rest. It is not quite correct, however, to suppose that the particles move up and down. They really move in small circles, as has been shown by the brothers Weber of armany, who suspended fine particles in troughs of water and studied their motions.
There must be something to convey the sound to the ear. In our experiments we have assumed that the air conveyed the sound, and it generally does. If we put a bell rung by clockwork under a receiver and exhaust the air, the sound ceases altogether; on readmitting the air, it is again plainly heard. The transmission of sound is not, however, confined to the atmosphere. This was demonstrated by a very neat
experiment. A music box was wound up and put inside a experiment. A music box was wound up and put inside a
thick wooden box. Then the latter was closed tightly, and covered with numerous layers of woolen cloths until the sound was completely smothered. On placing an molian harp in communication with the music box by means of a wooden rod about six feet leng, the vibrations passed along this rod and the music became distinctly audible, being reproduced by the æolian harp.
There are several ways of finding the number of vibra tions made by a body in a given time. One is to take a eissler tube,through which sparks are sent from an induc tion coil as often as the circuit is completed by a vibrating body. On revolving the tube, each spark will illuminate it n a different position. By counting the number of flashes and knowing the rate of revolution of the tube, we can readily find the number of vibrations of the body breaking circuit Another way is to attach a fine point to the end of a tuning fork, whose rate of vibration is required, and draw it across a plate of smoked glass, while the fork is sounding. The point will scrape off the black and produce a sinuous ine. The number of waves in this line, together with the rate of motion of the fork, will give us the rate of vibration. A third way of accomplishing the same thing is by means of the siren, an instrument consisting of a cylindrical brass box, having an aperture below for the admission of air and a number of small holes arranged in a circle in the top. Above his revolves a disk containing the same number of holes inclined in the opposite direction. The instrument is provided with an apparatus for registering the number of revolutions. When the air is forced in below, by means of an acoustic bellows, it escapes through the holes in the top and sets the disk in rotation. Each time two holes coincide the air escapes in puffs, and the result is a succession of sounds forming a note more and more acute the more rapidly the disk revolves. As we know the number of holes and have only to read off the number of revolutions on the index, the rate of vibration is easily computed.
The last topic considered was resonance. If we place two forks tuned to perfect unison, each mounted on a resonance box,several feet apart, and set the one in vibration, the other will soon take up the sound and continue it even after the first has been stopped. The particles of air struck by the first impinge upon the second with rhythmical and accumulating force until it too begins to swing.
Many other interesting points connected with this subject will have to be reserved until the next lecture, "On Harmony and Discord, with Optical Studies."
C. F. K.

To revive the color of black cloth garments, use a mixture of 2 pints vinegar, 1 oz. iron filings, 1 oz. copperas, 1 oz . | ground logwood, and 3 ozs. bruised galls.

