Correspondence.

To the Editor of the Scientific American.

I send a description of a new scientific instrument of my invention; it may perhaps interest the scientific public. It is for determining the s^{-}.ific gravity of fluids as well as of solids. Its construction is: 'used on the combined principles of the picnometer or speciic gravity glass and the hydrome ter. It is especially adapted to the determination of the gravity of fluids when only small quantities can be oltained when they are of such a nature that they can only be kep in glass vessels, such as strong acids and the like.
A is a spherical glass vessel to which a long neck is at tached, corresponding to the stem of the common hydrome ter. B is a smaller closed bulb that contains shot, mercury or other heavy object. This may be dispensed with if the bulb, A, is made of heav. glass. Around the stem or
neck of the vessel, A, just neck of the vessel, A, just above that vessel, there is
blown another bull, blown another bulb, C which serves as a float. The upper end of the stem is open. The instrument, instead of floating in the fluid the specific gravity of which is to be determined, is filled with a fluid to a mark, D, on the neck, and put in water. The degrees are marked on the glass by etching with hydrofluoric etching with hydrofluoric
acid, or a paper scale may acid, or a paper scale nay
be used, as shown in 2. The paper can be inserted in the space between the two tubes, and the upper edges sealed t gether.

If we fill the instrument with water and let it float in wa ter, the proportions of the instrument being such that it sinks to a, it will serve for determining the specific gravity of fluids heavier than water. If it sinks to a_{10}, then a_{1} will be 1.000 of the scale, and will serve for fluids lighte strument with any heavier fluid and put it into water, it will sink in farther than a, say to a_{1}, being $1 \cdot 250$. As the volume of the fluids to be weighed is always the same, it will be readily understood that a similar addition to the specific gra vity (as from 1.000 to $1 \cdot 250$ and from $1 \cdot 250$ to $1 \cdot 500$) will re quire equal additions to the volume of water displaced. In other words, the distances of the marks $1 \cdot 000$ to $1 \cdot 250$ an $1 \cdot 250$ to $1 \cdot 500$ will be equal, provided the stem is cylindrical This is the only instrument having a specific gravity scale o which the degrees are equidistant. Further, if the instru ment be so made that the volume of the imner vessel be known, such as 10 cubic centimeters, it can be used to weigh off any quantity of a fluid or solid substance (which must be in piecessmall enough to enter) from 10 to 20 grains, or as far as the scale goes. The instrument may thus serve as a balance for preparing solutions of standard strengths. It may be also used fordetermining the specific gravity of solids. The method is nearly the same as with the usual spe cific gravity glass or picnometer and the chemist's balance Thus: Given a substance not soluble in water, the specific strument to make it sink in water to $1 \cdot 250$, and fill up with strument to make it sink in water to $1 \cdot 250$, and fill up with
water to the mark, and immerse again in water, it will sink now to, say, $1 \cdot 750$. Then calling the absolute weight of the now to, say, $1 \cdot 750$. Then calling the absolute weight of the
water which the instrument will hold m, the absolute weight water which the instrument will
of the substance will be in $\times 1 \cdot 250$. The weight of the con tents of the instrument, after filling up with water, will be in $\times 1.750$, and the weight of the water added will be $n(1.750$ $-1 \cdot 250$), and the weight of the water displaced by the sul stance $n-10(1.750-1 \cdot 250)=n(1-1.750+1 \cdot 250=w \times 0.5$ By dividing the absolute weight of the substance by the weight of the waterit displaces, $\frac{n \times 1 \cdot 250}{n \times 0.5}$

gravity, $2 \cdot 500$

The results of the determinations with this instrumen are not influenced by variations from the mean temperature as the gravity of the fluid is always compared with water o the same temperature.
Your readers will doubtless find many uses to which thi little instrument can be put

Hermann Wiegand
St. Louis, Mo

A Thread Telegraph.

To the Editor of the Scientific American
A cheap telegraph, useful for certain purposes, can be made in this way: Take two tin cylinders about the si九e of a small dice box, say 3 inches long by $1 \frac{1}{4}$ inches diameter

the two cent telegraph.
cover one ϵ nd of each with parchment or bladder, forming a drumhead. Pierce the center with a pin and insert a strong thread, and make a knot to prevent its being with
drawn. With the other end of the thread (which may be of any length, say 100 yards or more) do likewise with the other cylinder, and the telegraph is complete. By keeping the thread tightly drawn, in order that the vibration may be perfect, a person speaking or even whispering in one
cylinder can be distinctly heard by another holding the cylinder can be distinct
Would not such home-made pocket telegraphs be very use ful in factories, on farms, in the army, and in many other ituations too innumerable to mention? An enterprising person might realize a handsome sum by making them as scientific toys for the Centennial Exhibition. The tubes could be made of cane pole, and I would suggest that they be made to fit one within the other so as to be easily carried Stronger ones can be made with small cord, but would be more bulky.

Geo. Quincy Thorndike.
Mentone, Alpes Maritimes, France.

setting engine guide bars.

Several of our correspondents are troubled with the diffi culty of setting the guide bars upon the bed of a horizontal engine so as to ensure that the piston head has an equal mount of clearance, from the cylinder head, at each end of the stroke, and at the same time so that the guide blocks will the guide bars. Below we give a practical method of obtain the guide bars.
ing this result.
Our first operation is to ascertain the length of the bore of the cylinder, measured from inside face to inside face of the cylinder covers, which we may do by subtracting from the whole length of the bore the depth to which the covers enter it at each end; then from the remainder we subtract the thickness of the piston head, exclusive of the bolt heads, if they project; and the last remainder will be the length of the bore of the cylinder (allowed for the stroke of the piston) plus the clearance bet ween the cylinder covers and the piston head when it is at each end of the stroke. From the remainder so obtained, we subtract the length of the engine stroke, that is to say, twice the length of the crank from the center of the shaft to the center of the crank pin ; and this last re mainder will be the amount of length of the bore of the cyl nder allowed for clearance, which, divided by 2 , will giv the amount of clearance at each end of the stroke. If, then we add the amount of this clearance to the depth to which one cylinder cover fits into the cylinder, the sum will be the distance from the face of the piston head to the end face of he cylinder. Then we may carefully clean and oil the cyl inder bore, piston rod, and piston, and then put the latter in its place in the cylinder, taking care that the distance from the face of the piston head to the end face of the cylinder end is that ascertained as above; and then the piston will be at one end of its stroke, and will allow amounts of clearance, equal at each end of the cylinder.
Our next operation is to find the exact position of the rosshead when it is at that end of the stroke which corre ponds with the position of the piston; and we proceed a ollows: There should be upon all guide bars a recess a ach end of the working face, so that the guide blocks will t each end of the stroke, travel over these recesses, and this prevent the formation of shoulders on the guide bars The distance, then, on each bar, between these recesses will e less than the length of the stroke; and we therefore sub ract the distance from recess to recess, on a bar, from the
length of the engine stroke, and the remainder will be the length of the engine stroke, and the remainder will be the
amount allowed for the guide bars to travel over the reamount allowed for the guide bars to travel over the re-
cesses, which, divided by 2 , will give the allowance for vertravel which, divided by 2, will give the allowance for the guide bar at the end corresponding to the end of the troke at which the piston stands. We now place the cross head upon the piston rod, and then put the guide blocks upon the crosshead, and adjust the guide bars upon the en gine bed, so that the end of the guide block stands even with e mark above referred to, and the operation is complete New York city.

Joshea Rose.

Great Explonion

A tremendous explosion of the nitroglycerin compound known as rend-rock powder recently occurred on Bergen Hill, New Jersey, directly opposite New York city. The material was to be employed for blasting in the new tunnel of the Delaware, Lackawanna, and Western Railroad Comfeet in area and nine feet in hight. Estimates place th amount of powder that blew up at about four hundre pounds. The concussion was terrific, and the effects were felt over a radius of some ten miles. Thousands of sashes and doors in the vicinity were forced in, and even across the river in New York the glass in edifices along the water fron was shattered. Houses at a distance of nearly five mile were perceptibly shaken. Fortunately the building in whic the powder was stored was located in a large empty lot an spending itself eastwardly and the force of the explosio spending itself eastwardly, most of the fragments were hurled harmlessly into the marsh below. The great damage which must have ensued had the locality been thickly built up was thus avoided; and the injuries were confined to the wholesale destruction of doors, windows, and ceilings in the neighborhood.
The cause of the disaster is unknown. The accident points to the necessity, however, of the enforcement of stringent laws, preventing the storing of any of the new and powerful explosives, in large quantities, in the vicinity of any populated district, and also regulating its transpor

Influence of Light on the Color of Flowers.

Dr. Askenasy, in the Botanische Zeitung, records the re influe some experiments instituted by him to ascertain the main, his results agree with tho the different plants he employed to test the degree of influence exercised by light can be regarded as of equal value, then the degree of influence is very diverse in different plants. Scarlet and white,scarlet and yellow, and wholly yellow flowered sorts of tulipa Gesneriana, grown in absolute darkness, exhibited no appreciable difference in the shape or color,or in tensity of color, of the flowers from those of the same varie ties grown in the full light. Blue and yellow flowered varieties of crocus vernus developed their proper colors, but the flowers were very much drawn up, as gardeners express it. The effects of light on a dark violet blue variety of hyacintlius orientalis were of a double nature, with the same temperature. Those grown in the light were at least a fortnight in advance of those grown in the dark, and much more highly colored, though those grown in the dark were not albsolutely colorless. To prove this, Dr. Askenasy cut off the upper portion of the spikes of several of the plants growing in the dark, and placed these portions in water, fully exposed to $\mathrm{l}_{\mathrm{ig}}{ }_{1} \mathrm{t}$, on the south side of a greenhouse. In three days the expanding flowers were of as deep a hue as the normal ones, proving also that the change of color so effected was entirely independent of previous formation of chlorophyl. The flowers of pulmonaria officinalis formed less color according to the stage of their development when darkened, and those in a very young state were quite white. The Howers of several other plants were affected in the same manner; hence it appears that those cases in which the colors are not influenced by light must le regarded as ex-ceptional.-Academy.

Union of the Caspian and Black Scas.
The present century has witnessed several remarkable chievements in marine engineering, such a sthe drainage of extensive arms of the sea in Holland, the construction of the Suez Canal, and the deepening of the estuary of the Mississppi; and these not being enough, still more gigantic schemes have been projected. It has been proposed to admit the Mediterranean into two extensive tracts of the Sahara, which would give water communication to a large portion of Algeria, and make a seaport of Timbuctoo. Neither plan is likely to be put speedily into execution; but in the meantime, Mr. H. T. Spalding, of Blomfield, N. J., comes to the ront with a proposal to turn the waters, of the Black Sea into the Caspian, thus enlarging the latter to its pristine size, and turning the barren and almost impassable deserts, left b the subsidence of its waters, into a highway of commerce or Central Asia. This ancient sea basin is considerably depressed below the general ocean level, and has been silted up in the course of ages by the Ural, Volga, and other lesser treams which flow into it. The consequence of this contraction and shallowing of the Caspian has been, not only hat the land left dry is incurally barren, but that the surrounding country has become unfruitful from want of rain, consequent on the diminished evaporation. Mr. Spalding proposes, as we have said, to restore to the Caspian its ancient body of waters, its ancient depth and area, which was nearly double its present extent, by connecting it with the Black Sea by a channel 150 miles in length, about 170 yards wide at its eastern extremity, but two thirds narrower on the western half. The projector calculates that, at the end of forty years from the beginning of the work, the level of the wo seas would be so nearly uniform that the navigation of the new channel could login. Mr. Spalding further proposes to join the Don to the Volga, and thus lay the Sea of Azof also under contribution. The mere excavation of the proposed canal does not seem very difficult ; and as the Rusian government appears to have directed its attention tc the scheme, doubtless the opinion of competent scientific men as to its feasibility will be obtained. If it should prove successful it would be a magnificent work, and followed by political and economic results more than commensurate with the skill and outlay that would be reguired for its comple-tion.-Iror.

New Dincovery in Agriculture

The curious discovery is announced by Professor P. B. Wilson, of Washington University, Baltimore, that minutey pulverized silica is taken up in a free state by plants from the soil, and that such silica is assimilated without chemical or other change. The experiment, of which we give a more full account in our Supplement of this week, consisted in fertilizing a field of wheat with the infusorial earth found ear Richmond, Va. This earth, it is well known, consists of the shells of microscopic marine insects, known as diatoms, which under strong magnifying powers reveal many beautiful forms that have been resolved, classified, and named. After the wheat was grown Professor Wilson reated the straw with nitric acid, subjected the remains to microscopic test, and found therein the same kinds of shells or diatoms that are present in the Richmond earth, except that the larger sized shells were absent: showing that only silica particles below a certain degree of fineness can ascend the sap pores of the plant. This discovery opens up a new line of research in agricultural investigation from which important results and much additional knowledge may accrue.

The american Centennial Juries.-The list of jurors the Centennial was announced just as this issue was going to press, and the names will appear in our next.
Engineering projects gie under advisement for che reg Engineering projects are ander St. Petersburgh, Russia.

